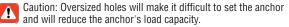
C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

DROP-IN Internally-Threaded Expansion Shell Anchor

Drop-in anchors are internally-threaded, deformation-controlled expansion anchors with a preassembled expander plug, suitable for flush mount applications in solid base materials. The anchor is set by driving the expansion plug towards the bottom of the anchor using the setting tool. Drop-in anchors are also available in coil-threaded versions for ½" and ¾" coil threaded rod.

The Lipped Drop-In (DIAL) features a lip at the top of the anchor body that keeps the top of the anchor flush with the concrete. This eliminates the need for precisely drilled hole depths and allows for easier flush installation, consistent embedment and uniform rod lengths.

The 3/8" Short Drop-In Anchor (DIA37S) is for use in solid and hollow concrete. The short length permits shallow embedment, thus avoiding drilling into rebar or prestressing strands. The wide surface flange allows the DIA37S to be installed in deep or bottomless holes


WATERIAL: Carbon and stainless steel

(DIA37S available in zinc plated carbon steel only)

FINISH: Carbon steel: Zinc plated

NSTALLATION:

 Drill a hole in the base material using the appropriate diameter carbide drill bit as specified in the table. Drill the hole to the specified embedment depth plus 1/8" for flush mounting. Blow the hole clean using compressed air. Overhead installations need not be blown clean.

- Insert anchor into hole. Tap with hammer until flush against surface.
- Using the Drop-in setting tool, drive expander plug towards the bottom. of the anchor until shoulder of setting tool makes contact with the top of the anchor.

CODES: Drop-In: City of L.A. RR24682; Factory Mutual 3017082; Underwriters Laboratories File Ex3605. Meets requirements of Federal Specifications A-A-55614, Type I. Short Drop-In: Factory Mutual 3017082 & Underwriters Laboratories File Ex3605.

The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply. consult the current reports for applicable load values.

TEST CRITERIA: The Drop-In anchor has been tested in accordance with ICC-ES's Acceptance Criteria for Expansion Anchors (ACO1) for the following:

- · Seismic/wind loading
- · Combination tension and shear loads
- · Critical and minimum edge distance and spacing

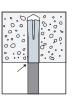
TED SPECIFICATIONS: Drop-In anchors shall be internally threaded, expanding shell anchors. The anchor shell shall be zinc plated carbon steel with a minimum 70,000 psi tensile strength, type 303 or 316 stainless steel, as called for on the drawings. Drop-In anchors shall meet Federal Specification A-A-55614, Type I. Anchors shall be Drop-In anchors from Simpson Strong-Tie, Pleasanton, CA. Anchors shall be installed following the Simpson Strong-Tie instructions for Drop-In internally threaded expansion shell anchors.

Lipped Drop-In

Short Drop-In

Coil-Thread Drop-In

Material Specifications


Anchor		Component Material								
Component	Zinc Plated Carbon Steel	Type 303 Stainless Steel	Type 316 Stainless Steel							
Anchor Body	Meets minimum 70,000 psi tensile	AISI 303. Meets chemical requirements of ASTM A-582	Type 316							
Expander Plug	Meets minimum 50,000 psi tensile	AISI 303	Туре 316							
Thread	UNC 2B/Coil-thread	UNC 2B	UNC 2B							

Note: DIA37S, DIA50C and DIA75C are not available in stainless steel.

Installation Sequence (Short Drop-In anchor similar)

DROP-IN Internally Threaded Expansion Shell Anchor

Drop-In Anchor Product Data - Carbon and Stainless Steel

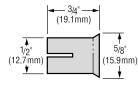
Rod Size	Carbon Steel	303 Stainless	316 Stainless	Drill Bit Diameter	Bolt Threads	Body Length	Quantity	
(in.)	Model No.	Model No.	Model No.	(in.)	(per in.)	(in.)	Box	Ctn.
1/4	DIA25	DIA25 SS	DIA25 6SS	3/8	20	1	100	500
3/8	DIA37	DIA37 SS	DIA37 6SS	1/2	16	11/2	50	250
1/2	DIA50	DIA50 SS	DIA50 6SS	5/8	13	2	50	200
5/8	DIA62	DIA62 SS	•	7/8	11	21/2	25	100
3/4	DIA75	DIA75 SS	•	1	10	31/8	20	80

