
SuiteScript Developer & Reference Guide
December 15, 2015
Version 2015 Release 2

General Notices

Sample Code

NetSuite Inc. may provide sample code in SuiteAnswers, the Help Center, User Guides, or
elsewhere through help links. All such sample code is provided “as is” and “as available,” for
use only with an authorized NetSuite Service account, and is made available as a SuiteCloud
Technology subject to the SuiteCloud Terms of Service at www.netsuite.com/tos.

NetSuite may modify or remove sample code at any time without notice.

No Excessive Use of the Service

As the Service is a multi-tenant service offering on shared databases, customers may not use
the Service in excess of limits or thresholds that NetSuite considers commercially reasonable
for the Service. If NetSuite reasonably concludes that a customer’s use is excessive and/or
will cause immediate or ongoing performance issues for one or more of NetSuite’s other
customers, NetSuite may slow down or throttle such customer’s excess use until such time
that the customer’s use stays within reasonable limits. If a customer’s particular usage pattern
requires a higher limit or threshold, then the customer should procure a subscription to the
Service that accommodates a higher limit and/or threshold that more effectively aligns with the
customer’s actual usage pattern.

Copyright

This document is the property of NetSuite Inc., and may not be reproduced in whole or in
part without prior written approval of NetSuite Inc. For NetSuite trademark and service mark
information, see www.netsuite.com/portal/company/trademark.shtml.

© 2015 NetSuite Inc.

http://www.netsuite.com/tos
http://www.netsuite.com/portal/company/trademark.shtml

SuiteScript Developer & Reference Guide

Table of Contents
1. Getting Started with SuiteScript ... 16

1. SuiteScript - The Basics ... 16
2. What is SuiteScript? ... 18

What can I do with the SuiteScript API? .. 18
Using the SuiteScript API with NetSuite Records ... 19

3. Setting Up Your SuiteScript Environment .. 22
Environment Setup Overview .. 22
Configuring NetSuite for SuiteScript .. 22

Enabling SuiteScript .. 22
Showing Record and Field IDs in Your Account .. 23
Setting Roles and Permissions for SuiteScript .. 27

Working with IDEs Other Than SuiteCloud IDE ... 28
2. Running a Script in NetSuite .. 30

4. Running Scripts in NetSuite Overview .. 30
5. Step 1: Create Your Script .. 31
6. Step 2: Add Script to NetSuite File Cabinet ... 32
7. Step 3: Attach Script to Form ... 33
8. Step 4: Create Script Record ... 35

Steps for Creating a Script Record .. 36
Creating a Custom Script Record ID .. 41

9. Step 5: Define Script Deployment ... 43
Steps for Defining a Script Deployment .. 43
Creating a Custom Script Deployment ID .. 45

10. Viewing Script Deployments .. 46
11. Using the Scripted Records Page ... 47
12. Creating Script Execution Logs ... 49

Viewing a List of Script Execution Logs .. 49
Using the Script Execution Log Tab ... 50

13. Using the Script Queue Monitor ... 52
Installing and Accessing the Script Queue Monitor ... 52
Script Queue Monitor User Interface .. 53

3. Scripting Records, Fields, Forms, and Sublists ... 59
14. Working with Subrecords in SuiteScript .. 59

What is a Subrecord? .. 59
Using the SuiteScript API with Subrecords ... 60
Creating and Accessing Subrecords from a Body Field 61
Creating and Accessing Subrecords from a Sublist Field 62
Setting Values on Subrecord Sublists .. 63
Saving Subrecords Using SuiteScript ... 65
Guidelines for Working with Subrecords in SuiteScript 66
Working with Specific Subrecords in SuiteScript ... 67

SuiteScript Developer & Reference Guide

Using SuiteScript with Advanced Bin / Numbered Inventory
Management ... 67
Using SuiteScript with Timesheets .. 77
Using SuiteScript with Address Subrecords ... 82

15. Working with Fields .. 90
Working with Fields Overview ... 90
Referencing Fields in SuiteScript .. 91
Working with Custom Fields in SuiteScript ... 93

16. Working with Subtabs and Sublists ... 95
Subtabs and Sublists Overview ... 95
Subtabs and Sublists - What's the Difference? ... 95

What is a Subtab? ... 96
What is a Sublist? .. 98

Sublist Types ... 99
Editor Sublists ... 99
Inline Editor Sublists ... 100
List Sublists ... 101
Static List Sublists .. 102

Adding Subtabs with SuiteScript ... 104
Adding Sublists with SuiteScript ... 105
Working with Sublist Line Items .. 108

Adding and Removing Line Items .. 109
Getting and Setting Line Item Values .. 112

Working with Item Groups in a Sublist ... 113
Working with Sublists in Dynamic Mode and Client SuiteScript 114

Sublist Errors .. 116
Working with Sublists in Standard Mode and Client SuiteScript 116

17. Working with Online Forms ... 118
18. Inline Editing and SuiteScript ... 120

Inline Editing and SuiteScript Overview ... 120
Why Inline Edit in SuiteScript? .. 121
Inline Editing Using nlapiSubmitField .. 121
Consequences of Using nlapiSubmitField on Non Inline Editable Fields 122
Inline Editing (xedit) as a User Event Type ... 123
What's the Difference Between xedit and edit User Event Types? 124
Inline Editing and nlapiGetNewRecord() .. 124
Inline Editing and nlapiGetOldRecord() ... 124

4. Understanding NetSuite Script Types .. 126
19. Script Types Overview ... 126
20. SuiteScript Execution Diagram ... 128
21. Client Scripts ... 129

What is Client SuiteScript? ... 129
Client Script Execution .. 130
Client Event Types .. 131

SuiteScript Developer & Reference Guide

Form-level and Record-level Client Scripts ... 133
Client Script Metering ... 134
Role Restrictions in Client SuiteScript .. 134
How Many Client Events Can I Execute on One Form? 135
Error Handling and Debugging Client SuiteScript ... 136
Client Remote Object Scripts ... 136
Running a Client Script in NetSuite .. 137
Client SuiteScript Samples ... 137

Writing Your First Client Script .. 138
Page Init Sample ... 142
Save Record Sample ... 143
Post Sourcing Sample .. 144
Validate Field Sample .. 145
Field Changed Sample ... 146

22. User Event Scripts .. 147
What Are User Event Scripts? .. 147
User Event Script Execution ... 148
Setting the User Event type Argument .. 150
User Event Script Execution Types ... 153
How Many User Events Can I Have on One Record? 155
Running a User Event Script in NetSuite ... 156
User Event Script Samples ... 156

Generating a Record Log ... 156
Creating Follow-up Phone Call Records for New Customers 157
Enhancing NetSuite Forms with User Event Scripts 159

23. Suitelets ... 162
What Are Suitelets? ... 162
Suitelet Script Execution .. 164
Building Custom Workflows with Suitelets .. 165
Building Suitelets with UI Objects .. 165
Backend Suitelets ... 167
Reserved Parameter Names in Suitelet URLs ... 168
SuiteScript and Externally Available Suitelets ... 169
Running a Suitelet in NetSuite ... 170
Suitelets Samples ... 171

Writing Your First Suitelet ... 171
Return a Simple XML Document ... 172
Create a Simple Form .. 172
Create a Simple List ... 174
Add a Suitelet to a Tab .. 175
Create a Suitelet Email Form .. 177
Create a Form with a URL Field .. 178
Using Embedded Inline HTML in a Form .. 179

24. RESTlets .. 181

SuiteScript Developer & Reference Guide

Working with RESTlets .. 182
RESTlet Script Execution ... 182
Authentication for RESTlets ... 183
RESTlet URL and Domain ... 187
Using the REST roles Service to Get User Accounts, Roles, and
Domains ... 188
Supported Input and Output Content Types for RESTlets 189
Supported Functions for RESTlets .. 190
RESTlet Governance and Session Management 191
RESTlet Debugging ... 191
RESTlet Error Handling ... 191
RESTlet Security ... 192

RESTlets vs. Other NetSuite Integration Options ... 192
Creating a RESTlet .. 194
Debugging a RESTlet ... 196

RESTlet HTTP Testing Tools ... 198
Sample RESTlet Code .. 199

Simple Example to Get Started ... 199
Example Code Snippets of HTTP Methods ... 199
Example RESTlet Called from a Portlet Script ... 201
Example RESTlet Request from Android .. 203
Example RESTlet Request Using nlapiRequestURL 204

Sample RESTlet Input Formats ... 205
RESTlet Status Codes and Error Message Formats ... 218

25. Scheduled Scripts ... 222
Overview of Scheduled Script Topics .. 222
What Are Scheduled Scripts? ... 223
When Will My Scheduled Script Execute? ... 224
Deploying a Script to the Scheduling Queue ... 225

Initiating an Ad-hoc Deployment of a Script into the Scheduling
Queue ... 226
Initiating a Scheduled Deployment of a Script into the Scheduling
Queue ... 228

Creating Multiple Deployments for a Scheduled Script 229
Using nlapiScheduleScript to Deploy a Script into the Scheduling Queue 232
Understanding Scheduled Script Deployment Statuses 232
Executing a Scheduled Script in Certain Contexts ... 234
Setting Recovery Points in Scheduled Scripts .. 235
Understanding Memory Usage in Scheduled Scripts .. 235
Monitoring a Scheduled Script's Runtime Status .. 236
Monitoring a Scheduled Script's Governance Limits .. 238
Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus 239
Scheduled Script Samples ... 240

26. Portlet Scripts .. 246

SuiteScript Developer & Reference Guide

What Are Portlet Scripts? .. 246
Portlet Script Execution ... 247
Assigning the Portlet Preference to a Script Parameter 248
Running a Portlet Script in NetSuite ... 248
Displaying Portlet Scripts on the Dashboard ... 248
Portlet Scripts Samples .. 249

27. Mass Update Scripts ... 253
What Are Mass Update Scripts? ... 253
Mass Update Script Execution .. 255
Running a Mass Update Script in NetSuite .. 256
Mass Update Scripts Samples ... 256

Updating a field that is available through inline edit 257
Updating a field that is not available through inline edit 257
Updating a field based on a script parameter value 258

28. Bundle Installation Scripts .. 262
What are Bundle Installation Scripts? ... 262
Setting Up a Bundle Installation Script ... 264
Sample Bundle Installation Script ... 268

5. Setting Runtime Options .. 271
29. Setting Runtime Options Overview ... 271
30. Setting Script Execution Event Type from the UI ... 272
31. Setting Script Execution Log Levels ... 274
32. Executing Scripts Using a Specific Role ... 276
33. Setting Available Without Login ... 279
34. Setting Script Deployment Status .. 281
35. Defining Script Audience ... 283

6. Creating Script Parameters (Custom Fields) .. 285
36. Creating Script Parameters Overview .. 285
37. Why Create Script Parameters? ... 286
38. Creating Script Parameters ... 287
39. Referencing Script Parameters .. 289
40. Setting Script Parameter Preferences ... 290

7. Searching with SuiteScript .. 294
41. Searching Overview ... 294
42. Understanding SuiteScript Search Objects ... 295
43. Search Samples .. 298

Creating Saved Searches .. 298
Using Existing Saved Searches .. 299
Filtering a Search .. 301
Returning Specific Fields in a Search .. 303
Searching on Custom Records .. 304
Searching Custom Lists .. 305
Executing Joined Searches .. 306
Searching for an Item ID ... 310

SuiteScript Developer & Reference Guide

Searching for Duplicate Records ... 310
Performing Global Searches ... 311
Searching CSV Saved Imports .. 311
Using Formulas, Special Functions, and Sorting in Search 311
Using Summary Filters in Search ... 312

44. Supported Search Operators, Summary Types, and Date Filters 313
Search Operators ... 313
Search Summary Types .. 314
Search Date Filters .. 315

8. Working with UI Objects ... 319
45. UI Objects Overview ... 319
46. Creating Custom NetSuite Pages with UI Objects ... 321
47. InlineHTML UI Objects ... 323
48. Building a NetSuite Assistant with UI Objects .. 324

NetSuite UI Object Assistant Overview ... 324
Understanding NetSuite Assistants ... 324
Using UI Objects to Build an Assistant ... 327

Understanding the Assistant Workflow ... 328
Using Redirection in an Assistant Workflow ... 329
Assistant Components and Concepts .. 330
UI Object Assistant Code Sample ... 333

9. Debugging SuiteScript .. 341
49. Working with the SuiteScript Debugger ... 341

SuiteScript Debugger Overview .. 341
Using the SuiteScript Debugger .. 341

50. Before Using the SuiteScript Debugger .. 343
51. Ad Hoc Debugging .. 345
52. Deployed Debugging .. 348
53. SuiteScript Debugger Interface .. 354

SuiteScript Debugger Buttons ... 354
SuiteScript Debugger Tabs ... 355

54. SuiteScript Debugger Metering and Permissions .. 359
55. SuiteScript Debugger Keyboard Shortcuts .. 361
56. SuiteScript Debugger Glossary .. 362

10. SuiteScript API .. 363
57. SuiteScript API Overview ... 363
58. SuiteScript Functions ... 364

Record APIs .. 372
Subrecord APIs ... 404
Field APIs ... 411
Sublist APIs .. 425
Search APIs .. 453
Scheduling APIs .. 463
Execution Context APIs ... 472

SuiteScript Developer & Reference Guide

UI Builder APIs .. 477
Application Navigation APIs .. 482
Date APIs ... 495
DateTime Time Zone APIs .. 498
Currency APIs .. 503
Encryption APIs .. 505
XML APIs ... 505
File APIs ... 514
Error Handling APIs ... 518
Communication APIs .. 519
Configuration APIs ... 529
SuiteFlow APIs .. 532
Portlet APIs .. 535
SuiteAnalytics APIs ... 537
User Credentials APIs .. 539
Job Manager APIs ... 540

59. SuiteScript Objects ... 544
Standard Objects ... 544
nlobjConfiguration .. 545
nlobjContext ... 551
nlobjCredentialBuilder(string, domainString) .. 568
nlobjCSVImport .. 572
nlobjDuplicateJobRequest .. 576
nlobjEmailMerger .. 579
nlobjError ... 583
nlobjFile .. 586
nlobjFuture ... 597
nlobjJobManager ... 598
nlobjLogin .. 600
nlobjMergeResult ... 601
nlobjPivotColumn ... 602
nlobjPivotRow ... 604
nlobjPivotTable .. 607
nlobjPivotTableHandle ... 608
nlobjRecord .. 609
nlobjReportColumn ... 648
nlobjReportColumnHierarchy .. 648
nlobjReportDefinition .. 649
nlobjReportForm ... 656
nlobjReportRowHierarchy .. 656
nlobjRequest ... 657
nlobjResponse ... 662
nlobjSearch ... 673
nlobjSearchColumn(name, join, summary) ... 692

SuiteScript Developer & Reference Guide

nlobjSearchFilter ... 702
nlobjSearchResult .. 706
nlobjSearchResultSet .. 710
nlobjSelectOption .. 713
nlobjSubrecord .. 714
UI Objects .. 716
nlobjAssistant .. 717
nlobjAssistantStep ... 739
nlobjButton ... 743
nlobjColumn ... 746
nlobjField .. 748
nlobjFieldGroup .. 760
nlobjForm ... 764
nlobjList .. 786
nlobjPortlet ... 792
nlobjSubList .. 802
nlobjTab .. 809
nlobjTemplateRenderer .. 810

60. SuiteScript API - Alphabetized Index .. 815
11. SuiteScript Reference .. 822

61. SuiteScript Reference .. 822
How to Use SuiteScript Records Help ... 822
SuiteScript References Overview .. 823
Working with the SuiteScript Records Browser .. 824

Finding a Record or Subrecord ... 824
Understanding the Record Summary .. 825

62. SuiteScript Supported Records .. 827
63. Activities ... 834

Activity ... 834
Event .. 834
Phone Call .. 834
Project Task .. 835
Resource Allocation ... 837
Task .. 839
Work Calendar .. 839

64. Entities .. 840
Competitor ... 840
Contact ... 840
Customer .. 840
Employee .. 842
Entity .. 843
Generic Resource .. 843
Lead ... 844
Other Name .. 845

SuiteScript Developer & Reference Guide

Partner .. 845
Project (Job) .. 846
Project Template .. 847
Prospect .. 848
Vendor .. 849

65. Items ... 851
Using Item Records in SuiteScript .. 851
Build/Assembly ... 853
Description ... 853
Discount ... 853
Download Item ... 853
Gift Certificate Item .. 853
Inventory Item .. 854
Item Group ... 854
Item Search ... 854
Kit .. 854
Lot Numbered Assembly Item .. 854
Lot Numbered Inventory Item ... 855
Markup ... 855
Non-Inventory Part ... 855
Other Charge Item .. 855
Payment .. 855
Reallocate Items .. 856
Serialized Assembly Item ... 856
Serialized Inventory Item ... 856
Service .. 856
Shipping Item .. 857
Subtotal ... 858

66. Communications ... 859
Message .. 859
Note ... 859

67. Transactions .. 861
Assembly Build ... 863
Assembly Unbuild ... 863
Bin Putaway Worksheet ... 863
Bin Transfer .. 864
Blanket Purchase Order ... 864
Cash Refund ... 865
Cash Sale .. 866
Charge .. 867
Check ... 868
Credit Memo .. 869
Customer Deposit ... 869
Customer Payment .. 869

