The Titen HD® anchor is a patented, high-strength screw anchor for concrete and masonry. It is designed for optimum performance in both cracked and uncracked concrete; a requirement that the 2006 IBC places on post-installed anchors. The high strength, easy to install Titen HD anchor has been tested and shown to provide outstanding performance in cracked and uncracked concrete under both static and seismic loading conditions. The self-undercutting, non-expansion characteristics of the Titen HD anchor make it ideal for structural applications, even at reduced edge distances and spacings. Recommended for permanent dry, interior non-corrosive environments or temporary outdoor applications.

and and a set of the s

RMANCE FEATUR

1 1 - 3 F 6 6 F

- · Tested per AC193 to ensure outstanding performance in both cracked and uncracked concrete
- · Higher load capacity and vibration resistance: Threads along the length of the anchor undercut the concrete and efficiently transfer the load to the base material.
- Vibration and Shock Resistance: The mechanical interlock of the threads and the ratchet teeth on the underside of the head help prevent the anchor from loosening in vibratory conditions. The Titen HD anchor has been tested to 12.6 million vibratory cycles with no performance reductions.
- Specialized Heat Treating Process: Creates superior surface hardness at the tip to facilitate cutting, while at the same time not compromising ductility within the anchor body.
- Less spacing and edge distance required: The anchor does not exert expansion forces on the base material.
- Easy post-installation inspection: The head is stamped with the Simpson Strong-Tie® "≠" sign and the anchor length in inches.

- · No special drill bit needed: Designed to install using standard sized ANSI tolerance drill bits
- · Installs with 50% less torque: Testing shows that when compared to competitors,
- the Titen HD requires 50% less torque to be installed in concrete.
- · Hex-washer head: Requires no separate washer and provides a clean installed appearance.*
- Removable: Ideal for temporary anchoring (e.g. formwork, bracing) or applications where fixtures may need to be moved. Re-use of the anchor to achieve listed load values is not recommended.
- See reinstallation note on next page.
- TERIAL: Carbon steel, heat treated
- Zinc plated or mechanically galvanized

CODES: ICC-ES ESR-2713 (concrete); ICC-ES ESR-1056 (CMU); City of L.A. RR25741(concrete) City of L.A. RR25560(CMU); Florida FL 11506.7; Factory Mutual 3017082. 🔼 The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

TEST CRITERIAL The Titen HD[®] anchor has been tested in accordance with ICC-ES AC193, ACI 355.2 and ICC-ES AC106 for the following:

- Static tension and shear loading in cracked and uncracked concrete
- Seismic and wind loading in cracked and uncracked concrete
- Performance in cracked concrete

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC

Anchor Fatigue Testing: Tested in accordance with ASTM E 488 for the effects of fatigue. 25% of the average ultimate load was applied to the anchor for 2 million cycles at a frequency of 15 Hz. Subsequent load tests showed no reduction in ultimate tension capacity.

Vibratory Load Testing: A 150 lb. concrete block was suspended from a %" diameter anchor embedded at 1½" and vibrated for 12.6 million cycles at a frequency of 30 Hz and an amplitude of 0.0325 inches. Subsequent load test showed no reduction in ultimate tension capacity. Field Testing: For guidance on field testing see technical bulletin T-SAS-THDINSP.

INSTALLATION: Holes in metal fixtures to be mounted should match the diameter specified in the table on the next page.

- Caution: Oversized holes in the base material will reduce or eliminate the mechanical interlock of the threads with the base material and will reduce the anchor's load capacity. Use a Titen HD screw anchor one time only. Installing the anchor multiple times may result in excessive thread wear and reduce load capacity.
 - · Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus 1/2" minimum to allow the thread tapping dust to settle and blow it clean using compressed air. Overhead installations need not be blown clean. Alternatively, drill the hole deep enough to accommodate embedment depth and dust from drilling and tapping.
 - · Insert the anchor through the fixture and into the hole.
 - Tighten the anchor into the base material until the hex washer head contacts the fixture.
 - If the anchor will not install completely, remove the anchor and assure that all dust has been evacuated or drill the hole deeper. Begin re-installation of the anchor by hand to prevent cross-threading.
 - Do not use impact wrenches to install into hollow CMU.

Screw anchors shall have 360-degree contact with the base ATIO material and shall not require oversized holes for installation. Fasteners shall be manufactured from carbon steel, and are heat-treated. Anchors shall be zinc plated in accordance with ASTM B633 or mechanically galvanized in accordance with ASTM B695. Anchors are not to be reused after initial installation. Screw anchors shall be Titen HD® anchors from Simpson Strong-Tie, Pleasanton, CA. Anchors shall be installed per the Simpson Strong-Tie instructions for the Titen HD anchor.

*Some jurisdictions require an additional square plate washer for sill plate applications.

Serrated teeth

on the tip of the

Titen HD® screw

anchor facilitate

cutting and

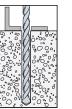
reduce

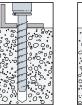
installation torque.

Titen HD® screw anchor U.S. Patent

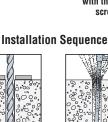
5,674,035 &

6,623,228





New longer 1/2" diameter Titen HD anchors achieve sufficient embedment depth to develop tension loads


Suitable for use in place of code anchor bolts.

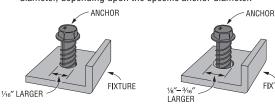
equal to many Simpson Strong-Tie holdowns that specify a 5% " diameter anchor. Testing has been conducted to assure compatibility of these holdowns' anchor holes with the ½" Titen HD screw anchor.

1/2" min

Titen HD® Anchor Product Data - Zinc Plated

		Drill Bit	Wrench	Quantity		
Size (in.)	Model No.	Dia. (in.)	Size (in.)	Box	Carton	
3/ 3/ 0	TUD27200U	()	()			
3% X 3	THD37300H			50	200	
3% x 4	THD37400H	3⁄8	9⁄16	50	200	
3% x 5	THD37500H			50	100	
3% X 6	THD37600H			50	100	
½ X 3	THD50300H	-		25	100	
¹∕₂ x 4	THD50400H			20	80	
½ x 5	THD50500H			20	80	
½ X 6	THD50600H	-		20	80	
½ X 6½	THD50612H	1/2	3⁄4	20	40	
½ X 8	THD50800H	/2	74	20	40	
½ x 12	THD501200H			20	40	
½ x 13	THD501300H			20	40	
½ x 14	THD501400H			20	40	
½ x 15	THD501500H			20	40	
5∕8 x 4	THD62400H			10	40	
5∕8 x 5	THD62500H			10	40	
5∕% x 6	THD62600H	5⁄8	15/16	10	40	
5∕8 x 61⁄2	THD62612H			10	40	
5∕8 x 8	THD62800H	1		10	20	
3⁄4 x 4	THD75400H			10	40	
³⁄₄ x 5	THD75500H			5	20	
3∕4 x 6	THDT75600H	2/	.1/	5	20	
3⁄4 x 7	THD75700H	3⁄4	11⁄8	5	10	
3∕4 X 81∕2	THD75812H			5	10	
3∕4 x 10	THD75100H			5	10	

1. Zinc plating meets ASTM B633, SC1.


2. Length is measured from the underside of the head to the tip of the anchor.

FIXTURE HOLE DIAMETER:

Due to the full shank diameter and larger threads of the Titen HD[®] screw anchor, consideration needs to be given to specifying the appropriate diameter Titen HD anchor based on the fixture hole type to be used. The American Institute of Steel Construction (AISC) has established the following guidelines with regards to fixture hole sizing depending on the hole type:

- "Standard" fixture holes are $\frac{1}{16}$ larger than the nominal anchor diameter.
- "Oversized" fixture holes are 1/a -3/16" larger than the nominal anchor diameter, depending upon the specific anchor diameter.