Drop-In Anchor

Lipped Drop-In Anchor Product Data

Rod Size	Carbon Steel	Drill Bit Diameter	Bolt Threads	Body Length	Quantity	
(in.)	Model No.	(in.)	(per in.)	(in.)	Box	Ctn.
1/4	DIAL25	3/8	20	1	100	500
3/8	DIAL37	1/2	16	11/2	50	250
1/2	DIAL50	5/8	13	2	50	200

Lipped Drop-In Anchor


Short Drop-In Anchor Product Data

Rod Size	Carbon Steel	Drill Bit Diameter	Bolt Threads	Body Length	Quantity		
(in.)	Model No.	(in.)	(per in.)	(in.)	Box	Ctn.	
3/8	DIA37S1	1/2	16	3/4	100	500	

^{1.} A dedicated setting tool is included with each box of the DIA37S.

Short Drop-In Anchor

Short Drop-In Anchor Dimensions

Coil-Thread Drop-In Anchor Product Data

	Rod Size	Carbon Steel	Drill Bit Diameter	Bolt Threads	Body Length	Quantity	
	(in.)	Model No.	(in.)	(per in.)	(in.)	Box	Ctn.
ĺ	1/2	DIA50C1	5/8	6	2	50	200
ĺ	3/4	DIA75C1	1	5	31/8	20	80

^{1.} DIA50C and DIA75C accept $1\!\!/\!_2$ and $3\!\!/\!_4$ coil-thread rod, respectively.

Coil-Thread Drop-In Anchor

Drop-In Anchor Setting Tool Product Data

Model No.	For use With	Box Qty.
DIAST25	DIA25, DIAL25	10
DIAST37	DIA37, DIAL37	10
DIAST50	DIA50, DIA50C, DIAL50	10
DIAST62	DIA62	5
DIAST75	DIA75, DIA75C	5

Setting Tools sold separately except for DIA37S.
 Setting Tools for use with carbon and stainless steel Drop-In anchors.

Standard Setting Tool

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

DROP-IN Internally Threaded Expansion Shell Anchor

Tension Loads for Drop-In (Carbon and Stainless Steel) and Lipped Drop-In (Carbon Steel) Anchors in Normal-Weight Concrete

Rod	Drill	Embed.	Critical	Critical		Tension Load						
Size in.	Bit Dia.	Depth in.	Edge Dist.	Spacing in.	f'c ≥ 2000 psi (13.8 MPa) Concrete Ultimate Std. Dev. Allowable lbs. (kN) lbs. (kN) lbs. (kN)							
(mm)	in.	(mm)	in. (mm)	(mm)				Allowable lbs. (kN)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	
1/4 (6.4)	3/8	1 (25)	3 (76)	4 (102)	1,400 (6.2)	201 (0.9)	350 (1.6)	405 (1.8)	1,840 (8.2)	451 (2.0)	460 (2.0)	
3/8 (9.5)	1/2	1 ½ (38)	4 ½ (114)	6 (152)	6 2,400 251		600 (2.7)	795 (3.5)	3,960 (17.6)	367 (1.6)	990 (4.4)	
½ (12.7)	5/8	2 (51)	6 (152)	8 (203)	3,320 (14.8)	372 (1.7)	830 (3.7)	1,178 (5.2)	6,100 (27.1)	422 (1.9)	1,525 (6.8)	
5/8 (15.9)	7/8	2 ½ (64)	7 ½ (191)	10 (254)	5,040 (22.4)	689 (3.1)	1,260 (5.6)	1,715 (7.6)	8,680 (38.6)	971 (4.3)	2,170 (9.7)	
3/4 (19.1)	3/4 1	3 (76)	9 (229)	12 (305)	8,160 (36.3)	961 (4.3)	2,040 (9.1)	2,365 (10.5)	10,760 (47.9)	1,696 (7.5)	2,690 (12.0)	

^{1.} The allowable loads listed are based on a safety factor of 4.0.

- 3. Refer to allowable load-adjustment factors for edge distance and spacing on page 157.
- ${\it 4. Allowable loads may be linearly interpolated between concrete strengths listed.}\\$
- 5. The minimum concrete thickness is 11/2 times the embedment depth.