SuiteScript Developer & Reference Guide

Customer Refund .. 870
Deposit ... 871
Deposit Application ... 872
Estimate / Quote ... 873
Expense Report ... 873
Intercompany Journal Entry ... 874
Intercompany Transfer Order ... 875
Inventory Adjustment .. 877
Inventory Cost Revaluation .. 877
Inventory Count .. 879
Inventory Detail .. 880
Inventory Transfer ... 881
Invoice .. 881
Item Demand Plan .. 882
Item Fulfillment .. 884
Item Receipt .. 884
Item Supply Plan ... 886
Journal Entry .. 887
Landed Cost ... 888
Manufacturing Operation Task .. 890
Manufacturing Planned Time ... 891
Multi-Book Accounting Transaction ... 892
Opportunity .. 893
Paycheck Journal ... 894
Purchase Contract ... 895
Purchase Order ... 896
Requisition .. 896
Return Authorization ... 898
Revenue Commitment ... 898
Revenue Commitment Reversal .. 899
Sales Order ... 899
Statistical Journal Entry ... 900
Time ... 902
Time Entry ... 902
Timesheet ... 906
Transaction Search .. 907
Transfer Order .. 908
Vendor Bill ... 908
Vendor Credit ... 909
Vendor Payment .. 909
Vendor Return Authorization ... 909
Work Order .. 910
Work Order Close ... 910
Work Order Completion .. 911

SuiteScript Developer & Reference Guide

Work Order Issue .. 912
68. Support ... 913

Case .. 913
Issue ... 913
Solution .. 913
Task .. 914
Topic .. 914

69. File Cabinet ... 915
Folder ... 915

70. Lists .. 916
Account .. 917
Accounting Book ... 917
Amortization Schedule .. 919
Amortization Template .. 920
Billing Class .. 922
Billing Schedule ... 923
Bin ... 925
Class ... 925
Currency ... 926
Customer Category .. 926
Department ... 926
Expense Category .. 927
Gift Certificate .. 927
Global Account Mapping ... 927
Group ... 929
Inventory Number ... 930
Item Account Mapping .. 930
Item Revision .. 932
Location .. 933
Manufacturing Cost Template .. 933
Manufacturing Routing .. 933
Nexus ... 933
Payroll Item .. 934
Project Expense Type .. 936
Price Level .. 937
Revenue Recognition Schedule ... 937
Revenue Recognition Template .. 937
Role .. 938
Sales Tax Item ... 938
Subsidiary ... 938
Tax Control Account ... 938
Tax Group ... 942
Tax Period .. 944
Tax Type ... 944

SuiteScript Developer & Reference Guide

Term ... 944
Unit of Measure .. 945
Vendor Category ... 945

71. Customization ... 946
Custom List .. 946
Custom Transaction .. 947
Scheduled Script Instance .. 948
Script .. 950
Script Deployment ... 954

72. Marketing .. 958
Campaign ... 958
Campaign Template ... 958
Coupon Code ... 959
Email Template ... 960
Promotion ... 961

73. Website ... 962
Web Site Setup .. 962

74. Scriptable Sublists .. 965
Access Sublist (contact roles) ... 967
Accounts Sublist .. 967
Accrued Time Sublist .. 968
Address Sublist .. 968
Adjustments Sublist ... 968
Apply Sublist ... 968
Assignees Sublist ... 969
Attendees Sublist ... 969
Billable Expenses Sublist .. 969
Billable Items Sublist ... 970
Billable Time Sublist .. 970
Bin Numbers Sublist .. 970
Company Contributions Sublist ... 970
Company Taxes Sublist .. 971
Competitors Sublist ... 971
Credits Sublist ... 971
Currencies Sublist .. 971
Custom Child Record Sublists .. 972
Deductions Sublist ... 984
Demand Plan Detail Sublist ... 985
Deposits Sublist ... 992
Direct Mail Sublist .. 992
Download Sublist .. 992
Earnings Sublist .. 992
E-mail Sublist .. 993
Employee Taxes Sublist .. 993

SuiteScript Developer & Reference Guide

Escalate To Sublist ... 993
Expenses Sublist .. 993
Group Pricing Sublist .. 994
Item Fulfillment/Receipt Sublist ... 994
Items Sublist ... 994
Item Pricing Sublist ... 995
Lead Nurturing Sublist .. 995
Line Sublist ... 996
Members Sublist .. 996
Orders Sublist ... 996
Other Events Sublist .. 997
Partners Sublist ... 997
Pricing Sublist ... 997
Predecessors Sublist ... 1014
Related Solutions Sublist .. 1014
Resources Sublist ... 1014
Sales Team Sublist ... 1014
Shipping Sublist ... 1015
Site Category ... 1015
Time Tracking Sublist .. 1016
Topics Sublist .. 1016
Units ... 1016
Vendors ... 1016
Related Items Sublist .. 1017

75. Record Initialization Defaults .. 1018
76. Transaction Type IDs ... 1028
77. Permission Names and IDs ... 1030
78. Feature Names and IDs .. 1039
79. Preference Names and IDs .. 1043
80. Supported File Types .. 1056
81. Button IDs ... 1058
82. Supported Tasklinks ... 1061
83. SuiteScript Errors ... 1150
84. SuiteScript Governance ... 1213

API Governance .. 1213
Script Usage Unit Limits .. 1215
Monitoring Script Usage .. 1216
Governance on Script Logging ... 1217
Search Result Limits .. 1218

85. Multiple Shipping Routes and SuiteScript .. 1219
86. Referencing the currencyname Field in SuiteScript ... 1227

12. SuiteScript Developer Resources ... 1228
87. SuiteScript Developer Resources ... 1228

SuiteScript Developer & Reference Guide

SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address
Customization Changes ... 1228

88. SuiteScript Samples .. 1233
89. SuiteScript Tutorials ... 1234

Getting Started with Your SuiteScript Development Environment Tutorial 1234
Client SuiteScript Tutorials ... 1237

Customizing the Page Load .. 1238
Validating Field Values ... 1240
Retrieving the Customer Discount .. 1241
Triggering Events When a Field is Changed .. 1243
Validating a Line Item on a Sublist ... 1245
Recalculating Field Totals ... 1247
Prompting Before Save ... 1248
Client Tutorial (Complete Code) .. 1249

User Event SuiteScript Tutorial ... 1255
User Event ERP Use Cases ... 1255
User Event CRM Use Cases .. 1259

13. SuiteScript Best Practices .. 1267
90. General Development Guidelines .. 1267
91. Suitelets and UI Object Best Practices ... 1269
92. User Event Best Practices .. 1270
93. Scheduled Script Best Practices ... 1271
94. Client Script Best Practices ... 1272
95. Security Considerations .. 1273
96. Script Optimization .. 1274

SuiteScript - The Basics 16

SuiteScript Developer & Reference Guide

Chapter 1 SuiteScript - The Basics
If you are new to SuiteScript, it is recommended that you see these topics in order. You do not
need to read every topic that is associated with each Overview, but you should at least read the
Overviews to get a sense of how to use SuiteScript in your account.

1. What is SuiteScript?

2. Running a Script in NetSuite

3. SuiteScript API Overview

4. Script Types Overview

5. SuiteScript Reference

6. Setting Up Your SuiteScript Environment

Important: Throughout your SuiteScript development, you may end up referring to the
SuiteBuilder Guide the NetSuite Help Center. This guide provides detailed
information on creating custom records, forms, fields, and sublists. In
SuiteScript, much of what you will be doing is extending or getting|setting
values on many of these custom elements. The SuiteBuilder Guide provides a
basic understanding of how these elements are created and their relationship
to one another. In Help, see the help topic SuiteBuilder Overview to learn
more about SuiteBuilder.

Additional Topics

Once you understand the basic concepts behind SuiteScript and how to run a script in
NetSuite, see the following topics for details on how to maximize SuiteScript in your account.
These topics do not need to be read in order. However, as you progress through SuiteScript
development, you will refer to each section often:

• Working with Records in SuiteScript - Defines what a NetSuite record is as it pertains to
SuiteScript. Also provides links to the Record APIs you will use when working with the
entire record object.

• Working with Fields - Defines what a field is as it pertains to SuiteScript. Also provides
links to the Field APIs you will use when working with fields on a record.

• Working with Subtabs and Sublists - Defines what a sublist is as it pertains to SuiteScript.
Also provides links to the Sublist APIs you will use when working with sublists on a
record.

• Setting Runtime Options Overview - Provides additional information on the types of
runtime options available on a Script Deployment record.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2824008.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2939919.html

SuiteScript - The Basics 17

SuiteScript Developer & Reference Guide

• Creating Script Parameters Overview- Defines the concept of “script parameters” as they
pertain to SuiteScript. Also provides information on how to assign company, user, or
portlet preference values to a script parameter.

• Searching Overview - Explains how to search NetSuite using SuiteScript and the types of
searches that are supported in scripting.

• UI Objects Overview - Explains the concept of UI objects and how these objects can be
used in NetSuite to extend your application.

• SuiteScript Governance - Describes governance limits that are applied to each API and
each SuiteScript type.

• SuiteScript Developer Resources - Provides a central location to access SuiteScript
samples, tutorials, and FAQs. Also provided are links to the NetSuite User Group and the
Developer Portal.

What is SuiteScript?
What can I do with the SuiteScript API?

18

SuiteScript Developer & Reference Guide

Chapter 2 What is SuiteScript?
The following topics are covered in this section. If you are new to SuiteScript they should be
read in order.

• What can I do with the SuiteScript API?

• Using the SuiteScript API with NetSuite Records

What can I do with the SuiteScript API?

SuiteScript is a JavaScript-based API that gives developers the ability to extend NetSuite beyond
the capabilities provided through SuiteBuilder point-and-click customization.

The majority of NetSuite forms, records, customization objects and their event/trigger points
are programmatically accessible through SuiteScript. What you decide to do with SuiteScript
depends on which part of NetSuite you are trying to extend, search, or process.

When you think about using SuiteScript in NetSuite, you must ask yourself:

1. What do I want to do?

2. Which APIs support what I want to do?

3. How do I run a script in NetSuite?

What do I want to do?

The following are some of the uses for SuiteScript. Next to each use case is a link to the NetSuite
script type you might use to programmatically accomplish the tasks involved.

Using SuiteScript you can:

• Perform custom business processing when NetSuite records are updated, created, deleted
(using User Event Scripts).

• Perform custom validations and calculations in the browser client (using Client Scripts).

• Create custom user interfaces (using script types such as Suitelets or User Event Scripts
and UI Objects).

• Run batch processes (using Scheduled Scripts).

• Execute NetSuite searches (using script types such as User Event Scripts or Scheduled
Scripts).

What is SuiteScript?
Using the SuiteScript API with NetSuite Records

19

SuiteScript Developer & Reference Guide

• Perform various utility processing such as sending email and faxes, creating and uploading
files, or working with XML documents (using script types such as User Event Scripts or
Suitelets).

• Create custom dashboard portlets (using Portlet Scripts).

• Perform processing in target accounts for bundled solutions as part of bundle installation
or update (using Bundle Installation Scripts).

Which APIs support what I want to do?

In the documentation, the SuiteScript API is organized by the types of tasks most developers
want to perform. See SuiteScript API Overview to get started with the SuiteScript API.

See SuiteScript Functions to see how all APIs are organized. The documentation for each API
lists whether the API can be used in client, user event, scheduled, Suitelet, or portlets scripts.

How do I run a script in NetSuite?

The overall process for getting a script to run in NetSuite is fairly basic. This process includes:

1. Creating a JavaScript file for your script.

2. Uploading the file into NetSuite.

3. Creating a NetSuite “Script” record for your script.

4. Defining script runtime options on a NetSuite Script Deployment page.

For complete details on each step in the process, start with the Running Scripts in NetSuite
Overview topic in the NetSuite Help Center.

Using the SuiteScript API with NetSuite Records

The figure below shows a standard Sales Order record in NetSuite.

What is SuiteScript?
Using the SuiteScript API with NetSuite Records

20

SuiteScript Developer & Reference Guide

The figure outlines the basic components of the record, such as:

1. Record object

2. Body fields

3. Buttons and Actions

4. Subtabs

5. Sublists

What is SuiteScript?
Using the SuiteScript API with NetSuite Records

21

SuiteScript Developer & Reference Guide

Many of the APIs in SuiteScript are used to get and set values on each of these components. You
can also use SuiteScript to create these components.

Records

Use Record APIs to interact with the entire record object.

Fields

Use Field APIs to interact with the body fields on the main area of the record. Body fields can
also appear on a subtab.

Buttons

The use of SuiteScript on built-in buttons is not currently supported. However, you can add a
new button object to a page using the nlobjButton UI object.

Tabs

You can programmatically add fields to NetSuite tabs. You can also add custom tabs using the
nlobjTab UI object.

Sublists

Use Sublist APIs to interact with “line item” sublist fields.

Setting Up Your SuiteScript Environment
Environment Setup Overview

22

SuiteScript Developer & Reference Guide

Chapter 3 Setting Up Your SuiteScript
Environment

• Environment Setup Overview

• Configuring NetSuite for SuiteScript

• Working with IDEs Other Than SuiteCloud IDE

Environment Setup Overview
Before working with SuiteScript, you should configure both your NetSuite account and your
SuiteScript development environment accordingly. See the following sections:

• Configuring NetSuite for SuiteScript

• Setting Up SuiteCloud IDE

Configuring NetSuite for SuiteScript
You must complete all of the following tasks to enable SuiteScript in your account and to access
the internal record and fields IDs that may be required as parameter values in your SuiteScript
code. These tasks include:

1. Enabling SuiteScript

2. Showing Record and Field IDs in Your Account

3. Setting Roles and Permissions for SuiteScript

Important: After completing these tasks, see the help topic Setting Up SuiteCloud IDE.

Enabling SuiteScript

Before you can run SuiteScript in your NetSuite account, you must enable the SuiteScript
feature.

To enable SuiteScript:

1. Go to Setup > Company > Setup Tasks > Enable Features.

2. Click the SuiteCloud tab.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2905859.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2905859.html

Setting Up Your SuiteScript Environment
Configuring NetSuite for SuiteScript

23

SuiteScript Developer & Reference Guide

3. Under SuiteScript, click the Client SuiteScript or Server SuiteScript box (or both,
depending on the scripts you want to run).

4. Click Save.

Important: If Client SuiteScript is enabled, the Custom Code tab becomes available
on entry and transactions forms (see figure). Here you define which client
scripts to associate with the current form. For information on attaching
client scripts to NetSuite forms, see Running Scripts in NetSuite Overview.
For information on entry and transactions forms, see the help topic Custom
Forms in the SuiteBuilder (Customization) Guide.

Showing Record and Field IDs in Your Account

After enabling the SuiteScript feature, NetSuite recommends that you enable the Show Internal
IDs preference. Enabling this preference lets you see the internal IDs for all fields and records
in NetSuite.

When referencing a specific record or field in SuiteScript, you use the internal ID. Even if the
record or field's UI label is changed, the internal ID will remain constant.

After enabling Show Internal IDs, see these sections for steps on viewing the IDs from within
NetSuite:

• How do I find a record's internal ID?

• How do I find a field's internal ID?

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2852749.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2852749.html

Setting Up Your SuiteScript Environment
Configuring NetSuite for SuiteScript

24

SuiteScript Developer & Reference Guide

Important: You obtain the internal ID of a record type (for example, ‘salesorder’) by going
to the SuiteScript Records Browser. For information on using the SuiteScript
Records Browser, see Working with the SuiteScript Records Browser in the
NetSuite Help Center.

To show internal NetSuite IDs:

1. Go to Home > Set Preferences.

2. Click the General tab and then click the Show Internal IDs check box (see figure).

3. Click Save.

Note: For examples of how internal IDs are referenced in the SuiteScript API, see
nlapiLoadRecord(type, id, initializeValues) or nlapiSearchRecord(type, id, filters,
columns). Also note that when writing SuiteScript, all record and field IDs must be
in lowercase.

How do I find a record's internal ID?

A record’s internal ID is unique and associated with the record at the time it is created. Once
the Show Internal IDs preference is enabled, the internal IDs for each record are displayed in
the Internal ID column of record lists (see figure).

For example, to see an internal ID for a specific customer record, go to Lists > Relationships
> Customer. In the Internal ID column, the internal ID appears next to each record in the
Customers list (see figure).

Note: See Showing Record and Field IDs in Your Account for steps on enabling the Show
Internal IDs preference.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

Setting Up Your SuiteScript Environment
Configuring NetSuite for SuiteScript

25

SuiteScript Developer & Reference Guide

If the Show Internal IDs preference is NOT enabled, or if the internal IDs are not displayed on
a given page within NetSuite, you can see the internal ID for a record by hovering over a link to
that record. The internal ID is displayed as a parameter in the URL in the browser status bar.

The following figure shows that if you hover over a link to the ABC Co. customer record, the
internal record ID (1766) appears in the browser status bar.

Important: You obtain the internal ID of a record type (for example, ‘salesorder’) by going
to the SuiteScript Records Browser. For information on using the SuiteScript
Records Browser, see Working with the SuiteScript Records Browser in the
NetSuite Help Center.

How do I find a field's internal ID?