Standard fixture hole

LARGER Oversized fixture hole

Use the following table to identify which diameter Titen HD[®] screw anchor to use based on the fixture hole type and diameter. In most cases where a smaller diameter Titen HD anchor is called out in comparison to the competitor's larger diameter anchor, the Titen HD anchor still generally provides allowable tension and shear load values comparable to or greater than those of the competitor's anchor.

Titen HD Anchor Product Data - Mechanically Galvanized

Size	Model	Drill Bit Dia.	Wrench Size	Quantity		
(in.)	No.	(in.)	(in.)	Box	Carton	
3∕8 x 5	THD37500HMG	3/	9/	50	100	
3∕8 x 6	THD37600HMG	3⁄8	9⁄16	50	100	
½ x 5	THD50500HMG			20	80	
1⁄2 X 6	THD50600HMG	1/	3⁄4	20	80	
1⁄2 X 61⁄2	THD50612HMG	1/2	94	20	40	
1⁄2 X 8	THD50800HMG			20	40	
5∕8 x 5	THD62500HMG			10	40	
5% x 6	THD62600HMG	5/8	15/16	10	40	
5% x 6½	THD62612HMG	7/8	' 7/16	10	40	
5∕8 x 8	THD62800HMG			10	20	
3⁄4 X 81⁄2	THD75812HMG	3/4	11/8	5	10	
3⁄4 x 10	THD75100HMG	9/4	1 /8	5	10	

 Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See page 16 for more corrosion information.

The Titen HD[®] screw anchor $\frac{3}{4} \times 6$ and $\frac{3}{4} \times 7$ (models THDT75600H and THD75700H) have a 1" section under the head that is unthreaded to allow installation into tilt-up wall braces.

Hole Dimensions

Titen HD Diameter (in.)	Wrench Size (in.)	Recommended Fixture Hole Size (in.)
3⁄8	⁹ ⁄16	½ to %16
1⁄2	3⁄4	5⁄8 to ¹¹ ⁄16
5⁄8	^{15/} 16	³ ⁄4 to ¹³ ⁄16
3⁄4	11⁄8	7∕8 t0 ¹⁵ ∕16

Reinstallation of Titen HD® screw anchor in Original Drilled Hole

Titen HD anchors may be removed and reinstalled in the original hole without reducing load capacity if the threads that were cut into the concrete during the original installation are followed. Start reinstallation of the anchor by hand to prevent cross-threading and a possible reduction in load capacity.

Characteristic	Cumhol	Unite		Nomin	al Anchor	Diamete	r (inch)	
Characteristic	Symbol	Units	3/	/ 4 8	1,	2	3,	/4
In	stallation Info	rmation						
Drill Bit Diameter	d	in.	:	3⁄8	1⁄2		3⁄4	
Baseplate Clearance Hole Diameter	d _c	in.	1,	/2	5	8	7,	/8
Maximum Installation Torque	T _{inst,max}	ft-lb	5	0 ²	6	5 ²	15	i0 ²
Maximum Impact Wrench Torque Rating	Timpact,max	ft-lb	15	i0 ³	38	5 ³	38	15 ³
Embedment Depth	h _{nom}	in.	21/2	31⁄4	31⁄4	4	5½	6¼
Critical Edge Distance	Cac	in,	2 ¹¹ /16	35⁄8	3%16	41⁄2	63⁄8	75⁄16
Minimum Edge Distance	Cmin	in.			1:	3/4		
Minimum Spacing	S _{min}	in.			3	}		
Minimum Concrete Thickness	h _{min}	in.	33⁄4	5	5	6¼	8¾	10
	Additional D	ata						
Anchor Category	category	-			1			
Yield Strength	f _{ya}	psi			97,	000		
Tensile Strength	f _{uta}	psi			110	000		
Minimum Tensile & Shear Stress Area	A _{se}	in ²	0.099 0.183		0.4	14		
Axial Stiffness in Service Load Range - Uncracked Concrete	β _{uncr}	lb/in.			715	000		
Axial Stiffness in Service Load Range - Cracked Concrete	βcr	lb/in.			345	000		

Titen HD® Installation Information and Additional Data^{1,4}

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

 T_{inst,max} is the maximum permitted installation torque for the embedment depth range covered by this table. This is not applicable to other embedment depths published elsewhere in this catalog. T_{impact,max} is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table. This is not applicable to other embedment depths published elsewhere in this catalog.

4. This data at $h_{nom} = 21/s^*$ is also valid for the THD50234RH installed at $h_{nom} = 23/s^*$. See page 133 for further information regarding the THD50234RH.

Mechanical Anchors

TITEN ${f HD}^{{f e}}$ Heavy Duty Screw Anchor for Concrete and Masonry

.I W

liten HD	® Tension	Design	Data ^{1,10}	

Titen HD® Tension Design Data ^{1,10}						page 10 foi ie load table	^r an explana e icons	tion	
Characteristic	Symbol	Units		Nomin	al Anchor	Diamete	r (inch)		
Characteristic	Symbol	UIIIIS	3/	3⁄8 ¹⁰		1⁄2		3⁄4	
Embedment Depth	h _{nom}	in.	21/2	31⁄4	31⁄4	4	5½	61⁄4	
Steel	Strength	in Tensio	n						
Nominal Steel Strength in Tension	N _{sa}	lb.	10,	890	20,	130	45,	540	
Strength Reduction Factor - Steel Failure	φ	_			0.6	65²			
Concrete Br	eakout Str	ength in 1	Tension ⁸						
Effective Embedment Depth	h _{ef}	in.	1.77	2.40	2.35	2.99	4.22	4.86	
Critical Edge Distance ⁶	Cac	in.	211/16	35⁄8	3%16	41⁄2	63⁄8	75⁄16	
Effectiveness Factor - Uncracked Concrete	k _{uncr}	-			2	4			
Effectiveness Factor - Cracked Concrete	kcr				1	7			
Ratio of k _{uncr} /k _{cr}	Ψc,N				1.	41			
Strength Reduction Factor - Concrete Breakout Failure	φ	_			0.0	65 ⁷			
Pullou	t Strength	in Tensio	n ⁹						
Nominal Pullout Strength Uncracked Concrete (f'c=2,500 psi)	N _{pn,uncr}	lb.	2,700 ⁴	3	3	3	3	3	
Nominal Pullout Strength Cracked Concrete (f'c=2,500 psi)	N _{pn,cr}	lb.	1,2354	2,700 ⁴	3	3	6,070 ⁴	7,195 ⁴	
Strength Reduction Factor - Pullout Failure	φ	—		•	0.0	65⁵	•	•	
Breakout or Pullout Strer	ngth in Ter	nsion for S	Seismic A	pplication	s				
Nominal Pullout Strength for Seismic Loads (f'c=2,500 psi)	N _{eq}	lb.	1,2354	2,7004	3	3	6,070 ⁴	7,1954	
Strength Reduction Factor - Breakout or Pullout Failure	φ	—		•	0.0	65⁵		•	
1 The information presented in this table is to be used in conjugation wi	ith		7 The year	uo of ≜ appli	aa whan ha	th the load	combinatio	no of ACL	