*See page 10 for an explanation of the load table icons

Shear Loads for Drop-In (Carbon and Stainless Steel) and Lipped Drop-In (Carbon Steel) Anchors in Normal-Weight Concrete

Rod	Drill	Embed.	Critical	Critical			S	hear Load	
Size in.	Bit Dia.	Depth in.	Edge Dist.	Spacing in.		f'c ≥ 2000 ps .8 MPa) Conc		f'c ≥ 3000 psi (20.7 MPa) Concrete	f'c ≥ 4000 psi (27.6 MPa) Concrete
(mm)	in.	(mm)	in. (mm)	(mm)	Ultimate Std. Dev. Allowable lbs. (kN) lbs. (kN) lbs. (kN)		Allowable lbs. (kN)	Allowable lbs. (kN)	
1/4 (6.4)	3/8	1 (25)	3 ½ (89)	4 (102)	1,960 (8.7)	178 (0.8)	490 (2.2)	490 (2.2)	490 (2.2)
3/8 (9.5)	1/2	1 ½ (38)	5 ½ (133)	6 (152)	3,240 (14.4)	351 (1.6)	810 (3.6)	925 (4.1)	1,040 (4.6)
1/2 (12.7)	5/8	2 (51)	7 (178)	8 (203)	7,000 (31.1)	562 (2.5)	1,750 (7.8)	1,750 (7.8)	1,750 (7.8)
5/8 (15.9)	7/8	2 ½ (64)	8 ³ / ₄ (222)	10 (254)	11,080 (49.3)	923 (4.1)	2,770 (12.3)	2,770 (12.3)	2,770 (12.3)
3/4 (19.1)	3/4 1	3 (76)	10½ (267)	12 (305)	13,800 (61.4)	1,781 (7.9)	3,450 (15.3)	3,725 (16.6)	4,000 (17.8)

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may be increased by 16% for short-term
- loading due to wind or seismic forces where permitted by code.
- 3. Refer to allowable load-adjustment factors for edge distance and spacing on page 157.
- 4. Allowable loads may be linearly interpolated between concrete strengths listed.
- 5. The minimum concrete thickness is 1½ times the embedment depth.

Tension Loads for Coil-Thread Drop-In Anchors in Normal-Weight Concrete

	D.:	F b l	in. Dist.	Critical Spacing in. (mm)	Tension Load						
Model No.	Drill Bit Dia.	Depth in. (mm)			t'e > 2500 nei			f'c ≥ 4000 psi (13.8 MPa) Concrete			
NO.	in.				Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Std. Dev. lbs. (kN)	Allowable lbs. (kN)	
DIA75C	1	3 (76)	9 (229)	12 (305)	10,520 (46.8)	1,100 (4.9)	2,630 (11.7)	12,980 (57.7)	1,548 (6.9)	3,245 (14.4)	

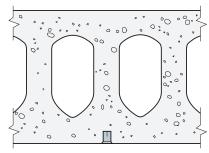
- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distance and spacing on page 157.
- 4. The minimum concrete thickness is 1½ times the embedment depth.

^{2.} Allowable loads may be increased by 331/3% for short-term loading due to wind or seismic forces where permitted by code.

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

DROP-IN Internally Threaded Expansion Shell Anchor

Tension and Shear Loads for %8" Short Drop-In Anchor in Normal-Weight Concrete and Hollow Core Concrete Panel



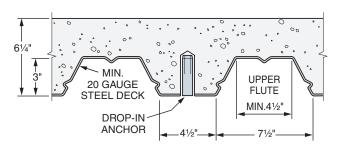
Model No.	Rod Size in.	Drill Bit Dia. in.	Embed. Depth in.	Tension Critical Edge Dist.	Shear Critical Edge Dist.	Critical Spacing in.	Tension Load				Shear Load	
	(mm)		(mm)	in. (mm)	in. (mm)	(mm)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)
Normal-Weight Concrete, f'c ≥ 2000 psi (13.8 MPa)												
DIA37S	3/8 (9.5)	1/2	3/4 (19)	4 ½ (114)	5 ½ (133)	3 (76)	1,500 (6.7)	220 (1.0)	375 (1.7)	2,274 (10.1)	374 (1.7)	570 (2.5)
Hollow Core Concrete Panel, f'c ≥ 4000 psi (27.6 MPa)												
DIA37S	3/8 (9.5)	1/2	3/4 (19)	4 ½ (114)	5 ½ (133)	3 (76)	1,860 (8.3)	119 (0.5)	465 (2.1)	3,308 (14.7)	210 (0.9)	825 (3.7)

- 1. The allowable loads listed are based on a safety factor of 4.0.
- ${\bf 2. \ Allowable \ loads \ may \ not \ be \ increased \ for \ short-term \ loading \ due \ to \ wind \ or \ seismic \ forces.}$
- 3. Refer to allowable load-adjustment factors for edge distance and spacing on page 157.