Internal field IDs must be used when calling a field from a SuiteScript API. When the Show
Internal IDs preference is enabled, internal IDs for each field are displayed in the Internal ID
column of a custom field page. For example, to see the internal IDs for custom CRM fields, go
to Customization > Lists, Records, & Fields > CRM Fields. The ID column appears in the list of
custom fields, as shown in the figure.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

Setting Up Your SuiteScript Environment
Configuring NetSuite for SuiteScript

26

SuiteScript Developer & Reference Guide

With Show Internal IDs enabled, you can also view internal field IDs by clicking the field label
in the UI. The figure below shows the Field Level Help window that opens when a field label is
clicked, in this case, the Company label. The internal ID for the Company field is companyname,
which appears in the bottom-right corner of the Field Level Help window.

Setting Up Your SuiteScript Environment
Configuring NetSuite for SuiteScript

27

SuiteScript Developer & Reference Guide

Note: When creating custom fields, you can specify your own field ID, or you can accept
the default ID assigned by NetSuite. To ensure that the field IDs make sense in the
context of your business environment, it is recommended that you define your own
custom field IDs. For detailed information on creating custom fields and assigning
custom field IDs, refer to Custom Fields in the NetSuite Help Center.

Setting Roles and Permissions for SuiteScript

NetSuite provides many standard roles with predefined permissions. A role is a set of
permissions that lets customers, vendors, partners, and employees access specific areas of your
data. Each role grants access at a certain level for each permission.

Access to the SuiteScript feature is also controlled using roles and permissions. When you
assign the SuiteScript permission to a role, you are allowing the users who have that role to
write, upload, and run SuiteScript files in your company's NetSuite account. To assign the
SuiteScript permission to a role, a NetSuite administrator must use the following steps:

To assign the SuiteScript permission to a role:

1. Go to Setup > Users/Roles > Manage Roles.

2. Next, click Edit or Customize next to the role.

3. On the Permissions tab, select the Setup subtab.

4. In the Permissions dropdown, select SuiteScript.

5. Click Save.

Note that there are seven standard roles that already have full access to the SuiteScript feature.
Users who have the following roles can already write, upload, and run SuiteScript files.

Role SuiteScript Access Level

Administrator FULL

Full Access FULL

Marketing Manager FULL

Marketing Administrator FULL

Sales Manager FULL

Sales Administrator FULL

Support Administrator FULL

• When customizing a role to add SuiteScript capabilities, you must also add permission for
customizing entry forms and transaction forms.

• Depending on the NetSuite product you subscribe to, not all of the roles listed in the table
above may be available to you. Also, in addition to these standard roles there may be
custom roles created with the SuiteScript permissions assigned to them.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2826978.html

Setting Up Your SuiteScript Environment
Working with IDEs Other Than SuiteCloud IDE

28

SuiteScript Developer & Reference Guide

Working with IDEs Other Than SuiteCloud IDE
Although NetSuite recommends that you use SuiteCloud IDE when writing SuiteScript, you can
still use other development tools to create SuiteScript. Note, however, without SuiteCloud IDE,
you will not be able to automatically upload SuiteScript files into the NetSuite file cabinet.

Important: For more information about NetSuite's recommended development
environment, see the help topic Setting Up SuiteCloud IDE.

If you choose to use a development tool or IDE other than SuiteCloud IDE, see the following
sections:

• Adding the SuiteScript Library File to Your IDE

• Uploading SuiteScript into the File Cabinet Without the SuiteCloud IDE

Adding the SuiteScript Library File to Your IDE

If you are working with an IDE other than SuiteCloud IDE, you should still add the SuiteScript
library file to your SuiteScript project folder in your IDE.

To add the SuiteScript library file:

1. In NetSuite, go to Documents > Files > SuiteScripts.

2. Next, click the link to the SuiteScript API file (see figure).

3. Copy and paste the SuiteScript API file into your IDE.

4. Save the file as a .js file.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2905859.html

Setting Up Your SuiteScript Environment
Working with IDEs Other Than SuiteCloud IDE

29

SuiteScript Developer & Reference Guide

Uploading SuiteScript into the File Cabinet Without the SuiteCloud IDE

Once the SuiteScript feature is enabled, a new SuiteScripts folder is created in the NetSuite file
cabinet. The file cabinet is considered as the central repository for all your .js SuiteScript files.
Therefore, your SuiteScript files should exist in the file cabinet before they can be executed in
your NetSuite account.

• The SuiteScripts folder within the file cabinet is provided for convenience, however, you
can store the script files in any location.

• For steps on enabling the SuiteScript feature, see Enabling SuiteScript.

If you are not uploading your scripts into the file cabinet using the SuiteCloud IDE, use the
following steps.

To upload SuiteScript into the file cabinet:

1. Go to Documents > Files > SuiteScripts.

2. Click the Add File button (see figure).

3. In the File Upload window that appears, navigate to the file you want to upload, select the
file, and click Open.

Note: If you make changes to a SuiteScript file that already exists in the file cabinet, follow
steps 1–3 to re-upload the changed file. Click OK to overwrite the previous file and
load your changes.

Running Scripts in NetSuite Overview 30

SuiteScript Developer & Reference Guide

Chapter 4 Running Scripts in NetSuite
Overview

Running a script in NetSuite includes these basic steps:

• Step 1: Create Your Script

• Step 2: Add Script to NetSuite File Cabinet

• Step 3: Attach Script to Form

• Step 4: Create Script Record

• Step 5: Define Script Deployment

Important: Step 3 is for form-level client scripts only. If you are creating a user event,
scheduled, portlet, Suitelet, or record -level client script, skip Step 3, and
perform steps 4 and 5.

Step 5 provides the basic steps required for deploying a script into NetSuite.
To learn how to specify additional deployment options, see Setting Runtime
Options Overview.

Step 1: Create Your Script 31

SuiteScript Developer & Reference Guide

Chapter 5 Step 1: Create Your Script
All SuiteScript files must end with a JavaScript (.js) file extension. Although you can use any
text editor (including Notepad) to write your SuiteScript .js files, NetSuite recommends you
use the SuiteCloud IDE. If you have not installed SuiteCloud IDE, see the help topic Setting Up
SuiteCloud IDE in the NetSuite Help Center.

Depending on what you are trying to do in NetSuite, the code in your .js file can be as basic as a
client script that never even touches a NetSuite server. It runs purely client-side in the browser
and alerts users after they have loaded a specific NetSuite record, for example:

function pageInitAlertUser()
{
 alert ('You have loaded a record');
}

Alternatively, your script can be can be as complex as executing a NetSuite search, getting
the results, and then transforming the results into a PDF document. See the samples for
nlapiXMLToPDF(xmlstring) as an example.

The APIs you use in your code and the logic you write will depend on what you're trying to
accomplish in NetSuite. See What can I do with the SuiteScript API? if you are unsure of what
you can do using the SuiteScript API.

After you have created your .js file, see Step 2: Add Script to NetSuite File Cabinet.

Note: To see which APIs are included in the SuiteScript API, start with SuiteScript API
Overview.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2905859.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2905859.html

Step 2: Add Script to NetSuite File Cabinet 32

SuiteScript Developer & Reference Guide

Chapter 6 Step 2: Add Script to NetSuite File
Cabinet

If you are writing your script files in SuiteCloud IDE, loading a file into the NetSuite file cabinet
is as easy as right-clicking on your file in SuiteCloud IDE and selecting NetSuite > Upload
Selected File(s). For more information, see the help topic Uploading a SuiteScript File.

If you have written your .js files in anything other than SuiteCloud IDE, you will need to
manually upload your files into NetSuite. See Uploading SuiteScript into the File Cabinet
Without the SuiteCloud IDE for details.

Note: The SuiteScripts folder in the file cabinet is provided for convenience, however, you
can store your script files in any location.

Once your script has been added to the NetSuite file cabinet, see either :

• Step 3: Attach Script to Form (if you want to run a form-level client script in NetSuite)

• Step 4: Create Script Record (if you want to run any other script type. For example, if you
want to run a user event, scheduled, portlet, Suitelet, action, or record-level client script,
proceed to Step 4.)

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2923706.html

Step 3: Attach Script to Form 33

SuiteScript Developer & Reference Guide

Chapter 7 Step 3: Attach Script to Form
Form-level client scripts are “attached” to the forms they run against. Be aware that in NetSuite,
there are two different types of client SuiteScript. The information in this section pertains
ONLY to form-level client scripts.

Important: For the differences between form- and record-level client scripts, see Form-
level and Record-level Client Scripts.

To attach a form-level client script to a custom form:

1. Ensure your client script has been uploaded into NetSuite. (See Step 2: Add Script to
NetSuite File Cabinet.)

2. Go to the desired custom form in NetSuite.

Form-level client scripts can only be attached to custom entry forms, custom transaction
forms, and custom online forms. Click Customization > Forms >[Form].

3. Next, click Customize next to the desired custom form, or click Customize next to an
existing standard form to create a new custom form that is based on the standard version.

Note: For more information on creating custom entry, transaction, and online forms,
refer to the SuiteBuilder (Customization) Guide.

4. On the Custom Code tab on the form, select your script file and, if necessary, the library
file to associate with the current form (see figure).

The library script file should contain any commonly used functions. The SuiteScript file
should contain functions specific to the current form.

5. Based on the APIs used in your SuiteScript or library files, define which functions should
be called on which client events. If you are unsure of which actions trigger each client
event, see Client Event Types. To learn how many functions you can execute on one form,
see How Many Client Events Can I Execute on One Form?

The following figure shows a custom form called Wolfe Electronics Sales Order. This form
is set as the “preferred” form for sales orders. What this means is that all customizations
made to this form, and any client script file attached to the form will run whenever a
NetSuite user navigates to and loads sales order record. This figure indicates that when a
sales order loads, three different functions will execute.

• The savRecUpdatePrice function will execute when the record is saved.

• The valFieldItemPrice function will execute when a particular field on the sales order
is changed.

Step 3: Attach Script to Form 34

SuiteScript Developer & Reference Guide

• The recalcTotalAndTax function will execute when a line item as been added to a
sublist.

Important: Be sure to enter function names exactly as they appear in your script.
However, do not include parenthesis or parameter values when you enter the
function name on the custom form.

After you have attached your form-level client script to a form, your script will execute
whenever the triggering action occurs. For a list of possible client event triggers, see Client
Event Types.

If you have created a form-level client script, you do not need to go to Step 4: Create Script
Record or Step 5: Define Script Deployment. You are done!!!!!

Step 4: Create Script Record 35

SuiteScript Developer & Reference Guide

Chapter 8 Step 4: Create Script Record
After writing your SuiteScript .js file and uploading the file to the file cabinet, you must then
create a Script record for the file (see figure).

On the Script record you will:

• Add your SuiteScript .js file.

• Define the script owner.

• If applicable, add one or more library files.

• Define the function(s) from your SuiteScript file you want executed.

• If applicable, create script parameters (custom fields) that are unique to the Script record.

• Specify who should be contacted if an error is thrown in your script.

Although you do not need to set every field on the Script record, at a minimum you must set
the following (see figure):

1. Provide a name for the Script record.

2. Specify the script owner.

3. Load your SuiteScript .js file.

4. Specify the main executing function within the file.

Step 4: Create Script Record
Steps for Creating a Script Record

36

SuiteScript Developer & Reference Guide

Important: See Steps for Creating a Script Record for more detailed information.

Steps for Creating a Script Record

The following steps provide details for creating a Script record. For an overview that explains
the purpose of the Script record, be sure to see Step 4: Create Script Record.

To create a script record:

1. Go to Customization > Scripting > Scripts > New.

Note that after creating your script record, you can later access the record by going to
Customization > Scripting > Scripts to see a list view of all Script records.

2. Select the script type (see figure).

Step 4: Create Script Record
Steps for Creating a Script Record

37

SuiteScript Developer & Reference Guide

Note: The Client scripts listed here are record-level client script. These scripts run in
addition to any form-level client scripts that might have already been attached
to an existing form. For information on the differences between form- and
record-level client scripts, seeForm-level and Record-level Client Scripts .

3. In the Script record Name field, enter a name for the script record.

You can have multiple deployments of the same SuiteScript file. Therefore, be sure that the
name of the Script record is generic enough to be relevant for all deployments.

For example, you may want your SuiteScript (.js) file to execute whenever Vendor records
are saved. You might also want this script to execute whenever Customer records are
saved. You will need to define two different deployments for the script. However, both
deployments will reference the same script / Script record. (Information on defining script
deployments is covered in Step 5: Define Script Deployment.)

4. In the ID field, if desired, enter a custom ID for the script record. If the ID field is left
blank, a system-generated internal ID is created for you.

For information on whether you should create your own custom ID, see Creating a
Custom Script Record ID.

5. If you are creating a Script record for a Portlet script, select the portlet type from the
Portlet Type drop-down list.

For information on portlet types, see Portlet Scripts in the NetSuite Help Center.

6. In the Description field, if desired, enter a description for the script.

7. In the Owner field, select a script owner.

By default the owner is set to the currently logged-in user. Once the Script record is saved,
only the owner of the record or a system administrator can modify the record.

8. (Optional) Select the Inactive check box if you do not want to deploy the script. When a
script is set to Inactive, all of the deployments associated with the script are also inactive. If

Step 4: Create Script Record
Steps for Creating a Script Record

38

SuiteScript Developer & Reference Guide

you wish to inactivate a specific deployment rather than all deployments of this scripts, go
to the Script Deployments page.

9. On the Scripts tab, set the following:

1. In the Script File field, select the SuiteScript .js file to associate with the current
script record.

If you have uploaded your script into the NetSuite file cabinet, your script will
appear in the Script File drop-down list. For directions on uploading scripts into
the file cabinet, see either of the following sections:

• Uploading a SuiteScript File - If you are uploading scripts using the SuiteCloud
IDE.

• Uploading SuiteScript into the File Cabinet Without the SuiteCloud IDE - If
you are not uploading your scripts using SuiteCloud IDE.

Note: If you are maintaining your SuiteScript files outside of the file cabinet,
click the + button next to the Script File drop-down. In the popup
window that appears, browse for your .js file.

2. (Optional) In the Library Script File field, select the library files you want to
associate with the Script record.

A library script file should contain any commonly used functions, whereas the
SuiteScript file should contain functions specific to the current Script record. Note
that multiple library files can be added to a script record.

Also be aware that the system reads your library files in the order they appear on
the Library Script File tab. For example, if your first library file references the
second library file, an error will be thrown, since the first library file is loaded
before the second.

3. In the Function field(s), type the name of the function(s) you want executed in
the .js file. Do not include the function parentheses or any parameters. For example,
type myFunction rather than myFunction(param1, param2).

• If defining a User Event script, you can execute one function per operation type. For
example, you can have a before load function and an after submit function defined
within the same script execution. These functions must exist in either the library
script file or the SuiteScript file associated with the script record.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2923706.html

Step 4: Create Script Record
Steps for Creating a Script Record

39

SuiteScript Developer & Reference Guide

Note: For details on the before load, before submit, and after submit operations,
see User Event beforeLoad Operations andUser Event beforeSubmit and
afterSubmit Operations.

• If defining a record-level Client script, type the names of the functions you want
executed when the script runs. As the following figure shows, enter the function
name in the field next to the client event that will trigger the function. Note that your
functions must exist in either the library script file or the SuiteScript file associated
with the script record. You have the option of calling up to eight functions from
within the same script file.

• If defining a bundle installation script, type the names of the functions you want
executed before the bundle is installed, after the bundle is installed, before the bundle
is updated, or after the bundle is updated. Enter the function name in the field next to
the bundle deployment event that will trigger the function. Note that these functions
must exist in the SuiteScript file associated with the script record. If these functions
call functions in other script files, these files should be listed as library files.

Step 4: Create Script Record
Steps for Creating a Script Record

40

SuiteScript Developer & Reference Guide

10. On the Parameters tab, define possible parameters (custom fields) to pass to the functions
specified in the previous step.

11. On the Unhandled Errors tab, define which individual(s) will be notified if script errors
occur.

• By default the Notify Script Owner check box is selected.

• (Optional) Select Notify All Admins if all admins should be notified.

• (Optional) Select the groups that should be notified. Only existing groups are
available in the Groups notification drop-down list. To define new groups, go to Lists
> Relationships > Groups > New.

• (Optional) Enter the email address of anyone who should be notified. You can also
enter a comma-separated list of email addresses.

12. From the Save button:

1. If you want to save the script record, but you are not ready to deploy the script,
select the Deployments tab, clear the Deployed check box, and click Save.

Important: Scripts will not execute until they are deployed.

2. If you want to save the script record and deploy the script, but you are not yet ready
to define the script's runtime/deployment behaviors, click Save.

3. If you want to save the script record and automatically open the Script Deployment
page, click Save and Deploy. Use the Script Deployment page to define runtime
behaviors such as when the script will run and which accounts the script will run
in.

Step 4: Create Script Record
Creating a Custom Script Record ID

41

SuiteScript Developer & Reference Guide

13. Now that you have created a Script record for your script, go to Step 5: Define Script
Deployment.

Note: Although the Script record has a Deployments tab that allows you to define
many of the same deployment options found on the Script Deployment page, it is
recommended that you define your deployments on the Script Deployment page.
This page provides deployment settings that are not available on the Deployments
tab of the Script record.