- The information presented in this table is to be used in conjunction with 1 the design criteria of ACI 318 Appendix D, except as modified below. 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to
- Section D4.5 to determine the appropriate value of $\boldsymbol{\varphi}.$ Anchors are considered brittle steel elements. 3
- Pullout strength is not reported since concrete breakout controls.
- Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f'_{c,specified} / 2,500)^{0.5}
- 5 The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of ϕ .
- The modification factor $\psi_{cp,N} = 1.0$ for cracked concrete. Otherwise, 6 the modification actor for uncracked concrete without supplementary reinforcement to control splitting is either: (1) $\psi_{\text{cp},\text{N}}$ = 1.0 if $c_{a,\text{min}} \geq c_{ac}$

or (2) $\psi_{cp,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5h_{ef}}{c_{ac}}$ if $c_{a,min} < c_{ac}$. The modification factor,

 $\psi_{cp,N}$ is applied to the nominal concrete breakout strength, N_{cb} or N_{cbg}.

- 7. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition A are met, refer to Section D4.4 to determine the appropriate value of $\boldsymbol{\varphi}.$ If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of $\boldsymbol{\varphi}.$
- For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify 8. the value of N_n by multiplying all values of $\sqrt{f'_{C}}$ affecting N_n by 0.60. All-lightweight concrete is beyond the scope of this table.
- 9. For sand-lightweight concrete, modify the value of Npn,cr, Npn,uncr and Neg by 0.60. All-lightweight concrete is beyond the scope of this table.
- 10. This data for the $\frac{3}{8}$ " Titen HD at $h_{nom} = 2\frac{1}{2}$ " is also valid for the THD50234RH installed at hnom = 23/4" provided the tabular value of Npn,uncr is multiplied by 0.75. See page 133 for further information regarding the THD50234RH.

Titen HD[®] Shear Design Data^{1,5}

-									
Characteristic	Symbol	Units		Nomi	nal Anchor	Diameter	(inch)		
	Symbol	UIIIIS	3⁄8		1/2		3/	4	
Embedment Depth	h _{nom}	in.	21⁄2	31⁄4	31⁄4	4	51⁄2	6¼	
Steel Strength in Shear									
Nominal Steel Strength in Shear (f'c = 2,500 psi)	Vsa	lb.	4,4	60	7,4	7,455		840	
Strength Reduction Factor - Steel Failure	ф	-			0.6	60 ²			
	Concrete	Breakout Stre	ngth in She	ar⁵					
Outside Diameter	do	in.	0.3	75	0.5	0.500		0.750	
Load Bearing Length of Anchor in Shear	ℓe	in.	1.77	1.77 2.40		2.99	4.22	4.86	
Strength Reduction Factor - Concrete Breakout Failure	φ	-		0.703		70 ³			
	Concret	e Pryout Stren	gth in Shea	ar					
Coefficient for Pryout Strength	k _{cp}	-		1.0		2.0			
Strength Reduction Factor - Concrete Pryout Failure	φ	-	0.704						
Steel Strength in Shear for Seismic Applications									
Nominal Steel Strength in Shear for Seismic Loads (f'_c =2,500 psi) V_{eq}		lb.	2,855		4,790		9,3	50	
Strength Reduction Factor - Steel Failure	φ	-			0.6	50 ²			

1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.

2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of ϕ . Anchors are considered brittle steel elements

3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition A are met, refer to Section D4.4 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of ϕ .

4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D4.5 to determine the appropriate value of ϕ

5. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.4, modify the value of V_n by multiplying all values of \sqrt{f} 'c affecting V_n by 0.60. All-lightweight concrete is beyond the scope of this table.

> *See page 10 for an explanation of the load table icons

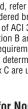
Titen HD® Tension and Shear Design Data for Normal-Weight or Sand-Lightweight Concrete over Metal Deck^{1,2,6}

	-		-	-	-				
				Lower	Flute		Upper	Flute	
Characteristic	Symbol	Units	Nomir	nal Anchor	Diameter	(inch)	Nom. Anch. Diameter (inch)		
			3⁄8		1/2		3⁄/8	1⁄2	
Embedment Depth	h _{nom}	in.	11⁄2	21⁄2	2	31⁄2	11⁄2	2	
Effective Embedment Depth	h _{ef}	in.	0.92	1.77	1.29	2.56	0.92	1.29	
Pullout Resistance, concrete on metal deck (cracked) ^{3,4}	N _{pn,deck,cr}	lbs.	580	1,335	905	2,040	765	1,700	
Pullout Resistance, concrete on metal deck (uncracked) ^{3,4}	N _{pn,deck,uncr}	lbs.	825	1,905	1,295	2,910	1,095	2,430	
Steel Strength in Shear, concrete on metal deck ⁵	V _{st,deck}	lbs.	2,240	2,395	2,435	4,430	4,180	7,145	

1. The information presented in this table is to be used in conjunction with the design criteria of ACI

318 Appendix D, except as modified below.

2. Concrete compressive strength shall be 3,000 psi minimum.


3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure A, calculation of the concrete breakout strength may be omitted.

4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight-concrete-over-metal-deck floor and roof assemblies Npn,deck,cr shall be substituted for Npn,cr. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete N_{pn,deck,uncr} shall be substituted for N_{pn,uncr}. 5. In accordance with ACI 318 Section D.6.1.2 (c), the shear strength for anchors installed in the soffit

of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies V_{st.deck} shall be substituted for Vsa 6. Minimum distance to edge of panel is 2hef.

MIN. 3,000 PSI NORMAL OR SAND-LIGHTWEIGHT CONCRETE MIN. 11/2 MIN. 34" TYP UPPEF FLUTE мім 20 GAUGE MIN. 41/2 MAX.3 MIN. 41/2 STEEL MIN. 12" TYP LOWER FLUTE - MAX. 1" OFFSET, TYP.