*See page 10 for an explanation of the load table icons

Hollow Core Concrete Panel (Anchor can be installed below web or hollow core)

Tension and Shear Loads for Drop-In (Carbon Steel) and Lipped Drop-In (Carbon Steel) Anchors in Sand-Lightweight Concrete over Metal Deck



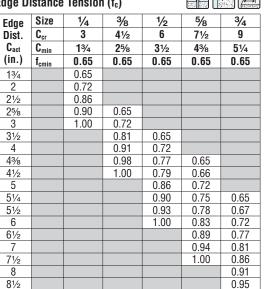
Model No.	Rod Size in. (mm)	Drill Bit Dia. in.	Embed. Depth in. (mm)	Tension Critical Edge Dist. in.	Shear Critical Critical Spacing Edge Dist. in. in. (mm)		(Install	Tension Load (Install through Metal Deck) f'c ≥ 3000 psi (20.7 MPa) Concrete			Shear Load through Met 000 psi (20.7 Concrete	al Deck)
	(111111)			(mm)	(mm)	()	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)
DIA37	3/8 (9.5)	1/2	1 ½ (38)	6 (152)	7 (178)	8 (203)	3,000 (13.3)	367 (1.6)	750 (3.3)	2,400 (10.7)	187 (0.8)	600 (2.7)
DIA50	½ (12.7)	5/8	2 (51)	8 (203)	9 % (238)	10 5/8 (270)	3,580 (15.9)	861 (3.8)	895 (4.0)	5,600 (24.9)	200 (0.9)	1,400 (6.2)

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 3. Refer to allowable load-adjustment factors for edge distance and spacing on page 157.

Lightweight Concrete over Metal Deck

1.00

DROP-IN Technical Information


Load-Adjustment Factors for Drop-In (Carbon and Stainless Steel) and Lipped Drop-In (Carbon Steel) Anchors in Normal-Weight Concrete: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (C_{act}) or spacing (S_{act}) at which the anchor is to be installed."
- 4. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.

6. Reduction factors for multiple edges or spacing are multiplied together.

Edge Distance Tension (fc)

See Notes Below

9

Edge Distance Shear (f_c)

Lugo D	istanic	onicai (10)		(23) (15)	Market (Market)
Edge	Size	1/4	3/8	1/2	5/8	3/4
Dist.	Ccr	31/2	51/4	7	83/4	101/2
Cact	C _{min}	13/4	2 5/8	31/2	43/8	51/4
(in.)	f _{cmin}	0.45	0.45	0.45	0.45	0.45
13/4		0.45				
2		0.53				
21/2		0.69				
25/8		0.73	0.45			
3		0.84	0.53			
31/2		1.00	0.63	0.45		
4			0.74	0.53		
43/8			0.82	0.59	0.45	
41/2			0.84	0.61	0.47	
5			0.95	0.69	0.53	
51/4			1.00	0.73	0.56	0.45
51/2				0.76	0.59	0.48
6				0.84	0.65	0.53
61/2				0.92	0.72	0.58
7				1.00	0.78	0.63
71/2					0.84	0.69
8					0.91	0.74
81/2					0.97	0.79
83/4					1.00	0.82
9						0.84
91/2						0.90
10						0.95
10½						1.00

*See page 10 for of the load table

an explanation

icons

1.00

pacing Tension nd Shear (fs)							
S _{act} (in.)	Size	1/4	3/89	3/8	1/2	5/8	3/4
	E	1	3/4	11/2	2	21/2	3
	Scr	4	3	6	8	10	12
	S _{min}	2	11/2	3	4	5	6
	f _{smin}	0.50	0.50	0.50	0.50	0.50	0.50
11/2			0.50				
2		0.50	0.67				
21/2		0.63	0.83				
3		0.75	1.00	0.50			
31/2		0.88		0.58			
4		1.00		0.67	0.50		
41/2				0.75	0.56		
5				0.83	0.63	0.50	
51/2				0.92	0.69	0.55	
6				1.00	0.75	0.60	0.50
7					0.88	0.70	0.58
8					1.00	0.80	0.67
9						0.90	0.75
10						1.00	0.83
11							0.92