Creating a Custom Script Record ID
All Script records have an ID. Many SuiteScript APIs contain parameters such as ID or
scriptID. Through these parameters you pass the scriptId or internalId of the script record. The
scriptId is considered to be a custom ID you create yourself for the Script record. If you do not
create your own scriptId, then the system generates an ID for you. In the documentation, the
system-generated ID is referred to as the Script record's internalId.

For an example of how Script record IDs are used in a SuiteScript API call, see
nlapiScheduleScript(scriptId, deployId, params).

Note: You can programmatically get the the value of a scripId by calling
nlobjContext.getScriptId().

If you choose, you can create a custom ID for your Script record. If the ID field is left blank on
the Script record, a system-generated ID is created for you. This is the ID that appears in the ID
field once the Script record is saved.

Whether creating a custom ID or accepting a system-generated ID, once the script record is
saved, the system automatically adds customscript to the front of the ID.

Why Should I Create a Custom ID?

Custom IDs are recommended if you plan to use the SuiteBundler feature to bundle the script
and deploy it into another NetSuite account. Custom IDs reduce the risk of naming conflicts
for scripts deployed into other accounts. (For details on bundling scripts, see the S uiteBundler
Overview topic in the NetSuite Help Center.)

Step 4: Create Script Record
Creating a Custom Script Record ID

42

SuiteScript Developer & Reference Guide

When creating a custom ID it is recommended that you insert an underscore (_) before the ID
to enhance readability. For example, a custom script ID called _employeeupdates will appear as
customscript_employeeupdates once the Script record is saved. Similarly, a custom deployment
ID will appear as customdeploy_employeeupdates once the Script Deployment page is saved.

Important: Custom IDs must be in lowercase and contain no spaces. Also, custom
IDs cannot exceed 30 characters in length. These 30 characters do not
include the customscript or customdeploy prefixes that are automatically
appended to the ID.

Can I Edit an ID?

Although not recommended, you can edit both custom and system-generated IDs once the
Script record or script deployment is saved. To edit an ID, click the Change ID button that
appears on both script record and script deployment pages AFTER each has already been
saved.

The following figure shows the Change ID button on a Script Deployment page after the
deployment has been saved.

After clicking the Change ID button, the Change Script ID page appears. This page shows the
old ID and provides a field for creating a new ID.

Important: Once you change a script record or script deployment ID, you MUST update
all references to that ID in your code files.

Step 5: Define Script Deployment
Steps for Defining a Script Deployment

43

SuiteScript Developer & Reference Guide

Chapter 9 Step 5: Define Script Deployment
Once you have created a Script record for your SuiteScript file, you must then “deploy” the
script into NetSuite. A script's deployment definitions, as set on the Script Deployment page,
affect its runtime behaviors when it is released into NetSuite.

Some of these deployment definitions include:

• When the script will be executed

• Audience and role restrictions for a script

• Script log levels

• Deployment-specific parameter defaults

• Specific records the script will run against

Note that Script Deployment pages look different for each script type. For example, the Script
Deployment page for a user event script will not include an area for you to define the script's
deployment schedule. The Script Deployment page for a scheduled script, however, will include
an area for this. Deployment pages for Suitelets will include a field for setting whether the
Suitelet executes on a GET or POST request. The deployment page for a global client script will
not include such a field.

Because Script Deployment pages vary depending on the script type, see Steps for Defining
a Script Deployment for general steps that are applicable to most script types. See Setting
Runtime Options Overview for information on setting more advanced runtime options. In
many cases, these more advanced options are specific to a particular script type.

Important Things to Note:

• You cannot edit a Script Deployment record while the script associated with the
deployment is running in NetSuite.

• Multiple deployments can be applied to the same record. These deployments are executed
in the order specified in the UI. If an error occurs in one deployment, subsequent
deployed scripts may NOT be executed. When troubleshooting, verify you are executing
only one script per record type.

Steps for Defining a Script Deployment
For an overview of the Script Deployment record, be sure to see Step 5: Define Script
Deployment. This section describes why a Script Deployment record is required for each script.

To define a script deployment:

1. When you save your Script record, you can immediately create a Script Deployment
record by selecting Save and Deploy from the Script record Save button.

Step 5: Define Script Deployment
Steps for Defining a Script Deployment

44

SuiteScript Developer & Reference Guide

If you want to update a deployment that already exists, go to Customization > Scripting >
Script Deployments > [deployment] > Edit.

2. On the Script Deployment page:

• For Suitelet, Scheduled, and Portlet scripts, in the Title field, provide a name for the
deployment.

• For User Event and Client scripts, in the Applies To field, select the record the script
will run against. In the Applies To field you can also select All Records to deploy the
script to all records that officially support SuiteScript. (For a list of these records, see
SuiteScript Supported Records.)

3. In the ID field, if desired, enter a custom scriptId for the deployment. If you do not create
a scriptId, a system-generated internalId is created for you.

For information on whether to create a custom ID, see Creating a Custom Script
Deployment ID.

4. (Optional) Clear the Deployed check box if you do not want to deploy the script.
Otherwise, accept the default. A script will not run in NetSuite until the Deployed check
box is selected.

5. In the Status field, set the script deployment status. See Setting Script Deployment Status.

6. (Optional) In the Event Type drop-down list, specify an event type for the script
execution. See Setting Script Execution Event Type from the UI.

7. (Optional) In the Log Level field, specify which log messages will appear on the
Execution Log tab once the script is executed. See Setting Script Execution Log Levels.

8. In the Execute as Role field, select whether you want the script to execute using
Administrator priviledges, regardless of the permissions of the currently logged in user.
See Executing Scripts Using a Specific Role.

9. On the Audience tab, specify the audiences for the script. See Defining Script Audience.

10. On the Links tab (for Suitelets only), if you want to launch your Suitelet from the UI,
create a menu link for the Suitelet. See Running a Suitelet in NetSuite.

11. (Optional) On the Execution Log tab, create custom views for all script logging details.
See Creating Script Execution Logs.

12. Click Save.

Note that for portlet scripts, you must enable the portlet to display on your dashboard (see
Displaying Portlet Scripts on the Dashboard).

Step 5: Define Script Deployment
Creating a Custom Script Deployment ID

45

SuiteScript Developer & Reference Guide

Creating a Custom Script Deployment ID
Script deployment IDs are necessary for SuiteScript development. Many SuiteScript API calls
contain parameters such as ID, scriptID, and deployID that reference the IDs on the Script
Deployment page.

These parameters allow you to pass the values of an internalId (a system-generated ID) or
a scriptId (a custom ID that you provide). For an example of how script record and script
deployment IDs are used in a SuiteScript API call, see nlapiScheduleScript(scriptId, deployId,
params).

If you choose, you can create a custom ID for your script deployment. If the ID field is left
blank on the Script Deployment page, a system-generated ID is created for you. This is the ID
that appears in the ID field once the Script Deployment page is saved.

Whether creating a custom ID or accepting a system-generated ID, once the script deployment
is saved, the system automatically adds customdeploy to the front of the ID.

The following figure shows a list of script deployments (Setup > Customization >
Script Deployments). Note that there is a combination of custom IDs (for example,
customdeploy_campaign_assistant) and system-generated deployment IDs (for example
customdeploy1). Although customdeploy1 is the ID for many script deployments, be aware
that deployment IDs are unique only within a given script definition.

If you are unsure whether to create your own custom ID or accept a system-generated ID, see
Why Should I Create a Custom ID? for more information.

Also see Can I Edit an ID? for information on editing IDs.

Viewing Script Deployments 46

SuiteScript Developer & Reference Guide

Chapter 10 Viewing Script Deployments
There are several ways to view your script deployments:

• Go directly to the script deployment by clicking Setup > Customization > Scripting >
Script Deployments.

• View deployed scripts by clicking View Deployments in the upper-right corner of the
Script record.

• Click the Deployments tab on a Script record to see the deployments specific to that Script
record. Next, click on a specific deployment to go to the deployment record.

Remember: In each specific deployment record you can define default parameter values
for that deployment. Note that first you must create the script parameter before you can
define its value on a Script Deployment record.

For more information, see Creating Script Parameters Overview in the NetSuite Help
Center. Also see Setting Script Parameter Preferences for information that is specific to
setting script parameter values on the Script Deployment record.

• View a list of records that have scripts associated with them at Setup > Customization >
Scripting > Scripted Records. For complete details, see Using the Scripted Records Page in
the NetSuite Help Center.

By default, the Scripted Records list displays only those records that have at least one script
associated with them.

Using the Scripted Records Page 47

SuiteScript Developer & Reference Guide

Chapter 11 Using the Scripted Records Page
Within NetSuite you can view a list of all records that have user event or global client scripts
associated with the record (see figure). By default, only the records that have at least one script
associated with them will appear in the list.

Note: To see a list of all records in your account, click the Show Undeployed check box in
the lower-left corner of the Scripted Records list. You can also use the Script filter
drop-down to show only those records associated with specific scripts.

The Scripted Records list is helpful if you are trying to determine whether a record has a script
associated with it that might be causing a problem. You can also use this list to drill down to a
specific record to specify the execution order of scripts associated with each record, edit script
deployment statuses, and inactivate specific deployments.

To view this list, go to Customization > Scripted Records.

To change the deployment status of a script associated with a specific record, click Edit in the
Scripted Records list.

The following figure shows a Scripted Record page for the Case (supportcase) record.

Using the Scripted Records Page 48

SuiteScript Developer & Reference Guide

On the Scripted Record page, use the User Event Scripts tab to:

• Change the script execution order of user event scripts - in other words, have the third
script execute first by moving the script to the top of the list

• Change script deployment statuses from Testing to Released

• Set scripts to deployed or undeployed (by checking the Deployed check box)

• View the names of the functions that are set to execute on before load, before submit, and
after submit user events

Use the Client Scripts tab to:

• Change the script execution order of global client scripts

• Change script deployment statuses from Testing to Released

• Set scripts to deployed or undeployed (by checking the Deployed check box)

• View the names of the functions that are set to execute on various client event triggers

Use the Custom Forms tab to:

• View all forms associated with this record type. Even forms that do not have a script
attached will appear in this list.

• Access each form directly by clicking the form links

• View the name of the SuiteScript .js file that has been attached to each form

• View the names of the functions that are set to execute on various client event triggers

Creating Script Execution Logs
Viewing a List of Script Execution Logs

49

SuiteScript Developer & Reference Guide

Chapter 12 Creating Script Execution Logs
During script execution, a detailed script execution log is generated when either an unexpected
error occurs or the nlapiLogExecution method is called.

For example, the following Suitelet code generates an execution log that indicates the request
type of the Suitelet:

nlapiLogExecution('DEBUG', 'Suitelet Details', 'Suitelet method = ' + request.getMethod());

For more information about the nlapiLogExecution function, see nlapiLogExecution(type, title,
details).

There are two ways to view the script execution logs:

• The Script Execution Logs list that can be accessed through Customization > Scripting >
Script Execution Logs.

The list of script execution logs is an enhanced repository that stores all log details for 30
days. The filter options on this page allow you to search for specific logs. See Viewing a
List of Script Execution Logs.

• The Execution Log tab that appears on Script pages, Script Deployment pages, and the
SuiteScript Debugger.

The execution log tab displays logs for a specific script, but these logs are not guaranteed
to persist for 30 days. These logs are searchable, and you can customize views to find
specific logs. See Using the Script Execution Log Tab.

Viewing a List of Script Execution Logs
The script execution log list is an enhanced repository that stores log details across all scripts
for 30 days. The list can be accessed through Customization > Scripting > Script Execution
Logs.

On this page, you can perform the following tasks:

• Search for specific logs using filter options, such as log level, execution date range, and
script name.

• Download the list as a CSV file or an Excel spreadsheet.

• Print the list.

The following figure shows a script execution log list that is filtered to display DEBUG level logs
created on a particular week for a particular script:

Creating Script Execution Logs
Using the Script Execution Log Tab

50

SuiteScript Developer & Reference Guide

Using the Script Execution Log Tab

Script execution details are logged on the Execution Log tab that appears on the Script page,
Script Deployment page, and SuiteScript Debugger. These logs are searchable, and you can
customize views to find specific logs.

Important: When using the SuiteScript Debugger to debug a script, all logging details
appear on the Execution Log tab in the Debugger. To have logging details
appear on the Execution Log tab of the Script Deployment page, you must
deploy the script first.

The following figure shows two types of execution logs for a Suitelet. One is an unexpected
error that is generated because a method was not defined in a Suitelet script. The other is a
user-generated execution log that is generated by the following line in the Suitelet code:

nlapiLogExecution('DEBUG', 'Suitelet Details', 'Suitelet method = ' + request.getMethod());

By default, the View drop-down field is set to Default Script Notes View. This default view
shows all log types from the current day's script executions.

To see script executions for days other than the current day, click the Customize View button.
Specify search criteria such as script execution dates, details, names, and script types (see
figure), and then name your custom view in the Search Title field.

Creating Script Execution Logs
Using the Script Execution Log Tab

51

SuiteScript Developer & Reference Guide

The following figure shows a customized view of the execution log. The new view type has been
selected from the View drop-down. This view shows log details for days other than the current
day.

Important: NetSuite purges system errors older than 60 days and user-generated
logs older than 30 days on a daily basis. Because log persistence is not
guaranteed, NetSuite recommends using custom records if you want to
store script execution logs for extended periods. See Governance on Script
Logging.

Using the Script Queue Monitor
Installing and Accessing the Script Queue Monitor

52

SuiteScript Developer & Reference Guide

Chapter 13 Using the Script Queue Monitor
The Script Queue Monitor (Beta) SuiteApp is intended for use in accounts with one or more
SuiteCloud Plus licenses. SuiteCloud Plus allows larger accounts to divide their scheduled script
work so that scripts can be processed more efficiently. Generally, companies that run NetSuite
are provided a single queue for running their scheduled scripts. Companies can upgrade their
number of scheduled script queues from one to five with the purchase of a SuiteCloud Plus
license. The purchase of two SuiteCloud Plus licenses provides 10 queues and the purchase of
three licenses provides 15 queues. For more information about SuiteCloud Plus, see Deploying
Scheduled Scripts to Multiple Queues Through SuiteCloud Plus and Using SuiteCloud Plus.

The Script Queue Monitor provides charts and a list of status details for scheduled script
instances running on multiple queues. Account administrators can use the visualizations
provided by the Script Queue Monitor to review and manage script queue usage. This
information can inform the retargeting of scheduled script deployments to different queues, to
maximize the benefit obtained from SuiteCloud Plus.

Note: The Script Queue Monitor is currently considered a beta feature.

The Script Queue Monitor currently is not supported if you are running NetSuite in
Internet Explorer 11.

For more information, see the following:

• Installing and Accessing the Script Queue Monitor

• Script Queue Monitor User Interface

Installing and Accessing the Script Queue Monitor
Script Queue Monitor (Beta) is available as a SuiteApp which can be installed in your account.
Its bundle ID is 56125 and it can be installed from production account 3923787.

To install the Script Queue Monitor (Beta) SuiteApp:

1. Go to Customization > SuiteBundler > Search and Install Bundles.

2. Enter the bundle ID, 56125, in the Keywords box and click the Search button.

3. Click the bundle link in the Name column to proceed to the Bundle Details Page.

4. On the Bundle Details page, click the Install button.

• The Script Queue Monitor is a managed bundle. Once you install it, future updates
are automatically pushed to your account.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N259503.html

Using the Script Queue Monitor
Script Queue Monitor User Interface

53

SuiteScript Developer & Reference Guide

• To proceed to the install, click OK in the popup that displays to obtain your consent
for these future updates.

5. On the Preview Bundle Install Page, click the Install Bundle button.

After you have started the process of installing a bundle, the Installed Bundles page displays.
If the installation is not complete, the Status column displays the percentage of installation
progress. If the installation is complete, the Status column displays a green check.

Once this SuiteApp has been installed, the Script Queue Monitor is available at Customization
> Script Performance > Script Queue Monitor, to account administrators only.

Script Queue Monitor User Interface
The UI for the Script Queue Monitor includes two panes: on the left, a pane that illustrates
script instances for each queue, and on the right, a pane that summarizes relevant information
about all script instances, aggregated by deployment name, script name, and queue.

In a Filters section at the top, you can select the time period for scripts to be included in the
chart and list. Note that you can collapse and expand the Filters section as needed by clicking
on its header bar. In the Scripting Chart pane, you can select the type of chart to display. You
click the Refresh button to implement these selections in the Script Queue Monitor display.

Summary Status Information

The grid in the right pane of the Script Queue Monitor includes the following details,
aggregated by the combination of deployment name, script name, and queue number:

• Instances of that script deployment, on that queue, for the selected time period

Using the Script Queue Monitor
Script Queue Monitor User Interface

54

SuiteScript Developer & Reference Guide

The color of a value in the Script Instances column indicates status, as shown in a key
available from a hover over this value.

• Average duration, in seconds, of script execution time

• Average wait time, in seconds, before script execution

• Queue utilization percentage — the percentage of the total duration for all scripts running
on that particular date and time

You can click on a column header to sort the summary by that column’s values. Click two times
to switch the sort from ascending to descending. Summary results are paginated for usability.
Use the < and > buttons, or the dropdown arrow, to shift to a different page.