Figure A – Installation in Concrete over Metal Deck

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

*See page 10 for an explanation

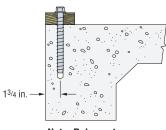
C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

of the load table icons

Tension Loads in Normal-Weight Concrete

								Tension Load			
Size in. (mm)	Drill Bit Dia.	Embed. Depth in.	Critical Edge Dist.	Critical Spacing Dist.		f'c ≥ 2000 ps 8 MPa) Conc		f'c ≥ 3000 psi (20.7 MPa) Concrete		f'c ≥ 4000 ps .6 MPa) Conc	
	in.	(mm)	in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)
3⁄8	3/	2¾ (70)	3	6	4,297 (19.1)	•	1,075 (4.8)	1,315 (5.8)	6,204 (27.6)	•	1,550 (6.9)
(9.5)	3⁄8	3 ³ ⁄ ₄ (95)	(76)	(152)	7,087 (31.5)	347 (1.5)	1,770 (7.9)	2,115 (9.4)	9,820 (43.7)	1,434 (6.4)	2,455 (10.9)
		23⁄4 (70)			4,610 (20.5)	•	1,155 (5.1)	1,400 (6.2)	6,580 (29.3)	•	1,645 (7.3)
1⁄2 (12.7)	1⁄2	3 5% (92)	4 (102)	8 (203)	7,413 (33.0)	412 (1.8)	1,855 (8.3)	2,270 (10.1)	10,742 (47.8)	600 (2.7)	2,685 (11.9)
· · ·		5¾ (146)			10,278 (45.7)	297 (1.3)	2,570 (11.4)	3,240 (14.4)	15,640 (69.6)	2,341 (10.4)	3,910 (17.4)
		2¾ (70)			4,610 (20.5)	•	1,155 (5.1)	1,400 (6.2)	6,580 (29.3)	•	1,645 (7.3)
5⁄8 (15.9)	5⁄8	4½ (105)	5 (127)	10 (254)	8,742 (38.9)	615 (2.7)	2,185 (9.7)	2,630 (11.7)	12,286 (54.7)	1,604 (7.1)	3,070 (13.7)
()		5 ³ ⁄ ₄ (146)			12,953 (57.6)	1,764 (7.8)	3,240 (14.4)	3,955 (17.6)	18,680 (83.1)	•	4,670 (20.8)
		23/4 (70)			4,674 (20.8)	•	1,170 (5.2)	1,405 (6.3)	6,580 (29.3)	•	1,645 (7.3)
3⁄4 (19.1)	3⁄4	4 5%8 (117)	6 (152)	12 (305)	10,340 (46.0)	1,096 (4.9)	2,585 (11.5)	3,470 (15.4)	17,426 (77.5)	1,591 (7.1)	4,355 (19.4)
. ,		5 ³ ⁄ ₄ (146)			13,765 (61.2)	1,016 (4.5)	3,440 (15.3)	4,055 (18.0)	18,680 (83.1)	1,743 (7.8)	4,670 (20.8)

See Notes Below


Size	Drill	Embed.	Critical	Critical				Shear Load			
in. (mm)	Bit Dia.	Depth in.	Edge Dist.	Spacing Dist.	(13.	f'c ≥ 2000 ps .8 MPa) Conc	i :rete	f'c ≥ 3000 psi (20.7 MPa) Concrete		f'c ≥ 4000 ps 6 MPa) Conc	
	in.	(mm)	in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)
3⁄8	3/	2¾ (70)	4 ½	6	6,353 (28.3)	•	1,585 (7.1)	1,665 (7.4)	٠	•	1,740 (7.7)
(9.5)	3⁄8	3 ³ ⁄ ₄ (95)	(114)	(152)	6,377 (28.4)	1,006 (4.5)	1,595 (7.1)	1,670 (7.4)	٠	•	1,740 (7.7)
		2 ³ ⁄ ₄ (70)			6,435 (28.6)	•	1,605 (7.1)	2,050 (9.1)	9,987 (44.4)	•	2,495 (7.8)
1⁄2 (12.7)	1⁄2	3 5⁄8 (92)	6 (152)	8 (203)	9,324 (41.5)	1,285 (5.7)	2,330 (10.4)	2,795 (12.4)	13,027 (57.9)	597 (2.7)	3,255 (14.5)
. ,		5 ³ ⁄ ₄ (146)			11,319 (50.3)	1,245 (5.5)	2,830 (12.6)	3,045 (13.5)	•	•	3,255 (14.5)
		2 ³ ⁄ ₄ (70)			7,745 (34.5)	•	1,940 (8.6)	2,220 (9.9)	9,987 (44.4)	•	2,495 (11.1)
5⁄8 (15.9)	5⁄8	4 ¹ / ₈ (105)	7½ (191)	10 (254)	8,706 (38.7)	1,830 (8.1)	2,175 (9.7)	3,415 (15.2)	18,607 (82.8)	1,650 (7.3)	4,650 (20.7)
,		5 ³ ⁄ ₄ (146)			12,498 (55.6)	2,227 (9.9)	3,125 (13.9)	3,890 (17.3)	•	•	4,650 (20.7)
		2 ³ ⁄ ₄ (70)			7,832 (34.8)	•	1,960 (8.7)	2,415 (10.7)	11,460 (51.0)	•	2,865 (12.7)
3⁄4 19.1)	3⁄4	4 5%8 (117)	9 (229)	12 (305)	11,222 (49.9)	2,900 (12.9)	2,805 (12.5)	4,490 (20.0)	24,680 (109.8)	2,368 (10.5)	6,170 (27.4)
		5 ³ ⁄ ₄ (146)			19,793 (88.0)	3,547 (15.8)	4,950 (22.0)	5,560 (24,7)	24,680 (109.8)	795 (3.5)	6,170 (27,4)

The allowable loads listed are based on a safety factor of 4.0.
 Allowable loads may be increased 33¼% for short-term loading due to wind or seismic forces where permitted by code.
 Refer to allowable load-adjustment factors for spacing and edge distance on pages 128–129.

4. The minimum concrete thickness is 1½ times the embedment depth.
5. Tension and Shear loads for the Titen HD anchor may be combined using the elliptical interaction equation (n=5%). Allowable load may be interpolated for concrete compressive strengths between 2000 psi and 4000 psi.

Shear Loads in Normal-Weight Concrete, Load Applied Parallel to Concrete Edge

Size in. (mm)	Drill Bit Dia. in.	Embed. Depth in.	Minimum Edge Dist			Conci	ar Load Base rete Edge Dis	stance											
(11111)		(mm)	in.			Ultimate	osi (17.2 MP Std. Dev. Ibs. (kN)	Allowable Ibs. (kN)											
		2 ³ ⁄ ₄ (70)				4,660 (20.7)	575 (2.6)	1,165 (5.2)											
1/2	1/	3 ¹ ⁄ ₄ (83)	1¾	8	8	•	•	1,530 (6.8)											
(12.7)	1⁄2	3 ½ (89)	(45)	(203)	(203)	6,840 (30.4)	860 (3.8)	1,710 (7.6)											
		4½ (114)				7,800 (34.7)	300 (1.3)	1,950 (8.7)											
		2 ³ ⁄ ₄ (70)				4,820 (21.4)	585 (2.6)	1,205 (5.3)											
5⁄8 (15.9)	5⁄8	3 ¹ ⁄ ₄ (83)	1 ¾ (45)	10 (254)	-	-	-	-	-	-	-	-	-	-	-	10 (254)	•	•	1,580 (7.0)
		3½ (89)					7,060 (31.4)	1,284 (5.7)	1,765 (7.9)										

Note: Rebar not shown for clarity.