1. E = Embedment depth (inches).

12

- 2. S_{act} = actual spacing distance at which anchors are installed (inches).
- 3. S_{cr} = critical spacing distance for 100% load (inches).
- 4. S_{min} = minimum spacing distance for reduced load (inches).
- 5. f_s = adjustment factor for allowable load at actual spacing distance.
- 6. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) / (S_{cr} S_{min})].$
- 9. 3/8" Short Drop-In (DIA37S).

2. C_{cr} = critical edge distance for 100% load (inches).

3. C_{min} = minimum edge distance for reduced load (inches).

4. f_c = adjustment factor for allowable load at actual edge distance.

5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.

6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.

7. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})].$

^{1.} C_{act} = actual edge distance at which anchor is installed (inches).

SIMPSON Strong-Tie ANCHOR SYSTEMS

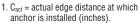
Load-Adjustment Factors for Drop-In (Carbon and Stainless Steel) and Lipped Drop-In (Carbon Steel) Anchors in Sand-Lightweight Concrete over Metal Deck: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the edge distance (C_{act}) or spacing (S_{act}) at which the anchor is to be installed.
- 4. The load adjustment factor (f_{C} or f_{S}) is the intersection of the row and column.
- 5. Multiply the allowable load by the applicable load adjustment factor.
- 6. Reduction factors for multiple edges or spacing are multiplied together.

Edge Distance Tension (fc)

Edge	Size	3/8	1/2		
Dist.	Ccr	6	8		
Cact	C _{min}	31/2	43/4		
(in.)	f _{cmin}	0.65	0.65		
3½		0.65			
4		0.72			
41/2		0.79			
43/4		0.83	0.65		
5		0.86	0.68		
51/2		0.93	0.73		
6		1.00	0.78		
61/2			0.84		
7			0.89		
71/2			0.95		
8			1.00		
0 N - + D - I - · · ·					

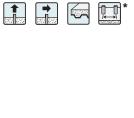


*See page 10 for an explanation of the load table icons

See Notes Below

Edge Distance Shear (fc)

Edge	Size	3/8	1/2
Dist.	Ccr	7	9 %
Cact	C _{min}	31/2	43/4
(in.)	f _{cmin}	0.45	0.45
31/2		0.45	
4		0.53	
41/2		0.61	
43/4		0.65	0.45
5		0.69	0.48
5½		0.76	0.54
6		0.84	0.60
61/2		0.92	0.66
7		1.00	0.72
71/2			0.78
8			0.84
81/2			0.90
9			0.96
93/8			1.00



- C_{cr} = critical edge distance for 100% load (inches).
- 3. C_{min} = minimum edge distance for reduced load (inches).
- 4. f_c = adjustment factor for allowable load at actual edge distance.
- 5. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.
- 6. f_{cmin} = adjustment factor for allowable load at minimum edge distance.
- 7. $f_c = f_{cmin} + [(1 f_{cmin}) (C_{act} C_{min}) / (C_{cr} C_{min})].$

Spacing Tension and Shear (fs)

	Size	3/8	1/2
Sact	Scr	8	10%
(in.)	Smin	4	51/4
	f _{smin}	0.50	0.50
4		0.50	
41/2		0.56	
5		0.63	
51/4		0.66	0.50
6		0.75	0.57
61/2		0.81	0.62
7		0.88	0.66
71/2		0.94	0.71
8		1.00	0.76
81/2			0.80
9			0.85
91/2			0.90
10			0.94
10%			1.00

- 1. S_{act} = actual spacing distance at which anchors are installed (inches).
- 2. S_{cr} = critical spacing distance for 100% load (inches).
- 3. S_{min} = minimum spacing distance for reduced load (inches).
- 4. f_s = adjustment factor for allowable load at actual spacing distance.
- 5. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 6. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 7. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) / (S_{cr} S_{min})].$