The Summary grid includes links you can click to drill down into more details:

• Click a link in the Deployment Name column to see the script deployment record.

• Click a link in the Script Name column to see the script record.

• Click on a value in the Script Instances column to display a popup window listing details
about each script instance:

Using the Script Queue Monitor
Script Queue Monitor User Interface

55

SuiteScript Developer & Reference Guide

Click a link in the Deployment Name column to see the script deployment record.

Click a link in the Script Name column to see the script record.

Click on a value in the Script Instances column to display a popup window listing details about
each script instance:

Scripting Chart

The Script Queue Monitor supports three types of charts:

• Script Count Chart

• Utilization Chart

• Timeline Chart

Note that you can click the button available in the chart pane to download the currently
displayed chart as a file named chart(<#>).png. (The # variable starts at 1 and is increased each
time a chart is downloaded to avoid overwriting previously downloaded charts.)

Script Count Chart

The Script Count chart displays vertical bars representing the number of scripts running on
each queue during the selected time period. A hover over the bar for a queue displays a popup
listing the number of scripts for each script status.

Using the Script Queue Monitor
Script Queue Monitor User Interface

56

SuiteScript Developer & Reference Guide

For each chart, bar color indicates script status, as explained by a legend at the bottom of the
pane. You can click on a color in the legend to remove scripts with that status from the chart,
and click on the color again to add scripts of that status back in.

Utilization Chart

The Utilization chart displays vertical bars representing the percentage of capacity used for
each queue during the selected time period. A hover over the bar for a queue displays a popup
listing this percentage, the count of scripts run in the queue, and the total runtime of these
scripts, in seconds.

Using the Script Queue Monitor
Script Queue Monitor User Interface

57

SuiteScript Developer & Reference Guide

Timeline Chart

The Timeline chart displays horizontal bars representing the times during which scheduled
scripts were running on each queue during the selected time period. A hover over the bar for
a script displays a popup listing this script name, deployment name, start and end times, and
total runtime, in seconds.

The Timeline chart displays horizontal bars representing the times during which scheduled
scripts were running on each queue during the selected time period. A hover over the bar for
a script displays a popup listing this script name, deployment name, start and end times, and
total runtime in seconds.

Using the Script Queue Monitor
Script Queue Monitor User Interface

58

SuiteScript Developer & Reference Guide

You can grab and highlight a vertical slice of the timeline to zoom in and get a better view of
script executions during the highlighted time period. To return to the higher level view, click
the Reset Zoom button that is available in the lower right corner of the chart after a zoom.

Important: The timeline chart cannot display a time period longer than 3 days. If the
selected date range is longer, the timeline chart includes only the first 3 days.

Working with Subrecords in SuiteScript
What is a Subrecord?

59

SuiteScript Developer & Reference Guide

Chapter 14 Working with Subrecords in
SuiteScript

The following topics are covered in this section:

• What is a Subrecord?

• Using the SuiteScript API with Subrecords

• Creating and Accessing Subrecords from a Body Field

• Creating and Accessing Subrecords from a Sublist Field

• Setting Values on Subrecord Sublists

• Saving Subrecords Using SuiteScript

• Guidelines for Working with Subrecords in SuiteScript

• Working with Specific Subrecords in SuiteScript

Note: For a list of SuiteScript supported records and subrecords, see SuiteScript
Supported Records in the NetSuite Help Center.

What is a Subrecord?
A subrecord includes many of the same elements of a standard NetSuite record (body fields,
sublists and sublist fields, and so on). However, subrecords must be created, edited, removed, or
viewed from within the context of a standard (parent) record.

The purpose of a subrecord is to hold key related data about the parent record. For example, a
parent record would be a Serialized Inventory Item record. This record defines a type of item.
A subrecord would be an Inventory Detail subrecord. This is a subrecord that contains all data
related to where the item might be stored in a warehouse. In this way, the subrecord contains
data related to the item, but not data that directly defines the item. Without the parent record,
the subrecord would serve no purpose.

The following figure shows an Inventory Detail subrecord. Its parent is a Bill record. In this
figure the Inventory Detail subrecord is accessed through the Inventory Details sublist field.
The Inventory Detail subrecord contains the inventory details for the item called the Lot Feed
item.

In this case the parent record is still the Bill record, even though the subrecord tracks inventory
details related to the Lot Feed item. Ultimately it is the Bill record that must be saved before the
subrecord (pertaining to an item on the Bill) is committed to the database.

Working with Subrecords in SuiteScript
Using the SuiteScript API with Subrecords

60

SuiteScript Developer & Reference Guide

Creating Subrecord Custom Entry Forms

You can create custom entry forms for subrecords by going to Setup > Customization > Entry
Forms. A currently supported subrecord type is Inventory Detail, which is associated with the
Advanced Bin / Numbered Inventory Management feature. In the Custom Entry Forms list, you
can select Customize next to Inventory Detail to create a custom form for this subrecord type.

Note that when you create a custom form for Inventory Detail, you can use the Actions
tab to add new buttons to the custom form. When clicked, these buttons will execute client
SuiteScript. However, you cannot customize the buttons that currently exist on the Inventory
Detail record. These buttons are required; without them you cannot save this subrecord to its
parent record.

Also note that the Store Form with Record preference is not currently supported for custom
subrecord forms. You can, however, set the customized subrecord form as Preferred.

Additionally, like any other custom form, you can attach client scripts to the Custom Forms tab.

Using the SuiteScript API with Subrecords
The SuiteScript API includes several Subrecord APIs to interact with the subrecord object
(nlobjSubrecord).

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

Using SuiteScript you can create and access subrecords through a body field on a parent record.
(See Creating and Accessing Subrecords from a Body Field for details.) You can also create

Working with Subrecords in SuiteScript
Creating and Accessing Subrecords from a Body Field

61

SuiteScript Developer & Reference Guide

and access subrecords through a sublist field on a parent record. (See Creating and Accessing
Subrecords from a Sublist Field for details.)

To set values on sublists that appear on subrecords, you will use some of the same Sublist APIs
used to set values on sublists appearing on parent records. See Setting Values on Subrecord
Sublists for details.

To save a subrecord, you must follow the pattern outlined in the section Saving Subrecords
Using SuiteScript.

Creating and Accessing Subrecords from a Body Field

If you want to create a subrecord to hold data related to the parent, you can do so from a body
field on the parent. When working with subrecords from a body field on the parent, you will
use the following APIs if you are working with the parent record in a “current record” context,
such as in a user event script or a client script:

• nlapiCreateSubrecord(fldname)

• nlapiEditSubrecord(fldname)

• nlapiRemoveSubrecord(fldname)

• nlapiViewSubrecord(fldname)

Note: nlapiCreateSubrecord(fldname) and nlapiEditSubrecord(fldname) are not
supported in client scripts deployed on the parent record.

If you are loading the parent record using SuiteScript, you will use these methods on the
nlobjRecord object to create and access a subrecord:

• createSubrecord(fldname)

• editSubrecord(fldname)

• removeSubrecord(fldname)

• viewSubrecord(fldname)

The following figure shows the Ship To Select (shippingaddress) body field on the Sales
Order parent record. To create a custom shipping address subrecord on the parent, you
will do so from this body field. After creating the subrecord, you can then edit, remove, or
view the subrecord through the same body field on the parent record.

Working with Subrecords in SuiteScript
Creating and Accessing Subrecords from a Sublist Field

62

SuiteScript Developer & Reference Guide

Note: For additional information on creating custom shipping addresses, see
Scripting Custom Billing and Shipping Addresses.

Note that after creating or editing a subrecord, you must save both the subrecord and the
parent record for the changes to be committed to the database. See Saving Subrecords
Using SuiteScript for more information.

For code samples showing how “body field” subrecord APIs are used, see Using SuiteScript
with Advanced Bin / Numbered Inventory Management or Scripting Custom Billing and
Shipping Addresses.

Creating and Accessing Subrecords from a Sublist Field
If you want to create a subrecord to hold data for a record in a sublist, you can do so from a
sublist field.

When working with subrecords from a sublist field on the parent record, you will use these
APIs if you are working with the parent record in a “current record” context, such as in a user
event script or a client script:

• nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

• nlapiEditCurrentLineItemSubrecord(sublist, fldname)

• nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewLineItemSubrecord(sublist, fldname, linenum)

Working with Subrecords in SuiteScript
Setting Values on Subrecord Sublists

63

SuiteScript Developer & Reference Guide

Note: nlapiCreateCurrentLineItemSubrecord() and nlapiEditCurrentLineItemSubrecord()
are not currently supported in client scripts.

If you are loading the parent record using SuiteScript, and you want to create/access a
subrecord from a sublist, you will use these methods on the nlobjRecord object:

• createCurrentLineItemSubrecord(sublist, fldname)

• editCurrentLineItemSubrecord(sublist, fldname)

• removeCurrentLineItemSubrecord(sublist, fldname)

• viewCurrentLineItemSubrecord(sublist, fldname)

• viewLineItemSubrecord(sublist, fldname, linenum)

This figure shows that the Inventory Detail subrecord is being edited on the Items sublist.

For code samples showing how “sublist field” subrecord APIs are used, see Using SuiteScript
with Advanced Bin / Numbered Inventory Management.

Setting Values on Subrecord Sublists
When working with sublists on subrecords (see figure), you will use the following Sublist APIs
on the nlobjRecord object:

• selectNewLineItem(group) - use if creating a new sublist line

• selectLineItem(group, linenum) - use if selecting an existing line on the sublist

Working with Subrecords in SuiteScript
Setting Values on Subrecord Sublists

64

SuiteScript Developer & Reference Guide

• setCurrentLineItemValue(group, name, value) - use to set the values on a line

• commitLineItem(group, ignoreRecalc) - use to commit the line

Important: The nlapiSetLineItemValue(...) and nlobjRecord.setLineItemValue(...) APIs are
NOT supported when scripting a subrecord's sublist.

The following sample shows how to use Sublist APIs to set values on a subrecord sublist.

var qtytobuild = 2;
 var obj = nlapiCreateRecord('assemblybuild', {recordmode:'dynamic'});
 obj.setFieldValue('subsidiary', 3);
 obj.setFieldValue('item', 174);
 obj.setFieldValue('quantity', qtytobuild);
 obj.setFieldValue('location', 2);

 var bodySubRecord = obj.createSubrecord('inventorydetail');
 var ctr;
 for(ctr = 1; ctr <= qtytobuild ; ctr ++)
 {

 //Here we are selecting a new line on the Inventory Assignment sublist on the subrecord
 bodySubRecord.selectNewLineItem('inventoryassignment');
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'newinventorynumber',
 'amsh_' + ctr);
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 1);
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'binnumber', 3);
 bodySubRecord.commitLineItem('inventoryassignment');
 }
 bodySubRecord.commit();

 //Here we are selecting and editing an existing line on the Components sublist
 //on the parent record. Note that when working with the Assembly Build record only,
 //the internal ID for the Inventory Details field on the Components sublist is
 // 'componentinventorydetail'. This is because the Assembly Build record already contains

Working with Subrecords in SuiteScript
Saving Subrecords Using SuiteScript

65

SuiteScript Developer & Reference Guide

 //an Inventory Details (inventorydetails) body field.
 obj.selectLineItem('component', 1);
 obj.setCurrentLineItemValue('component', 'quantity', qtytobuild);
 var compSubRecord = obj.createCurrentLineItemSubrecord('component',
 'componentinventorydetail');

 //Here we are selecting and editing a new line on the Inventory Assignment sublist on
 //the subrecord.
 compSubRecord.selectNewLineItem('inventoryassignment');
 compSubRecord.setCurrentLineItemValue('inventoryassignment', 'binnumber', 3);
 compSubRecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 2);
 compSubRecord.commitLineItem('inventoryassignment');
 compSubRecord.commit();

 obj.commitLineItem('component');
 var id = nlapiSubmitRecord(obj);
 obj = nlapiLoadRecord('assemblybuild', id);
 var subrecord = obj.viewSubrecord('inventorydetail');
 subrecord.selectLineItem('inventoryassignment', 1);

 var str;

 str = subrecord.getCurrentLineItemValue('inventoryassignment', 'newinventorynumber');
 if (str!= 2)
 {

 }

For additional code samples showing how to use Sublist APIs in the context of a subrecord, see
Using SuiteScript with Advanced Bin / Numbered Inventory Management.

Saving Subrecords Using SuiteScript
To save a subrecord to a parent record you will call nlobjSubrecord.commit(). You must
then save the subrecord's parent record using nlapiSubmitRecord(record, doSourcing,
ignoreMandatoryFields). If you do not commit both the subrecord and the parent record, all
changes to the subrecord are lost.

In the following sample an Inventory Detail subrecord is edited from the ‘inventorydetail'
field on the Items sublist. Next, values are set on the ‘inventoryassignment' sublist. This
is the sublist on the Inventory Detail subrecord. Once this sublist is edited, you must call
commitLineItem(...) to commit the changes to this sublist.

Next, you call commit() on the nlobjSubrecord object to commit the subrecord to the parent
record. After that, you must call commitLineItem(...) again, but this time on the Items sublist
of the parent record. This is necessary because, ultimately what you are doing in this script is
updating the Items sublist.

Finally, you must call nlapiSubmitRecord(...) on the Purchase Order record. This is the parent
record and must be saved for all changes in the script to be committed to the database.

var record2= nlapiLoadRecord('purchaseorder', id, {recordmode: 'dynamic'});

Working with Subrecords in SuiteScript
Guidelines for Working with Subrecords in SuiteScript

66

SuiteScript Developer & Reference Guide

record2.selectLineItem('item', 1);
record2.setCurrentLineItemValue('item', 'quantity', 2);

var subrecord2= record2.editCurrentLineItemSubrecord('item', 'inventorydetail');
subrecord2.selectLineItem('inventoryassignment', 1);
subrecord2.setCurrentLineItemValue('inventoryassignment', 'inventorynumber', 'working123');
subrecord2.selectNewLineItem('inventoryassignment');
subrecord2.setCurrentLineItemValue('inventoryassignment', 'inventorynumber', '2ndlineinventoryn
umber');
subrecord2.setCurrentLineItemValue('inventoryassignment', 'quantity', '1');
subrecord2.commitLineItem('inventoryassignment');

subrecord2.commit();

record2.commitLineItem('item');

var id = nlapiSubmitRecord(record2);

Guidelines for Working with Subrecords in SuiteScript
The following are guidelines you must following when working with subrecords.

• In SuiteScript, you must first create or load a parent record before you can create/access
a subrecord. You can create/load the parent record in either standard mode or dynamic
mode.

• You cannot create or edit a subrecord in a beforeLoad user event script. You must use a
pageInit client script if you want to create/edit a subrecord before the end user has access
to the page.

• If you attempt to edit or view a subrecord that does not exist, null will be returned.

• In a client script attached or deployed to the parent record, you cannot create or edit a
subrecord; you can only view or delete subrecords.

• There is no automatic client-side validation on a subrecord when a field is changed on the
parent record. For example, if a user changes the quantity of an item on an item line, there
is no detection of a quantity mismatch between the item line and its Inventory Detail.
Note, however, validation can be implemented programmatically using a validateLine()
call.

• To save a subrecord, you must commit both the subrecord, the line the subrecords
appears on (if accessing a subrecord through a sublist), and the parent record. See Saving
Subrecords Using SuiteScript for complete details.

• If you call one of the Subrecord APIs on a non-subrecord field, an error is thrown.

• The following sublist and body field APIs are not supported on subrecords:

• nlapiGetLineItemValue(type, fldname, linenum)

• nlapiGetLineItemText(type, fldnam, linenum)

Working with Subrecords in SuiteScript
Working with Specific Subrecords in SuiteScript

67

SuiteScript Developer & Reference Guide

• nlapiFindLineItemValue(type, fldnam, val)

• nlapiGetCurrentLineItemText(type, fldnam)

• nlapiGetCurrentLineItemValue(type, fldnam)

• nlapiGetFieldValue()

• nlapiGetFieldText()

• When using the Assembly Build record as a parent record, be aware that this record
has two inventorydetail fields: one on the body of the record and the other as a
field on the Components sublist. When creating/assessing a subrecord from the
body field, use inventorydetail as the internal ID for the fldname parameter. When
creating/accessing a subrecord from the sublist field on the Components sublist, use
componentinventorydetail as the internal ID for the fldname parameter. To see an
example, see the code sample provided in Setting Values on Subrecord Sublists.

Working with Specific Subrecords in SuiteScript

• Using SuiteScript with Advanced Bin / Numbered Inventory Management

• Using SuiteScript with Timesheets

• Using SuiteScript with Address Subrecords

Using SuiteScript with Advanced Bin / Numbered
Inventory Management

When you write scripts with the Advanced Bin / Numbered Inventory Management feature
enabled, your scripts must reference not only a main (parent) record or transaction, but also
the Inventory Details “subrecord.” In the UI the Inventory Details subrecord appears as a pop-
up when you click the Inventory Details body field or sublist field. In SuiteScript, this pop-up is
considered a subrecord object (nlobjSubrecord), which is created and accessed through its own
set of Subrecord APIs.