- The allowable loads listed are based on a safety factor of 4.0.
 Allowable loads may be increased 33½% for short-term loading due to wind or seismic forces where permitted by code.
 The minimum concrete thickness is 1½ times the embedment depth.

*See page 10 for an explanation of the load table icons

The Titen HD $^{\odot}$ anchor may be used for sill plate applications. Use bearing plates as required by code. Refer to the appropriate code report or use Simpson Strong-Tie ACI 318 Anchor Designer™ software for anchor design information.

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

U.S. Patent 5,674,035 & 6,623,228

Titen HD screw anchor

Tension Loads in Normal-Weight Concrete Stemwall

	*
20 20	

				•					
					Tensio	n Load			
Size in. (mm)	Drill Bit Dia.	Embed. Depth in.	Width Edge in. Dist.		Min. End Dist.	(17.2	f'c ≥ 2500 psi (17.2 MPa) Concrete		DO psi APa) rete
	in.	(mm)	(mm)	in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Allow. Ibs. (kN)	Ultimate Ibs. (kN)	Allow. Ibs. (kN)
1⁄2	1/	10	6	1¾	8 (203)	15,420 (68.6)	3,855 (17.1)	20,300 (90.3)	5,075 (22.6)
(12.7)	1⁄2	(254)	(152)	(44)	4 3⁄⁄8 (111)	14,280 (63.5)	3,570 (15.9)	19,040 (84.7)	4,760 (21.2)

1. The allowable loads are based on a safety factor of 4.0.

2. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.

3. The minimum anchor spacing is 15 inches.

4. The minimum concrete thickness (depth) is 12 inches. 5. Allowable loads may be interpolated

for compressive strengths between 2,500 and 4,500 psi.

Tension Loads in Normal-Weight Concrete
Load Applied at 60-degree Angle
to Horizontal for Tilt-Un Wall Braces

Size	Drill Bit	Embed.		Fension Applied at 60-degree to Horizontal							
in. (mm)	Dia. in.	Depth in. (mm)	f'c ≥ 2500 psi (17.2 MPa) Concrete								
			Ultimate Ibs. (kN)								
5⁄8 (15.9)	5⁄8	5 (127)	13,420 (59.7)	1,273 (5.7)	3,355 (14.9)						
3⁄4 (19.1)	3⁄4	5 (127)	15,180 (67.5)	968 (4.3)	3,795 (16.9)						

1. The allowable loads are based on a safety factor of 4.0.

2. Anchor must be installed into a concrete floor slab, footing, or deadman with sufficient area, weight, and strength

to resist the anchorage load.

3. Titen HD[®] has been qualified for temporary outdoor use of up to 90 days through testing for this application.

Tension and Shear Loads in Sand-Lightweight Concrete over Metal Deck

0:	D.::11	Finhed	Critical	Critical	Ins	tall in Concre	te (see Figure	A)	Install	through Meta	l Deck (see Fi	gure A)																	
Size in.	Drill Bit	Embed. Depth	Critical Edge	Spacing	Tensio	n Load	Shear Load		Tensio	n Load	Shea	r Load																	
(mm)	Dia. in.	in. (mm)	Dist.	Dist.	f'c ≥ 3000 psi (20.7 MPa) Lightweight Concrete		f'c ≥ 3000 psi (20.7 MPa) Lightweight Concrete		f'c ≥ 3000 psi (20.7 MPa) Lightweight Concrete		f'c ≥ 3000 psi (20.7 MPa) Lightweight Concrete																		
	(mm)			(mm)	Ultimate Ibs. (kN)	Allowable lbs. (kN)																							
3⁄8	2/	2 ³ ⁄ ₄ (70)	6	6	2,560 (11.4)	640 (2.8)	4,240 (18.9)	1,060 (4.7)	•	٠	•	•																	
(9.5)	3⁄8	3 (76)	(152)	(152)	•	•	•	•	5,420 (24.1)	1,355 (6.0)	4,100 (18.2)	1,025 (4.6)																	
1/2	1/	2 ³ ⁄ ₄ (70)	8	8	3,040 (13.5)	760 (3.4)	6,380 (28.4)	1,595 (7.1)	•	٠	•	•																	
(12.7)	(12.7) 1/2 4	4 (102)	(203)	-	-	-	-	-	-	-	-	-	-	-	8 (203)		-	-	-	-	-	•	•	•	•	7,020 (31.2)	1,755 (7.8)	6,840 (30.4)	1,710 (7.6)
5⁄8	5%8 (15.9) 5%8	2 ³ ⁄ ₄ (70)	10 (254)	10 (254)	3,100 (13.8)	775 (3.4)	6,380 (28.4)	1,595 (7.1)	•	•	•	•																	
					٠	٠	٠	٠	8,940 (39.8)	2,235 (9.9)	10,700 (47.6)	2,675 (11.9)																	

1. The allowable loads listed are based on a safety factor of 4.0. 2. Allowable tension loads for anchors installed in the concrete side may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code. Allowable shear loads for anchors installed through the metal deck side shall not be increased for wind or seismic forces.

3. Allowable loads for anchors installed in the lower flute of the steel deck are for flutes with a trapezoidal profile with a depth of 3 inches, and a width varying from $41\!\!/_2$ inches at the bottom to $71\!\!/_2$ inches at the top. The spacing of the flutes is 12 inches. The metal deck must be minimum 20-gauge with a minimum yield strength of 38 ksi and minimum ultimate strength of 45 ksi.

4. Anchors may be installed off-center in the lower flute (up to 11/2" from the edge of the lower flute) without a load reduction. 5. 100% of the allowable load is permitted at

critical edge distance and critical spacing. Testing at smaller edge distances and spacings has not been performed.

*See page 10 for an explanation of the load table icons

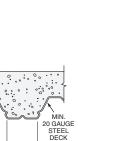


Figure A - Titen HD® screw anchor installed in the top and bottom of a structural sand-lightweight-concrete and metal-deck assembly

UPPER FLUTE

MIN. 3,000 PSI SAND-LIGHTWEIGHT CONCRETE

LOWER FLUTE

Tension and Shear Loads in 8-inch Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

1. 1. 1. 1. 1.

Size in.	Drill Bit	Min. Embed.	Critical Edge	Critical End	Critical Spacing	Values for 8-inch Lightweight, Medium-Weig or Normal-Weight Grout-Filled CMU				
(mm)	Dia.	Depth	Dist.	Dist.	Dist. Dist. Tension Load Shear Load			r Load		
	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	Ultimate Ibs. (kN)	Allowable Ibs. (kN)	
		An	chor Insta	alled in th	e Face of	the CMU Wa	ll (See Figure	e 1)		
3⁄8 (9.5)	3⁄8	23⁄4 (70)	12 (305)	12 (305)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)	
1⁄2 (12.7)	1⁄2	31 / ₂ (89)	12 (305)	12 (305)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)	
5⁄8 (15.9)	5⁄8	41 ⁄ ₂ (114)	12 (305)	12 (305)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)	
3⁄4 (19.1)	3⁄4	5½ (140)	12 (305)	12 (305)	12 (305)	7,990 (35.5)	1,600 (7.1)	15,000 (66.7)	3,000 (13.3)	

A LOT A LAND

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. For

installations under the UBC use a safety factor of 4.0 (multiply the tabulated allowable loads by 1.25). 2. Values for 8-inch wide CMU Grade N, Type II, lightweight, medium-weight and normal-weight concrete

masonry units conforming to UBC Standard 21-4 or ASTM C90.

3. The masonry units must be fully grouted with grout complying with UBC Section 2103.4 or IBC Section 2103.12.

4. Mortar is prepared in accordance with UBC Section 2103.3 and UBC Standard 21-15, or IBC Section 2103.8.

- 5. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 6. Embedment depth is measured from the outside face of the concrete masonry unit.

Tension and Shear Loads in 8-inch Lightweight, Medium-Weight and Normal-Weight Hollow CMU

Size Drill in. Bit	Embed. Depth ⁴	Min. Edge	Min. End	8-inc	h Hollow Cl on CMU		Based	•	
(mm)	Dia. in.	in. (mm)	Dist.	Dist.	Tensio	n Load	Shea	r Load	:
		()	(mm)	(mm)	Ultimate Allowable Ibs. (kN) Ibs. (kN)		Ultimate Ibs. (kN)	Allowable Ibs. (kN)	;
		Anc	hor Inst	alled in	Face Shell	(See Figure	2)]
3⁄8 (9.5)	3⁄/8	1 ¾ (44)	4 (102)	4 5⁄/8 (117)	720 (3.2)	145 (0.6)	1,240 (5.5)	250 (1.1)	1 '
1⁄2 (12.7)	1⁄2	1 ¾ (44)	4 (102)	4 5⁄⁄8 (117)	760 (3.4)	150 (0.7)	1,240 (5.5)	250 (1.1)	
5⁄8 (15.9)	5⁄8	1 ¾ (44)	4 (102)	4 5⁄⁄8 (117)	800 (3.6)	160 (0.7)	1,240 (5.5)	250 (1.1)]
3⁄4 (19.1)	3⁄4	1 ¾ (44)	4 (102)	4 5∕⁄8 (117)	880 (3.9)	175 (0.8)	1,240 (5.5)	250 (1.1)	

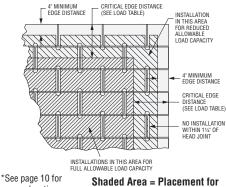


Figure 1

an explanation of the load table icons

Full and Reduced Allowable Load **Capacity in Grout-Filled CMU**

Figure 2

Figure 3

Anchor installed in top of wall

1^{3/}4" Edge

00

7. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.

4" MINIMUM EDGE DISTANCE

- 8. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 9. Refer to allowable load-adjustment factors for spacing and edge distance on page 130.
- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. For installations under the UBC use a safety factor of 4.0 (multiply the tabulated allowable loads by 1.25).
- 2. Values for 8-inch wide CMU Grade N, Type II, lightweight, medium-weight and normal-weight concrete masonry units conforming to UBC Standard 21-4 or ASTM C90.
- 3. The minimum specified compressive strength of masonry, f'm, at 28 days is 1 500 nsi
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1/2" through 11/4" thick face shell
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and
 - be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.

7. Set drill to rotation-only mode when drilling into hollow CMU.

Tension and Shear Loads in 8-inch Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

Size	Drill	Embed.	Min.	Min.	Critical							
in. (mm)	Bit Dia.	Depth in.	Edge Dist.	End Dist.	Spacing Dist.	Tension Ultimate Allowable Ibs. (kN) Ibs. (kN)		Shear Per	p. to Edge	Shear Parallel to Edge		
	in.	(mm)	in. (mm)	in. (mm)	in. (mm)			Ultimate Ibs. (kN)	Allowable lbs. (kN)	Ultimate Ibs. (kN)	Allowable lbs. (kN)	
			Anch	or Insta	lled in Cel	l Opening o	r Web (Top c	of Wall) (Se	e Figure 3)			
1⁄2 (12.7)	1⁄2	41 / ₂ (114)	1 ³ ⁄ ₄ (44.5)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)	
5⁄8 (15.9)	5⁄8	5% 4½ 1¾ 10 10 2,860 570 (114) (44.5) (254) (254) (12.7) (2.5)			800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)				

1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. For installations under the UBC use a safety factor of 4.0 (multiply the tabulated allowable loads by 1.25).

- 2. Values are for 8-inch wide CMU, Grade N, Type II, lightweight, medium-weight and normal-weight concrete masonry units conforming to UBC Standard 21-4 or ASTM C90.
- 3. The masonry units must be fully grouted with grout complying with UBC Section 2103.4 or IBC section 2103.8
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1.500 psi.
- 5. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

. .0

TITEN HD[®] ANCHOR Technical Information

Load-Adjustment Factors for Titen HD® Anchors in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension
 - and/or shear load application.
- 3. Locate the anchor embedment (E) used for either a tension and/or shear load application.

Edge Distance Tension (fc)