See the following topics for details specific to using SuiteScript with the Advanced Bin /
Numbered Inventory Management feature:

• SuiteScript and Advanced Bin Management – Overview

• Scripting the Inventory Detail Subrecord

• Sample Scripts for Advanced Bin / Numbered Inventory Management

See these topics for general information on working with subrecords:

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

68

SuiteScript Developer & Reference Guide

• Working with Subrecords in SuiteScript

• Guidelines for Working with Subrecords in SuiteScript

Warning: If you are currently using SuiteScript with the basic Bin Management feature,
your scripts will no longer work after you enable the Advanced Bin / Numbered
Inventory Management feature. This is especially true if you have written
client scripts, which will have to be completely rewritten as server scripts. See
Updating Your Scripts After Enabling Advanced Bin / Numbered Inventory
Management for more information.

SuiteScript and Advanced Bin Management – Overview

The following figure draws a comparison between how the advanced bin management feature
appears in the UI and how that translates into SuiteScript.

Note: Even with the Advanced Bin / Numbered Inventory Management feature enabled,
not all items will require an Inventory Details subrecord. (See the help topic
Advanced Bin / Numbered Inventory Management for details on which items will
use Inventory Detail subrecords.)

The figure below shows a subrecord being accessed from a sublist field. (Note that subrecords
can also be created and accessed from a body field on the parent record. See Creating and
Accessing Subrecords from a Body Field for more information.)

The numbers below further explain the numbers in the figure.

1. Bill : This is a parent record. In both the UI and in SuiteScript you must have a parent
record before you can create or access a subrecord. Without the parent, the subrecord
has no relevance.

In SuiteScript, you can create/load the parent record in either standard mode or dynamic
mode.

2. Items sublist : In the case of this figure, a subrecord is being created for the Lot Bin Item
referenced on the Items sublist.

Important: Note that the parent is still considered to be the Bill record, even
though the subrecord is being created for the Lot Bin Item. Ultimately
it is the Bill record that must be saved before any changes to the
Items sublist or the Inventory Details subrecord are committed to the
database.

3. Inventory Details sublist field : As you enter information for the Lot Bin Item, in the UI
you click the Inventory Details icon to create a new Inventory Details subrecord for this
item.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2271791.html

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

69

SuiteScript Developer & Reference Guide

In SuiteScript, if you are creating a subrecord from the Inventory Details sublist
field, you will call either nlapiCreateCurrentLineItemSubrecord(sublist, fldname) or
nlobjRecord.createCurrentLineItemSubrecord(sublist, fldname), depending on the
nature of your script. The sublist is ‘item' and the fldname is ‘inventorydetail'.

4. Inventory Detail subrecord : This is a subrecord containing the inventory details for the
Lot Bin Item.

5. Inventory Assignment sublist : This is the sublist that appears on the Inventory Details
subrecord. Although there is no UI label for the Inventory Assignment sublist, this is the
sublist you will reference to add and edit new sublist lines.

In SuiteScript, you create and edit lines on the Inventory Assignment sublist using the
APIs described in Setting Values on Subrecord Sublists.

6. OK button: In the UI you click the OK button to save the subrecord (note, however, the
subrecord is not yet saved on the server).

In SuiteScript, to save a subrecord you must call nlobjSubrecord.commit() on the
subrecord, nlobjRecord.commitLineItem() - - if you have created a subrecord on a
sublist line.

7. Add button on sublist: In the UI you must click the Add button on a sublist to commit
your changes to the line.

In SuiteScript, you will call nlobjRecord.commitLineItem() - - if you have created a
subrecord on a sublist line.

8. Save button on parent record: In the UI, you will click the Save button on the parent
record to commit all changes to the server.

In SuiteScript, you will call nlapiSubmitRecord(...) on the parent record. See Saving
Subrecords Using SuiteScript for complete details.

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

70

SuiteScript Developer & Reference Guide

Scripting the Inventory Detail Subrecord

Like a standard (parent) record, the Inventory Details subrecord contains body fields, a sublist,
and sublist fields. You can create and access the Inventory Details subrecord from a body field
on the parent record or from a sublist field. See Creating and Accessing Subrecords from a
Body Field and Creating and Accessing Subrecords from a Sublist Field for details.

Note: Currently you cannot create or edit subrecords using Client SuiteScript.

The sublist that appears on the Inventory Detail subrecord is referred to as the
Inventory Assignment sublist, even though it has no UI label. In your scripts, use the ID
inventoryassignment to reference this sublist. In the figure below, the inventoryassignment
sublist is used to assign serial/lot numbers and which serial/lot belongs to which bin.

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

71

SuiteScript Developer & Reference Guide

To set values on the Inventory Assignment sublist, you will use some of the same Sublist APIs
used to set values on other sublist in the system. See Setting Values on Subrecord Sublists for
details.

To save a subrecord, you must follow the pattern outlined in the section Saving Subrecords
Using SuiteScript.

Internal IDs for the Inventory Details Subrecord

Use the following internal IDs when writing SuiteScript against the Inventory Details
subrecord:

Subrecord
Elements

Internal IDs Notes

Inventory Details
subrecord

inventorydetail This is the internal ID for the Inventory Details subrecord.

When using any of the Subrecord APIs, the value you set for
the fldname parameter is inventorydetail. It is through this
field that you will create a subrecord.

Important: When using the Assembly Build record as a
parent record, be aware that this record has
two inventorydetail fields: one on the body
of the record and the other as a field on the
Components sublist.

When creating/assessing a subrecord from the body field, use
inventorydetail as the internal ID for the fldname parameter.

When creating/accessing a subrecord from the sublist field on
the Components sublist, use componentinventorydetail as
the internal ID for the fldname parameter.

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

72

SuiteScript Developer & Reference Guide

Subrecord
Elements

Internal IDs Notes

To see an example, see the code sample provided in Setting
Values on Subrecord Sublists.

item

location

tolocation

itemdescription

quantity

baseunitquantity

unit

Body fields on the
Inventory Details
subrecord

totalquantity

Inventory
Assignment
sublist

inventoryassignment This is the internal ID for the Inventory Assignment sublist
that appears on the Inventory Details subrecord. Note that the
Inventory Assignment as no UI label.

receiptinventorynumber This field is for entering text of serial/lot number for create.

issueinventorynumber This is the select field where users pick an
issueinventorynumber out of inventory

binnumber

tobinnumber

expirationdate

quantity

Sublist fields on
the Inventory
Assignment
sublist

quantityavailable

Sample Scripts for Advanced Bin / Numbered Inventory Management

The following samples are provided in this section:

• Creating an Inventory Detail Subrecord

• Editing an Inventory Detail Subrecord

• Removing an Inventory Detail Subrecord from a Sublist Line

• Canceling an Inventory Detail Subrecord

• Viewing an Inventory Detail Subrecord

• Updating Your Scripts After Enabling Advanced Bin / Numbered Inventory Management

As you begin writing your own scripts, NetSuite strongly recommends that you see Guidelines
for Working with Subrecords in SuiteScript. This section highlights many of the rules that are
enforced when scripting with subrecords.

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

73

SuiteScript Developer & Reference Guide

Creating an Inventory Detail Subrecord

This sample shows how to create a subrecord from a body field and from a sublist field.
The subrecord created on the body field is an Inventory Detail subrecord pertaining to the
Assembly Build (parent) record.

The subrecord created on the sublist field (using
nlobjRecord.createCurrentLineItemSubrecord(sublist, fldname)) is an Inventory Detail
subrecord. This subrecord pertains to the first component on the Components sublist (of the
Assembly Build parent record).

Notice that to set values on the sublist for the Inventory Detail (the Inventory Assignment
sublist), you will use many of the same APIs you use to work with sublists on a parent record.

var qtytobuild = 2;
 var obj = nlapiCreateRecord('assemblybuild', {recordmode:'dynamic'});
 obj.setFieldValue('subsidiary', 3);
 obj.setFieldValue('item', 174);
 obj.setFieldValue('quantity', qtytobuild);
 obj.setFieldValue('location', 2);

 var bodySubRecord = obj.createSubrecord('inventorydetail');
 var ctr;
 for(ctr = 1; ctr <= qtytobuild ; ctr ++)
 {
 bodySubRecord.selectNewLineItem('inventoryassignment');
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'receiptinventorynumber',
 'amsh_' + ctr);
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 1);
 bodySubRecord.setCurrentLineItemValue('inventoryassignment', 'binnumber', 3);
 bodySubRecord.commitLineItem('inventoryassignment');
 }
 bodySubRecord.commit();

 obj.selectLineItem('component', 1);
 obj.setCurrentLineItemValue('component', 'quantity', qtytobuild);
 var compSubRecord = obj.createCurrentLineItemSubrecord('component',
 'componentinventorydetail');

 compSubRecord.selectNewLineItem('inventoryassignment');
 compSubRecord.setCurrentLineItemValue('inventoryassignment', 'binnumber', 3);
 compSubRecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 2);
 compSubRecord.commitLineItem('inventoryassignment');
 compSubRecord.commit();

 obj.commitLineItem('component');
 var id = nlapiSubmitRecord(obj);

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

74

SuiteScript Developer & Reference Guide

Important: To save a subrecord you must call commit() on the subrecord,
commitLineItem()- - if you have created a subrecord on a sublist line - - AND
nlapiSubmitRecord(...) on the parent record. See Saving Subrecords Using
SuiteScript for more details.

Editing an Inventory Detail Subrecord

To edit a subrecord you must first load the parent record. In the sample below the parent record
(a Purchase Order) is loaded in dynamic mode. When working with subrecords, you can load
parent records in dynamic mode or in standard mode. However, the subrecord itself must
be scripted using “dynamic” subrecord APIs. These are the APIs that have “current” in the
function or method signature.

Note: If you attempt to edit or view a subrecord that does not exist, null is returned.

var record2= nlapiLoadRecord('purchaseorder', id, {recordmode: 'dynamic'});
record2.selectLineItem('item', 1);
record2.setCurrentLineItemValue('item', 'quantity', 2);

var subrecord2= record2.editCurrentLineItemSubrecord('item', 'inventorydetail');
subrecord2.selectLineItem('inventoryassignment', 1);
subrecord2.setCurrentLineItemValue('inventoryassignment', 'issueinventorynumber', 'working123')
;
subrecord2.selectNewLineItem('inventoryassignment');
subrecord2.setCurrentLineItemValue('inventoryassignment', 'issueinventorynumber',
 '2ndlineinventorynumber');
subrecord2.setCurrentLineItemValue('inventoryassignment', 'quantity', '1');
subrecord2.commitLineItem('inventoryassignment');

subrecord2.commit();

record2.commitLineItem('item');

var id = nlapiSubmitRecord(record2);

Removing an Inventory Detail Subrecord from a Sublist Line

The following sample shows how to remove a subrecord from a sublist line with
removeCurrentLineItemSubrecord.

var purchaseOrder = nlapiLoadRecord('purchaseorder', 1792, {recordmode: 'dynamic'});
var i=1;
var totalLine = purchaseOrder.getLineItemCount('item');

for(i; i<=totalLine; i++)
{
 purchaseOrder.selectLineItem('item', i);
 var invDetailSubrecord = purchaseOrder.viewCurrentLineItemSubrecord('item',
 'inventorydetail');
 if(invDetailSubrecord != null)
 {
 purchaseOrder.removeCurrentLineItemSubrecord('item', 'inventorydetail');
 purchaseOrder.commitLineItem('item');
 }

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

75

SuiteScript Developer & Reference Guide

}
nlapiSubmitRecord(purchaseOrder);

Note that the nlapiRemoveSubrecord(fldname) and nlobjRecord.removeSubrecord(fldname)
APIs are for removing subrecords from a body field on the parent record. Assembly Build
and Assembly Unbuild are the only two parent record types that support the creation of a
subrecord on a body field. Therefore, these APIs would only be useful in the context of these
two record types. Be aware though that even in the UI, NetSuite business logic prevents users
from removing subrecords from these parents when the subrecords are created from a body
field. This means that in SuiteScript, if you attempt to call either of the removeSubrecord body
field APIs, and then you call nlapiSubmitRecord on the parent, a user error will be thrown. This
is in adherence to NetSuite business logic.

If you want to use either of the removeSubrecord body field APIs, it will probably be in the
context of creating, and then removing your subrecord all in the same code, based on your
particular use case.

Canceling an Inventory Detail Subrecord

The following sample shows how to cancel the submission of a subrecord.

var purchaseOrder=nlapiCreateRecord('purchaseorder', {recordmode: 'dynamic'});
purchaseOrder.setFieldValue('entity', 38);
purchaseOrder.selectNewLineItem('item');
purchaseOrder.setCurrentLineItemValue('item', 'item', 909);
purchaseOrder.setCurrentLineItemValue('item', 'quantity', 1);

var invDetailSubrecord = purchaseOrder.createCurrentLineItemSubrecord('item', 'inventorydetail'
);
invDetailSubrecord.selectNewLineItem('inventoryassignment');
invDetailSubrecord.setCurrentLineItemValue('inventoryassignment', 'receiptinventorynumber', 'EI
OJNF98');

invDetailSubrecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 1);
invDetailSubrecord.commitLineItem('inventoryassignment');
invDetailSubrecord.cancel(); //undo this subrecord operation

purchaseOrder.commitLineItem('item'); // no subrecord is saved with this line.
var test = nlapiViewLineItemSubrecord('item', 'inventorydetail', 1);

nlapiLogExecution('DEBUG', 'subrecord should be null, and it is: ' +test);
nlapiSubmitRecord(purchaseOrder);

Viewing an Inventory Detail Subrecord

The following samples show how to use different versions of the subrecord “view subrecord”
APIs.

Example 1

This sample shows how to return the read-only details of the subrecord that appears on the first
line (which is the current line) of the Items sublist.

Working with Subrecords in SuiteScript
Using SuiteScript with Advanced Bin / Numbered Inventory Management

76

SuiteScript Developer & Reference Guide

The sample also shows how get the read-only details of the subrecord associated with the
second line on the sublist.

var purchaseOrder=nlapiLoadRecord('purchaseorder', 1793, {recordmode: 'dynamic'});
purchaseOrder.selectLineItem('item', 1);
var invDetailSubrecord = purchaseOrder.viewCurrentLineItemSubrecord('item', 'inventorydetail');

invDetailSubrecord.selectLineItem('inventoryassignment', 1);

nlapiLogExecution('DEBUG', 'inventory number: ' +
 invDetailSubrecord.getCurrentLineItemValue('inventoryassignment',
 'receiptinventorynumber'));

var invDetailOnLine2 = purchaseOrder.viewLineItemSubrecord('item', 'inventorydetail', 2);
invDetailOnLine2.selectLineItem('inventoryassignment', 1);

nlapiLogExecution('DEBUG', 'inventory number: ' +
 invDetailOnLine2.getCurrentLineItemValue('inventoryassignment',
 'receiptinventorynumber'));

Example 2

This sample shows how to use the view API to access a subrecord associated with a body field.

var record3 = nlapiLoadRecord('assemblybuild', id, {recordmode: 'dynamic'});
var subrecord3 = record3.viewSubrecord('inventorydetail');
subrecord3.selectLineItem('inventoryassignment', 1);

nlapiLogExecution('DEBUG', 'inven: ' + subrecord3.getCurrentLineItemValue('inventoryassignment'
, 'issueinventorynumber'));

Updating Your Scripts After Enabling Advanced Bin / Numbered
Inventory Management

The first script shows what a typical script might look like with the Advanced Bin / Numbered
Inventory Management feature turned off (not enabled). Notice that in this script you are
calling the setCurrentLineItemValue(...) API to set inventory and serial number details for the
item.

When scripting with the advanced bin management feature enabled, these lines of code will
break. Instead, you must create subrecords to hold all inventory detail data.

With Advanced Bin / Numbered Inventory Management OFF

 var obj = nlapiCreateRecord('inventoryadjustment');
 obj.setFieldValue('subsidiary', 3); //UK
 obj.setFieldValue('account', 173);
 obj.setFieldValue('department', 2);
 obj.setFieldValue('class', 2);
 obj.setFieldValue('memo', 'Testing 123');
 obj.setFieldValue('adjlocation' , 2);

 obj.selectNewLineItem('inventory');

Working with Subrecords in SuiteScript
Using SuiteScript with Timesheets

77

SuiteScript Developer & Reference Guide

 obj.setCurrentLineItemValue('inventory', 'item', 170);
 obj.setCurrentLineItemValue('inventory', 'location', 2);
 obj.setCurrentLineItemValue('inventory', 'adjustqtyby', 1);

//The next lines will be break when adv. bin management is turned on.
 obj.setCurrentLineItemValue('inventory', 'serialnumbers', 'testserial');
 obj.setCurrentLineItemValue('inventory', 'binnumbers', 'bin1');
 obj.commitLineItem('inventory');

 var id = nlapiSubmitRecord(obj);

With Advanced Bin / Numbered Inventory Management ON

The following shows the changes you would have to make to your script to account for the new
subrecord object model.

 var obj = nlapiCreateRecord('inventoryadjustment', {recordmode:'dynamic'});

 obj.setFieldValue('subsidiary', 3); //UK
 obj.setFieldValue('account', 173);
 obj.setFieldValue('department', 2);
 obj.setFieldValue('class', 2);
 obj.setFieldValue('memo', 'Testing 123');
 obj.setFieldValue('adjlocation', 2);

 obj.selectNewLineItem('inventory');
 obj.setCurrentLineItemValue('inventory', 'item', 170);
 obj.setCurrentLineItemValue('inventory', 'location', 2);
 obj.setCurrentLineItemValue('inventory', 'adjustqtyby', 1);

// the setCurrentLineItemValue API used in the first example must now be removed,
// and a subrecord must be created to hold the data you want

 var subrecord = obj.createCurrentLineItemSubrecord('inventory', 'inventorydetail');

 subrecord.selectNewLineItem('inventoryassignment');
 subrecord.setCurrentLineItemValue('inventoryassignment', 'receiptinventorynumber',
 'testserial');
 subrecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 1);
 subrecord.setCurrentLineItemValue('inventoryassignment', 'binnumber', 'bin1');
 subrecord.commitLineItem('inventoryassignment');
 subrecord.commit();

 obj.commitLineItem('inventory');

 var id = nlapiSubmitRecord(obj);

Using SuiteScript with Timesheets
See the following topics for details specific to using SuiteScript with the Timesheets feature:

Working with Subrecords in SuiteScript
Using SuiteScript with Timesheets

78

SuiteScript Developer & Reference Guide

• SuiteScript and Timesheets — Overview

• Scripting the Time Entry Subrecord

• Sample Scripts for Timesheet / Time Entry

See these topics for general information on working with subrecords:

• Working with Subrecords in SuiteScript

• Guidelines for Working with Subrecords in SuiteScript

Important: The Timesheets feature currently is not available at Setup > Company >
Enable Features. You must contact NetSuite Customer Support to enable this
feature.

Warning: The Time Tracking feature must be disabled before the Timesheets feature can
be enabled. Scripts written on the time record will not work with the timesheet
record. Please ensure that all affected scripts are updated or replaced before
switching to the Timesheets feature.

SuiteScript and Timesheets — Overview

To use SuiteScript with the Timesheets feature, it is important to understand the structure of
the timesheet record. The timesheet record consists of body fields and a sublist that is called the
timesheet grid. The timesheet grid contains zero or more Time Entry subrecords, up to seven
for each row on the grid (one per day). The time entry subrecord is viewed in the UI by clicking
on the set icon.

Important: All timesheet records start on Sunday and end on Saturday. The First Day
of Week setting under General Preferences is ignored for the Timesheets
feature.

Working with Subrecords in SuiteScript
Using SuiteScript with Timesheets

79

SuiteScript Developer & Reference Guide

Each timesheet record can contain an unlimited number of time entry subrecords. Each row
on the timesheeet grid can contain up to seven time entry subrecords, one for each day. The
timesheet record in the image above contains six time entry subrecords.

The timesheet grid itself is a part of the timesheet record; the majority of the fields within the
timesheet grid are part of the Time Entry subrecord. The time entry subrecord includes the
fields accessed from the set icon, the hours field, and the fields to the left of the day of week
columns. The total field is part of the timesheet record. See the help topic Field Notes for details
regarding specific fields.

A row (line) on the timesheet grid does not represent a single item; it is a collection of field
values that are shared across Time Entry subrecords. The line ordering on the timesheet grid is
dynamic and can change after the timesheet record is submitted. The dynamic ordering allows
lines that share the same field values to merge after the record is saved to the database. The
merged lines are returned only after the timesheet record is re-loaded.

Important: Because the line merge occurs after the record is submitted, the
line numbering on the timesheet grid may be inconsistent between
beforeSubmit and afterSubmit user events. In addition, the line numbers
of the timesheet grid in the UI may not correspond to the line numbers
accessed by SuiteScript.

Scripting the Time Entry Subrecord
Important: Server-side scripts cannot deploy on subrecords. Server-side scripts can only

access subrecords through the parent record. To accomplish this, a server-
side script must be deployed on the parent record. The script can then create,
edit, or delete the child subrecord with the Subrecord APIs. See Working with
Subrecords in SuiteScript for additional information.

Important: nlapiCopyRecord is not supported on the timesheet record or the Time Entry
subrecord.

Supported Script Deployments — Timesheet Record

• Client and server-side scripts deployed on the timesheet record can read, create, edit, and
delete timesheet fields.

• Client scripts deployed on the timesheet record can read time entry subrecords with the
Subrecord APIs.

Important: Client scripts deployed on the timesheet record cannot create,
edit, or delete time entry subrecords. The delete function,
nlapiRemoveCurrentLineItemSubrecord, is supported for other
subrecords exposed to SuiteScript, but not for time entry.

• Server-side scripts deployed on the timesheet record can read, create, edit, and delete time
entry subrecords with the Subrecord APIs.

https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_3908373940.html

Working with Subrecords in SuiteScript
Using SuiteScript with Timesheets

80

SuiteScript Developer & Reference Guide

Supported Script Deployments — Time Entry Subrecord

• Client scripts deployed on the Time Entry subrecord can read and edit time entry
subrecords with the standard APIs.

• Server-side scripts cannot deploy on the time entry subrecord; they must deploy on the
timesheet record and access time entry through the Subrecord APIs.

Important Items to Note Before Scripting on Timesheets

• The total hours field is part of the timesheet record. The employee and subsidiary fields
appear on the Time Entry subrecord, but are sourced from the timesheet record. The
subrecord APIs should not be used to script on these fields.

• The total hours field is updated when the record is loaded and when changes are entered
in the UI. When a time entry subrecord is created or edited with SuiteScript, the total
hours value on the timesheet record is not guaranteed.

• The employee, subsidiary, and start date fields are initialized when a timesheet record
is created and cannot be edited. When creating a new timesheet in SuiteScript, these
fields can be passed in as initialization parameters. Note that in a OneWorld account, the
subsidiary field is sourced from the employee field.

• Server-side scripts deployed on the timesheet record cannot access the timesheet grid
fields to the left of the day of week columns.

• The customer, case/task/event, and service item fields display on the timesheet grid by
default, but administrators can customize which fields display to the left of the day of week
columns. Client scripts deployed on the timesheet record cannot access these fields if they
are not configured to display in the UI.

• The day field on the time entry subrecord is read-only across all script types.

Sample Scripts for Timesheet / Time Entry

Creating a New Timesheet

The following code creates a new timesheet record.

var obj = nlapiCreateRecord('timesheet', {"recordmode":"dynamic"});
obj.selectNewLineItem('timegrid');
var sublistSubrecord = obj.createCurrentLineItemSubrecord('timegrid', 'sunday');
sublistSubrecord.setFieldValue('customer', '48');
sublistSubrecord.setFieldValue('item', '117');
sublistSubrecord.setFieldValue('location', '1');
sublistSubrecord.setFieldValue('hours', '8:00');
sublistSubrecord.setFieldValue('memo', 'timeentry created');
sublistSubrecord.setFieldValue('isbillable', 'T');
sublistSubrecord.setFieldValue('payrollitem', '2');
sublistSubrecord.setFieldValue('paidexternally', 'T');
sublistSubrecord.setFieldValue('price', '1');

Working with Subrecords in SuiteScript
Using SuiteScript with Timesheets

81

SuiteScript Developer & Reference Guide

sublistSubrecord.setFieldValue('overriderate', 'T');
sublistSubrecord.setFieldValue('department', '1');
sublistSubrecord.setFieldValue('class', '1');
sublistSubrecord.commit();
obj.commitLineItem('timegrid');
var id = nlapiSubmitRecord(obj);

Verifying Total Hours Upon Submit

The following client script verifies whether total hours entered equals 40. The script is deployed
on the saveRecord event of the timesheet record.

function saveRecord(){
 if (nlapiGetFieldValue('totalhours') != '40')
 {
 alert("Total time is not equal to 40");
 return false;
 }
 return true;
}

Updating a Custom Field on Timesheet Based on Time Entry Field Values

The following client script updates a custom field for total billable time on the timesheet
record. The script is deployed on the saveRecord event of the timesheet record. It uses
nlapiViewLineItemSubrecord(sublist, fldname, linenum) to access field values on the Time
Entry subrecord.

/**
* Populates custom field 'custrecord_am_timesheet_billable_hours' with sum of time entry 'hours
'
* values for time entries that are billable. Returns true to continue with record submit;
*/
function timesheet_clientSaveRecord(){
 var intSumMinutes = 0;
 var intNumberLines = nlapiGetLineItemCount('timegrid');
 var arTimeGridColumns = ['sunday','monday','tuesday','wednesday','thursday',
 'friday','saturday'];

 for(var intLineCounter = 1; intLineCounter <= intNumberLines; intLineCounter++)
 {
 for (var intDayCounter = 0; intDayCounter < arTimeGridColumns.length; intDayCounter++)
 {
 var srecTimeEntry = nlapiViewLineItemSubrecord('timegrid',
 arTimeGridColumns[intDayCounter], intLineCounter);

 if (srecTimeEntry)
 {
 var bBillable = srecTimeEntry.getFieldValue('isbillable') == 'T';

 if (bBillable)
 {
 intSumMinutes += timeToMinutes(srecTimeEntry.getFieldValue('hours'));
 }
 }
 }

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

82

SuiteScript Developer & Reference Guide

 }

 nlapiSetFieldValue('custrecord_am_timesheet_billable_hours', minutesToTime(intSumMinutes));

 return true;
}

/**
* Utility to convert hh:mm format to a number of minutes.
*
* @param hhMM hh:mm format for time
* @return {Number} The number of minutes represented by hhMM
*/
function timeToMinutes(hhMM) {
 var hmArray, hours, minutes;
 var minutesTotal = 0;
 if (hhMM) {
 hmArray = hhMM.split(':');
 hours = parseInt(hmArray[0], 10);
 minutes = parseInt(hmArray[1], 10);
 if (hours) {
 minutesTotal += 60 * hours;
 }
 if (minutes) {
 minutesTotal += minutes;
 }
 }
 return minutesTotal;
}

/**
* Utility to convert minutes to hh:mm format.
*
* @param minutes Number of minutes
* @return {String} Time formatted as hh:mm
*/
function minutesToTime(minutes) {
 var hours;
 minutes = minutes || 0;
 hours = Math.floor(minutes / 60);
 minutes = minutes % 60;
 return hours + ':' + (minutes < 10 ? '0' : '') + minutes;
}

Using SuiteScript with Address Subrecords
See the following topics for details specific to using SuiteScript with the Address Customization
feature:

• SuiteScript and Address Subrecords – Overview

• Scripting the Address Subrecord

• Sample Scripts for Address Subrecords

• Scripting Custom Billing and Shipping Addresses

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

83

SuiteScript Developer & Reference Guide

See these topics for general information on working with subrecords:

• Working with Subrecords in SuiteScript

• Guidelines for Working with Subrecords in SuiteScript

SuiteScript and Address Subrecords – Overview

The Address Customization feature consolidates individual address fields into an address
subrecord. Within SuiteBuilder, you can create custom address forms (templates) for different
countries. These forms determine the fields available on the address subrecord (for example,
a UK address has different fields than a US address). When creating a new address, you create
a new sublist item for it. You then choose the address form you want to use by selecting the
country associated with it. See the help topic Working with Addresses on Transactions for
additional information.

The address subrecord is accessed from a sublist field on the parent record. In the following
screenshot, the sublist field that contains the address subrecord is outlined in red.

Fields on the address sublist are not part of the address subrecord. To access the address
subrecord fields, you must open the subrecord. Within the UI, you access the address subrecord
by clicking the pencil icon in the Edit sublist field. The address subrecord is shown below.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N553515.html

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

84

SuiteScript Developer & Reference Guide

Scripting the Address Subrecord

Address subrecords are accessed from a sublist field on the parent record. When scripting
address subrecords, use the following APIs if you are working with the parent record in a
“current record” context, such as in a user event script or a client script:

• nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

• nlapiEditCurrentLineItemSubrecord(sublist, fldname)

• nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewLineItemSubrecord(sublist, fldname, linenum)

Note: nlapiCreateCurrentLineItemSubrecord and nlapiEditCurrentLineItemSubrecord are
not currently supported in client scripts.

If you are loading the parent record using SuiteScript, and you want to create/access a
subrecord from a sublist, use these methods on the nlobjRecord object:

• createCurrentLineItemSubrecord(sublist, fldname)

• editCurrentLineItemSubrecord(sublist, fldname)

• removeCurrentLineItemSubrecord(sublist, fldname)

• viewCurrentLineItemSubrecord(sublist, fldname)

• viewLineItemSubrecord(sublist, fldname, linenum)

Access the sublist and subrecord with the following internal ID names:

• Sublist – ‘addressbook’

• Address Subrecord – ‘addressbookaddress’

There are two state fields available in addresses:

• state is a text entry field that is not validated

• dropdownstate is a select field that can is used for U.S., Canadian, and Australian states or
provinces

Supported Script Deployments

• Server-side scripts cannot deploy on subrecords. Server-side scripts can only access
subrecords through the parent record. To accomplish this, a server-side script must be
deployed on the parent record. Server-side scripts deployed on the parent record can read,
create, edit, and delete address subrecords with the Subrecord APIs.

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

85

SuiteScript Developer & Reference Guide

• Client scripts deployed on the parent record can read and delete address subrecords with
the Subrecord APIs.

• Client scripts deployed on the address subrecord can read and edit address subrecords
with the standard APIs.

Important Items to Note Before Scripting on Address Subrecords

• One of the most important things to remember when scripting address subrecords is that
the country field determines which address form is used. If your script runs in dynamic
mode, you must set the country field first.

• Validate Field, Field Changed, and Post Sourcing events on address fields will not fire in
client scripts deployed to Entity or Item Fulfillment records or in custom code on forms
for these record types. Instead, add this code to the Custom Code subtab of the address
form for the record type.

• You cannot use nlapiGetLineItemValue and nlapiSetLineItemValue to access address fields
in dynamic mode. Use nlapiGetCurrentLineItemValue or nlapSetCurrentLineItemValue
instead

• You cannot use nlobjRecord.getFieldText, nlobjRecord.setFieldText, nlapiGetFieldText
and nlapiSetFieldText when scripting subrecords. Use nlobjRecord.getFieldValue,
nlobjRecord.SetFieldValue, nlapiGetFieldValue, or nlapiSetFieldValue instead.

• You cannot use nlobjRecord.getLineItemField, nlobjRecord.getField, and nlapiGetField to
get address field metadata. You must access the subrecord with the subrecord APIs to get
this information.

• You cannot use the subrecord APIs to access address fields on the Company Information
page. Access these fields with nlapiLoadConfiguration the same way you would access
non-subrecord fields. See nlapiLoadConfiguration(type) for an example.

• If you allow third-party input of address information, you need to translate third-party
state input to validated NetSuite state input. For example, if the user enters a state of
California, it must be converted to CA.

Sample Scripts for Address Subrecords

Creating an Address Subrecord for a New Employee

function createEmployee()
{
 var record = nlapiCreateRecord('employee', {recordmode: 'dynamic'});
 record.setFieldValue('companyname','Lead Company 123');
 record.setFieldValue('firstname', 'Lead Company');
 record.setFieldValue('lastname', '123');
 record.setFieldValue('subsidiary','1'); //PARENT COMPANY

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

86

SuiteScript Developer & Reference Guide

 //Add first line to sublist
 record.selectNewLineItem('addressbook');
 record.setCurrentLineItemValue('addressbook', 'defaultshipping', 'T'); //This field is not
 a subrecord field.
 record.setCurrentLineItemValue('addressbook', 'defaultbilling', 'T'); //This field is not
 a subrecord field.
 record.setCurrentLineItemValue('addressbook', 'label', 'First Address Label'); //This fiel
d is not a subrecord field.
 record.setCurrentLineItemValue('addressbook', 'isresidential', 'F'); //This field is not
 a subrecord field.

 //create address subrecord
 var subrecord = record.createCurrentLineItemSubrecord('addressbook', 'addressbookaddress');

 //set subrecord fields
 subrecord.setFieldValue('country', 'US'); //Country must be set before setting the other ad
dress fields
 subrecord.setFieldValue('attention', 'John Taylor');
 subrecord.setFieldValue('addressee', 'NetSuite Inc.');
 subrecord.setFieldValue('addrphone', '(123)456-7890');
 subrecord.setFieldValue('addr1', '2955 Campus Drive');
 subrecord.setFieldValue('addr2', 'Suite - 100');
 subrecord.setFieldValue('city', 'San Mateo');
 subrecord.setFieldValue('dropdownstate', 'CA');
 // if the address is not in U.S., Canada, or Australia, use
 // state instead of dropdownstate. For example,
 // subrecord.setFieldValue('state', 'BY');
 // for Bavaria, Germany
 subrecord.setFieldValue('zip', '94403');

 //commit subrecord and line item
 subrecord.commit();
 record.commitLineItem('addressbook');

 //submit record
 var x = nlapiSubmitRecord(record);
}

Accessing Address Subrecord fields on an Existing Customer Record

var record = nlapiLoadRecord('customer', 143,{recordmode: 'dynamic'});

record.selectLineItem('addressbook', 2);

var subrecord = record.viewCurrentLineItemSubrecord('addressbook', 'addressbookaddress');

var country = subrecord.getFieldValue('country');
var attention = subrecord.getFieldValue('attention');

Editing an Address Subrecord on an Existing Customer Record

var record = nlapiLoadRecord('customer', 143,{recordmode: 'dynamic'});

record.selectLineItem('addressbook', 2);

var subrecord = record.editCurrentLineItemSubrecord('addressbook', 'addressbookaddress');

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

87

SuiteScript Developer & Reference Guide

subrecord.setFieldValue('attention', 'Accounts Payable');

subrecord.commit();
record.commitLineItem('addressbook');

var x = nlapiSubmitRecord(record);

Removing an Address Subrecord on an Employee Record

var record = nlapiLoadRecord('employee', 234, {recordmode: 'dynamic'});

record.selectLineItem('addressbook', 3);
record.removeCurrentLineItemSubrecord('addressbook', 'addressbookaddress');
record.commitLineItem('addressbook');

var x = nlapiSubmitRecord(record);

Scripting Custom Billing and Shipping Addresses

You can use SuiteScript to create a new address subrecord for an entity and then use that
address for custom billing and shipping addresses on transactions. This is useful in situations
where the bill-to address is standard, but the ship-to address is a one-time deviation from
the norm (or vice versa). For example, this situation can arise with resellers who want to use
their own address as the bill-to address, but want to use their customer's address as the ship-to
address.