These tables are not for use with USD design methods

1

7. Reduction factors for multiple edges are multiplied together.

	Dia.	3,	8		1⁄2			5⁄8			3⁄4		*See page 10 for
Edge	E	2 ³ ⁄4	3 ³ ⁄4	2 ³ / ₄	3 5⁄/8	5 ¾	2 ¾	4 ½	5 ³ ⁄4	2 ¾	4 5⁄8	5 ¾	explanation of the load table icons
Dist. C _{act}	C _{cr}	3	3	4	4	4	5	5	5	6	6	6	
(in.)	C _{min}	13⁄4	13⁄4	1 ¾	1 ¾	1 ¾	1 ¾	1 ¾	1 ¾	1 ¾	1 ¾	1 ¾	
()	f _{cmin}	0.83	0.73	0.67	0.57	0.73	0.67	0.57	0.59	0.67	0.48	0.58	
1¾		0.83	0.73	0.67	0.57	0.73	0.67	0.57	0.59	0.67	0.48	0.58	
2		0.86	0.78	0.71	0.62	0.76	0.70	0.60	0.62	0.69	0.51	0.60	
21⁄4		0.90	0.84	0.74	0.67	0.79	0.72	0.64	0.65	0.71	0.54	0.63	
21/2		0.93	0.89	0.78	0.71	0.82	0.75	0.67	0.68	0.73	0.57	0.65	
23⁄4		0.97	0.95	0.82	0.76	0.85	0.77	0.70	0.72	0.75	0.60	0.68	
3		1.00	1.00	0.85	0.81	0.88	0.80	0.74	0.75	0.77	0.63	0.70	
31⁄4				0.89	0.86	0.91	0.82	0.77	0.78	0.79	0.66	0.73	
31/2				0.93	0.90	0.94	0.85	0.80	0.81	0.81	0.69	0.75	
3¾				0.96	0.95	0.97	0.87	0.83	0.84	0.83	0.72	0.78	
4				1.00	1.00	1.00	0.90	0.87	0.87	0.84	0.76	0.80	
4¼							0.92	0.90	0.91	0.86	0.79	0.83	
41/2							0.95	0.93	0.94	0.88	0.82	0.85	
43⁄4							0.97	0.97	0.97	0.90	0.85	0.88	
5							1.00	1.00	1.00	0.92	0.88	0.90	
51⁄4										0.94	0.91	0.93	
51⁄2										0.96	0.94	0.95	
5¾										0.98	0.97	0.98	
6										1.00	1.00	1.00	

Mechanical Anchors

Edgo Distance Shear (f.)

Eage D	age Distance Shear (t _c)												
	Dia.	3	/8		1⁄2			5⁄8			3⁄4]
Edge	E	2 ³ / ₄	33⁄4	2 ³ ⁄ ₄	3 5⁄8	5 ³ ⁄4	2 ³ / ₄	4 ½	5 ³ ⁄4	2 ³ / ₄	4 5⁄8	53⁄4]
Dist. C _{act}	C _{cr}	4 ½	4 ½	6	6	6	71⁄2	71⁄2	71⁄2	9	9	9]
(in.)	C _{min}	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4	13⁄4]
()	f _{cmin}	0.25	0.24	0.25	0.20	0.17	0.19	0.16	0.19	0.19	0.14	0.13]
1¾		0.25	0.24	0.25	0.20	0.17	0.19	0.16	0.19	0.19	0.14	0.13]
2		0.32	0.31	0.29	0.25	0.22	0.23	0.20	0.23	0.22	0.17	0.16]
21/2		0.45	0.45	0.38	0.34	0.32	0.30	0.27	0.30	0.27	0.23	0.22] T
3		0.59	0.59	0.47	0.44	0.41	0.37	0.34	0.37	0.33	0.29	0.28	h f(
31/2		0.73	0.72	0.56	0.53	0.51	0.44	0.42	0.44	0.39	0.35	0.34	1
4		0.86	0.86	0.65	0.62	0.61	0.51	0.49	0.51	0.44	0.41	0.40	2
41⁄2		1.00	1.00	0.74	0.72	0.71	0.58	0.56	0.58	0.50	0.47	0.46	3
5				0.82	0.81	0.80	0.65	0.63	0.65	0.55	0.53	0.52] ĭ
5½				0.91	0.91	0.90	0.72	0.71	0.72	0.61	0.58	0.58	4
6				1.00	1.00	1.00	0.79	0.78	0.79	0.66	0.64	0.64	5
61⁄2							0.86	0.85	0.86	0.72	0.70	0.70	
7							0.93	0.93	0.93	0.78	0.76	0.76	6
71⁄2							1.00	1.00	1.00	0.83	0.82	0.82	1
8										0.89	0.88	0.88	7
81/2										0.94	0.94	0.94	8
9										1.00	1.00	1.00	1

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

- The tabled adjustment values (fc) have been calculated using the
- following information:
- . E = Embedment depth (inches). 2. C_{act} = actual edge distance at
- which anchor is installed (inches). 3. C_{cr} = critical edge distance for
- 100% load (inches).
- 4. $C_{min} = minimum edge distance$ for reduced load (inches).
- 5. fc = percent of allowable load at actual edge distance.
- 6. f_{ccr} = percentage of allowable load at critical edge distance. fccr is
- always = 1.00. f_{cmin} = percent of allowable load
- at minimum edge distance. 8. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})]$

TITEN HD[®] ANCHOR Technical Information

How to use these charts:

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for either a tension
- and/or shear load application.
- 3. Locate the anchor embedment (E) used for either a tension and/or shear load application.
- (\mathbf{c}_{1}) at which the openation is to be install
- 4. Locate the spacing (S_{act}) at which the anchor is to be installed. 5. The load adjustment factor (f_s) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor(s).

*See page 10 for an explanation of the load table icons

- 7. Reduction factors for multiple spacings are multiplied together.
- 7. Reduction factors for multiple spacings are multiplied together

	Dia.	3	/8	1/2				5⁄8		3⁄4		
•	E	2 ³ ⁄ ₄	3 ³ ⁄4	2 ³ ⁄4	3 5⁄8	5 ³ ⁄4	2 ³ ⁄4	4 ½	5 ³ ⁄4	2 ³ ⁄4	4 5⁄8	5 ¾
S _{act} (in.)	Scr	6	6	8	8	8	10	10	10	12	12	12
()	Smin	1½	1½	2	2	2	2 ½	2 ½	2 ½	3	3	3
	f _{smin}	0.66	0.56	0.72	0.63	0.76	0.79	0.69	0.73	0.80	0.70	0.72
11/2		0.66	0.56									
2		0.70	0.61	0.72	0.63	0.76						
21/2		0.74	0.66	0.74	0.66	0.78	0.79	0.69	0.73			
3		0.77	0.71	0.77	0.69	0.80	0.80	0.71	0.75	0.80	0.70	0.72
4		0.85	0.80	0.81	0.75	0.84	0.83	0.75	0.78	0.82	0.73	0.75
5		0.92	0.90	0.86	0.82	0.88	0.86	0.79	0.82	0.84	0.77	0.78
6		1.00	1.00	0.91	0.88	0.92	0.89	0.83	0.86	0.87	0.80	0.81
7				0.95	0.94	0.96	0.92	0.88	0.89	0.89	0.83	0.84
8				1.00	1.00	1.00	0.94	0.92	0.93	0.91	0.87	0.88
9							0.97	0.96	0.96	0.93	0.90	0.91
10							1.00	1.00	1.00	0.96	0.93	0.94
11										0.98	0.97	0.97
12										1.00	1.00	1.00

See Notes Below

C-SAS-2009 © 2009 SIMPSON STRONG-TIE COMPANY INC.

Spacing Shear (fs)

	Die	2	/		1/			5/			2/	
	Dia.		8		1⁄2			5⁄8			3⁄4	
c	E	2 ¾	3 ¾	2 ¾	3 5⁄8	5 ³ ⁄4	2 ¾	4 1⁄8	5 ¾	2 ¾	4 5⁄8	5 ³ ⁄4
S _{act} (in.)	Scr	6	6	8	8	8	10	10	10	12	12	12
()	Smin	1½	1½	2	2	2	2 ½	2 ½	2 ½	3	3	3
	f smin	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
11⁄2		0.77	0.77									
2		0.80	0.80	0.77	0.77	0.77						
21⁄2		0.82	0.82	0.79	0.79	0.79	0.77	0.77	0.77			
3		0.85	0.85	0.81	0.81	0.81	0.79	0.79	0.79	0.77	0.77	0.77
4		0.90	0.90	0.85	0.85	0.85	0.82	0.82	0.82	0.80	0.80	0.80
5		0.95	0.95	0.89	0.89	0.89	0.85	0.85	0.85	0.82	0.82	0.82
6		1.00	1.00	0.92	0.92	0.92	0.88	0.88	0.88	0.85	0.85	0.85
7				0.96	0.96	0.96	0.91	0.91	0.91	0.87	0.87	0.87
8				1.00	1.00	1.00	0.94	0.94	0.94	0.90	0.90	0.90
9							0.97	0.97	0.97	0.92	0.92	0.92
10							1.00	1.00	1.00	0.95	0.95	0.95
11										0.97	0.97	0.97
12										1.00	1.00	1.00

The tabled adjustment values (f_s) have been calculated using the following information:

- E = Embedment depth (inches).
 S_{act} = actual spacing distance at which anchors are installed
- (inches). 3. S_{cr} = critical spacing distance for
- 100% load (inches). 4. S_{min} = minimum spacing distance
- for reduced load (inches). 5. $f_s = adjustment factor for$
- allowable load at actual spacing distance. 6. f_{scr} = adjustment factor for
- allowable load at critical spacing distance. f_{scr} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance. 8. $f_{smin} = f_{smin} + [(1 - f_{smin})]$
- 8. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) / (S_{cr} S_{min})].$

These tables are not for use

with USD design methods

TITEN HD[®] ANCHOR Technical Information

Load-Adjustment Factors for Titen HD® Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or
- shear load application. 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (C_{act}) or spacing (S_{act}) at which the
- anchor is to be installed.

Edge or End Distance Tension (f_c)

	Dia.	3⁄8	1⁄2	5⁄8	3⁄4
•	E	2 3⁄4	3 ½	4 ½	5 ½
C _{act} (in.)	Ccr	12	12	12	12
()	C _{min}	4	4	4	4
	f _{cmin}	1.00	1.00	0.83	0.66
4		1.00	1.00	0.83	0.66
6		1.00	1.00	0.87	0.75
8		1.00	1.00	0.92	0.83
10		1.00	1.00	0.96	0.92
12		1.00	1.00	1.00	1.00

See Notes Below

Mechanical Anchors

Edge or End Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

C _{act} (in.)	Dia.	3⁄8	1⁄2	5⁄8	3⁄4
	E	2 ³ ⁄4	3 ½	4 ½	5 ½
	C _{cr}	12	12	12	12
	C _{min}	4	4	4	4
	f _{cmin}	0.58	0.38	0.30	0.21
4		0.58	0.38	0.30	0.21
6		0.69	0.54	0.48	0.41
8		0.79	0.69	0.65	0.61
10		0.90	0.85	0.83	0.80
12		1.00	1.00	1.00	1.00

1. E = Embedment depth (inches).

2. Cact = actual end or edge distance at which anchor is installed (inches).

3. C_{cr} = critical end or edge distance for 100% load (inches).

4. C_{min} = minimum end or edge distance for reduced load (inches).

5. f_c = adjustment factor for allowable load at actual end or edge distance. 6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.

7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.

8. $f_c = f_{cmin} + [(1 - f_{cmin}) (C_{act} - C_{min}) / (C_{cr} - C_{min})].$

Spacing Tension (fs)

S _{act} (in.)	Dia.	3⁄8	1⁄2	5⁄8	3⁄4
	E	2 ³ ⁄ ₄	31⁄2	4 ½	51⁄2
	Scr	6	8	10	12
()	S _{min}	3	4	5	6
	f _{smin}	0.87	0.69	0.59	0.50
4		0.91	0.69	0.51	0.33
6		1.00	0.85	0.67	0.50
8			1.00	0.84	0.67
10				1.00	0.83
12					1.00

1. E = Embedment depth (inches).

2. S_{act} = actual spacing distance at which anchors are installed (inches).

3. S_{cr} = critical spacing distance for 100% load (inches).

4. Smin = minimum spacing distance for reduced load (inches).

5. f_s = adjustment factor for allowable load at actual spacing distance.

6. f_{scr} = adjustment factor for allowable load at critical spacing distance. f_{scr} is always = 1.00.

 $7. f_{smin}$ = adjustment factor for allowable load at minimum spacing distance.

8. $f_s = f_{smin} + [(1 - f_{smin}) (S_{act} - S_{min}) / (S_{cr} - S_{min})].$

Edge and End Distance Shear (f_c)Shear Load Parallel to Edge or EndDia. $\frac{3}{8}$ $\frac{1}{2}$

	Dia.	3⁄8	1/2	5⁄8	3⁄4
C _{act} (in.)	E	2 ³ / ₄	31⁄2	41/2	5 ½
	Ccr	12	12	12	12
()	Cmin	4	4	4	4
	f _{cmin}	0.77	0.48	0.46	0.44
4		0.77	0.48	0.46	0.44
6		0.83	0.61	0.60	0.58
8		0.89	0.74	0.73	0.72
10		0.94	0.87	0.87	0.86
12		1.00	1.00	1.00	1.00

See Notes Below

Spacing Shear (fs)

Ε

 \bm{S}_{cr}

 \mathbf{S}_{\min}

f_{smin}

Sact

(in.)

3

4

5

6

8

10

12

Dia.

3⁄8

2¾

6

3

0.62

0.62

0.75

0.87

1.00

Edge or End Distance Shear (fc) Shear Load Perpendicular to Edge or End (Directed Away From Edge or End)

C _{act} (in.)	Dia.	3⁄8	1/2	, 5⁄8	3⁄4
	E	2 ³ ⁄ ₄	3½	4½	5½
	C _{cr}	12	12	12	12
	Cmin	4	4	4	4
	f _{cmin}	0.89	0.79	0.58	0.38
4		0.89	0.79	0.58	0.38
6		0.92	0.84	0.69	0.54
8		0.95	0.90	0.79	0.69
10		0.97	0.95	0.90	0.85
12		1.00	1.00	1.00	1.00

3/4

51/2

12

6

0.62

0.62

0.75

0.87

1.00

5⁄8

4½

10

5

0.62

0.62

0.70

0.85

1.00

1⁄2

3½

8

4

0.62

0.62

0.72

0.81

1.00

*See page 10 for an explanation of the load table icons

5. The load adjustment factor (f_c or f_s) is the intersection of the row and column. 6. Multiply the allowable load by the applicable load adjustment factor.

7. Reduction factors for multiple edges or spacings are multiplied together.

SIMPSON Strong-Tie ANCHOR SYSTEMS

130