In the UI, custom billing and shipping addresses are created by going to a sales order, clicking
either the Shipping or Billing subtab, and selecting Custom from the Ship To Select or Bill To
Select dropdown fields.

The Custom Address popup that displays is a subrecord.

Custom billing and shipping addresses are created and accessed from a body field on the parent
record. See Creating and Accessing Subrecords from a Body Field for additional information on
scripting subrecords from a body field. Like other address subrecords, you must set the country

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

88

SuiteScript Developer & Reference Guide

first. The primary difference is that the custom billing address and custom shipping address
subrecords have their own Internal ID names:

• Billing Address – ‘billingaddress’

• Shipping Address – ‘shippingaddress’

Examples

For additional script examples of subrecords accessed from a body field, see Using SuiteScript
with Advanced Bin / Numbered Inventory Management.

Creating a New Custom Billing Address

The following server-side code creates a new custom billing address subrecord on an entity.

var customerid = 87;

// Open an existing customer record in dynamic mode
var record = nlapiLoadRecord('customer', customerid, {recordmode: 'dynamic'});

// Create a new address for the customer
var addrSubrecord = record.createCurrentLineItemSubrecord('addressbook', 'addressbookaddress');

//Set the appropriate address subrecord fields
addrSubrecord.setFieldValue('country', 'US');
addrSubrecord.setFieldValue('isresidential', 'F');
addrSubrecord.setFieldValue('attention', 'Billing Address');
addrSubrecord.setFieldValue('addressee', 'NetSuite Inc.');
addrSubrecord.setFieldValue('addrphone', '(123)456-7890');
addrSubrecord.setFieldValue('addr1', '2955 Campus Drive');
addrSubrecord.setFieldValue('addr2', 'Suite - 100');
addrSubrecord.setFieldValue('city', 'San Mateo');
addrSubrecord.setFieldValue('state', 'CA');
addrSubrecord.setFieldValue('zip', '94403');

// Commit the new address subrecord for the customer
addrSubrecord.commit();
record.commitLineItem('addressbook');

// Update the customer record
nlapiSubmitRecord(record);

Creating a New Custom Shipping Address

The following server-side code searches for a specific address subrecord on an entity and then
assigns that address to a sales order record.

var customerid = 87;
var itemid = 545;
var addressid = -1;

Working with Subrecords in SuiteScript
Using SuiteScript with Address Subrecords

89

SuiteScript Developer & Reference Guide

// Load the customer record for read access
var readrecord = nlapiLoadRecord('customer', customerid);

// Get the line item value of the address you want
for(var x = 1; x < readrecord.getLineItemCount('addressbook'); x++) {
 if (readrecord.getLineItemValue('addressbook', 'addressee', x) === 'NetSuite Inc.') {
 addressid = x;
 break;
 }
}

// Create a new sales order record
var record = nlapiCreateRecord('salesorder');

// Set the customer (entity) to the Customer ID
record.setFieldValue('entity', customerid);

// Set the billing and shipping addresses to the line item value that was retrieved
record.setFieldValue('billaddress', addressid);
record.setFieldValue('shipaddress', addressid);

// Create a new item for the sales order
record.selectNewLineItem('item');

// Set the appropriate fields for the item
record.setCurrentLineItemValue('item', 'item', itemid);
record.setCurrentLineItemValue('item', 'quantity', 1);
record.setCurrentLineItemValue('item', 'location', 1);
record.setCurrentLineItemValue('item', 'amount', '19.99');

// Commit the new item for the sales order
record.commitLineItem('item');

// Update the sales order
nlapiSubmitRecord(record);

Working with Fields
Working with Fields Overview

90

SuiteScript Developer & Reference Guide

Chapter 15 Working with Fields
The following topics are covered in this section. If you are new to SuiteScript, they should be
read in order:

• Working with Fields Overview

• Referencing Fields in SuiteScript

• Working with Custom Fields in SuiteScript

Working with Fields Overview

The SuiteScript API includes several Field APIs you can use to set and get values for built-in
NetSuite standard fields, as well as for custom fields. Standard fields are those that come with
NetSuite. Custom fields are those that have been created by NetSuite users to customize their
accounts. Custom fields are created using SuiteBuilder point-and-click customization tools.

Note: For information on working with nlobjField objects that you can add dynamically
to NetSuite records at runtime, see nlobjField in the NetSuite Help Center. These
are the only type of fields you can programmatically add to a record. There are no
SuiteScript APIs available for creating custom fields that are akin to the kinds of
custom field created using SuiteBuilder point-and-click functionality.

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

The following figure shows a combination of body and sublist fields. The body sections of a
record include the top (header) portion and non-sublist fields that sometimes appear on the
top area of a subtab. Body fields that appear under a subtab should not be confused with sublist
fields. Each line on a sublist is referred to as a line item; the fields on each line item are sublist
fields. Sublist fields are accessed using Sublist APIs.

On the figure below:

1. Body fields - can be a mix of standard and custom fields.

2. Sublist fields - fields on a sublist. See Working with Subtabs and Sublists for more
information.

Working with Fields
Referencing Fields in SuiteScript

91

SuiteScript Developer & Reference Guide

Referencing Fields in SuiteScript
Many SuiteScript APIs allow you to get, set, or search for the value of a particular field.
Whether you are referencing a standard field or a custom field, when you reference the field in
SuiteScript, you will use the field's internal ID. To obtain field internal IDs, see How do I find a
field's internal ID? in the NetSuite Help Center.

Working with Fields
Referencing Fields in SuiteScript

92

SuiteScript Developer & Reference Guide

Important: Be aware that not every field that appears in your NetSuite account officially
supports SuiteScript. To write scripts that include only supported, officially
tested NetSuite fields, it is recommended you refer to the SuiteScript Records
Browser to verify a field's official support. See SuiteScript Reference for more
details.

Getting Field Values in SuiteScript

If you are using SuiteScript to process record data in standard mode (as opposed to dynamic
mode), be aware of the following when using “getter” APIs to get the value of a field:

Note: If you are not familiar with standard mode and dynamic mode scripting, see the
help topic Working with Records in SuiteScript in the NetSuite Help Center.

To check if a field has a non-empty value, NetSuite recommends that you write code which
checks for null and empty when using any of the following APIs:

• nlapiGetFieldValue(fldnam)

• nlapiGetLineItemValue(type, fldnam, linenum)

• nlobjRecord.getFieldValue(name)

• nlobjRecord.getLineItemValue(group, name, linenum)

Important: Note that this inconsistency in field return values does NOT exist when
scripting records in dynamic mode.

The following snippet provides an example of how you might want to write your code to catch
any null vs. empty string return value inconsistencies:

if (value)

{

// handle case where value is not empty

}

-or-

if (!value)

// handle case where value is empty (or null)

}

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2939919.html

Working with Fields
Working with Custom Fields in SuiteScript

93

SuiteScript Developer & Reference Guide

Working with Custom Fields in SuiteScript

You can use SuiteScript APIs to get, set, and search the values of custom fields that have been
created using SuiteBuilder. Note, however, you can only set the value of custom fields that have
a stored value. This follows the behavior of the UI.

The following figure shows a custom entity field. The field's UI label is Contact Source and its
internal ID is custentity11. In this figure, the Store Value check box is selected, which means
that you can use SuiteScript to get and set the value of this custom entity field.

When a custom field does not contain a stored value (the Store Value check box is not selected),
you can reference this field in a SuiteScript search to return the current value of the field.
However, non-stored custom fields are considered to have dynamic values, so in a search, the
value of a non-stored custom field might be 10 one day and 12 the next day when the same
search is executed.

Note: If you are not familiar with creating custom fields in NetSuite, see the help topic
Custom Fields in the NetSuite Help Center.

Providing Internal IDs for Custom Fields

If you are using SuiteBuilder to create a custom field, and you plan to reference the field in your
scripts, NetSuite recommends you create an internal ID that includes an underscore (_) after
the custom field's prefix. You should then add a meaningful name after the underscore. This
will enhance readability in your SuiteScript code.

For example, if you are using SuiteBuilder to create a custom transaction body field with the UI
label Contact Fax, the field's internal ID should be something equivalent to _contactfax. Note
that you do not need to write the custom field's prefix in the ID field (see figure below). Once
the custom field definition is saved, the prefix for that custom field type is automatically added
to the ID. When the custom transaction body field (below) is saved, its internal ID will appear
as custbody_contactfax. This is the ID you will reference in your scripts.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2826978.html

Working with Fields
Working with Custom Fields in SuiteScript

94

SuiteScript Developer & Reference Guide

Understanding Custom Field Prefixes

As a reference, the following table provides the prefixes for each custom field type. You do
not need to type these prefixes when you assign an internal ID to a custom field. This table is
provided only for convenience to SuiteScript developers who may be working with different
custom field types and are not sure how to identify the field type using the prefix.

Custom field type Custom field prefix

Entity field custentity

Item field custitem

CRM field custevent

Transaction body field custbody

Transaction column field custcol

Transaction item options custcol

Item number fields custitemnumber

Other custom fields custrecord

Working with Subtabs and Sublists
Subtabs and Sublists Overview

95

SuiteScript Developer & Reference Guide

Chapter 16 Working with Subtabs and Sublists
• Subtabs and Sublists Overview

• Subtabs and Sublists - What's the Difference?

• Sublist Types

Subtabs and Sublists Overview

When using SuiteScript on subtabs and sublists, you should be aware of the following:

1. The distinction between subtabs and sublists (see Subtabs and Sublists - What's the
Difference?)

2. Sublist types (see Sublist Types)

3. Adding subtabs with SuiteScript (Adding Subtabs with SuiteScript)

4. Adding sublists with SuiteScript (Adding Sublists with SuiteScript)

5. Manipulating sublist with SuiteScript (Working with Sublist Line Items)

6. Sublist scripting when a record is in dynamic mode (Working with Sublists in Dynamic
Mode and Client SuiteScript)

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

Note: For a list of all sublists that support SuiteScript, see Scriptable Sublists in the
NetSuite Help Center. To see all sublist-related APIs, see Sublist APIs.

Subtabs and Sublists - What's the Difference?

Subtabs and sublists both look like tabs in the UI (see figure). However, functionally they serve
very different purposes. See these sections to learn about the differences between subtabs and
sublists:

• What is a Subtab?

• What is a Sublist?

Working with Subtabs and Sublists
Subtabs and Sublists - What's the Difference?

96

SuiteScript Developer & Reference Guide

1 Parent Subtab

2 Child Subtab

3 Sublist

What is a Subtab?

Subtabs contain body fields, other subtabs, and sublists. Unlike sublists, subtabs do not contain
references to other records. Subtabs are used mainly for organizational purposes.

The figure below shows the Sales subtab on a Customer record. Notice that the Sales tab
contains body fields that hold data specific to the Customer. The primary purpose of the Sales
subtab is to organize all of the sales-related sublists (Sales Team, Opportunities, Transactions,
and so on).

To compare what you see on the Sales subtab, the Sales Team sublist contains data that link
to other records—in this case, the employee records for the sales people associated with this
customer (see figure).

Working with Subtabs and Sublists
Subtabs and Sublists - What's the Difference?

97

SuiteScript Developer & Reference Guide

1 Child Subtab

2 Sublist

The next figure shows the Financial subtab, also on the Customer record. Notice that the
information on this subtab is additional field-level information related to this particular
customer. None of the information applies to or references data that exists on another record.

In SuiteScript you can access fields that appear on a subtab using Field APIs. Field APIs are also
used on regular body fields that appear on the top portion of records.

Working with Subtabs and Sublists
Subtabs and Sublists - What's the Difference?

98

SuiteScript Developer & Reference Guide

What is a Sublist?

Sublists contain a list of references to other records. Note that the list of record references are
referred to as line items. Within NetSuite there are four types of sublists: editor, inline editor,
list, and static list (see Sublist Types for details on each type).

Important: Static list sublists do not support SuiteScript. For a list of all editor, inline
editor, and list sublists that support SuiteScript, see Scriptable Sublists in the
NetSuite Help Center.

The following figure shows the Item Pricing Sublist on the Customer record. This is an inline
editor sublist that appears on a subtab, in this case the Financial subtab. Whereas the field-level
data captured on the Financial subtab applies specifically to this customer, the data on the Item
Pricing sublist references data contained on other records.

In the UI, you can add/insert/remove lines items to this sublist using the Add, Insert, and
Remove buttons. In SuiteScript, you can perform the same actions using Sublist APIs such as
nlapiInsertLineItem(type, line) and nlapiRemoveLineItem(type, line).

Working with Subtabs and Sublists
Sublist Types

99

SuiteScript Developer & Reference Guide

1 Parent Subtab

2 Child Subtab

3 Sublist

Sublist Types

There are four types of sublists in NetSuite:

• Editor Sublists

• Inline Editor Sublists

• List Sublists

• Static List Sublists

Important: Static list sublists do not support SuiteScript. Scripts written against static list
sublists will either not run or will return a system error. All other sublist types
support both client and server SuiteScript.

Note: If you are building your own custom form and are adding a sublist object to that
form through nlobjForm.addSubList(name, type, label, tab), you can set the sublist
type to any of the four sublist types. You can then write scripts against your custom
sublist. Note that sorting (in the UI) is not supported on static sublists created using
the addSubList(...) method if the row count exceeds 25.

Editor Sublists

The editor sublist allows users to insert/edit/remove lines dynamically prior to submitting
the form. On an editor sublist, editing sublists lines (referred to as line items) is done in fields
directly above the line items. In the UI, changes you make when you add/edit/remove lines are
not committed to the database until you save the entire record. Similarly, in SuiteScript add/
edit/remove functions provided in Sublist APIs are not persisted in the NetSuite database until
the change is committed to the NetSuite database.

When writing client scripts, you must call nlapiCommitLineItem(type) after each sublist line
change. Otherwise your changes will not be committed to NetSuite.

When writing server scripts, you must call nlobjRecord.commitLineItem(group,
ignoreRecalc) to commit sublist updates. Note that you must do this in addition to calling
nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields), which commits the entire
record object to the database.

Working with Subtabs and Sublists
Sublist Types

100

SuiteScript Developer & Reference Guide

Note: In SuiteScript, the first sublist line item is numbered 1, not 0.

Inline Editor Sublists

Inline editor sublists are similar to Editor Sublists in these ways:

• you can add/edit/remove lines dynamically prior to submitting the form

• you can add/edit/remove lines using the UI or SuiteScript

• when writing client scripts, you must call nlapiCommitLineItem(type) after each sublist
line change. Otherwise your changes will not be committed to NetSuite.

• When writing server scripts, you must call nlobjRecord.commitLineItem(group,
ignoreRecalc) to commit sublist updates. Note that you must do this in addition to calling
nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields), which commits the
entire record object to the database.

The only difference between an inline editor sublist and an editor sublist is UI appearance.
Inline editor sublists do not contain a line item edit area directly above the line items. The line
items on an inline editor sublist are edited “inline” directly on the lines on which they appear.

The following figure shows the Items Sublist on the Estimate record. The field-level data that
appears directly above the line items are not used for adding, editing, or removing line items
that appear below it.

In SuiteScript, fields above the line items are accessed using Field APIs. Sublist line items are
accessed using Sublist APIs.

Note: In SuiteScript, the first sublist line item is numbered 1, not 0.

Working with Subtabs and Sublists
Sublist Types

101

SuiteScript Developer & Reference Guide

List Sublists

Unlike Editor Sublists and Inline Editor Sublists, list sublists are not dynamic. The number of
line items are fixed and cannot be removed or added on-the-fly though UI customziation or
through SuiteScript.

Changes you make to existing line items on list sublists are submitted along with the main
record and do not take effect until after the record has been saved. Note that even though you
cannot add or remove lines on a list sublist, you can use the UI to change values or SuiteScript
to get/set values on lines that currently exist.

In SuiteScript you would not use Sublist APIs such as nlapiSelectNewLineItem(type),
nlapiInsertLineItem(type, line), or nlapiRemoveLineItem(type, line) to add or remove line
items. Neither will you use the nlapiCommitLineItem(type) or nlapiRefreshLineItems(type)
APIs in the context of a list sublist.

Also note that in SuiteScript, client lineInit and validateLine functions will not execute, since
they have no context in a list sublist. (For information on client event functions, see Client
Event Types.)

The following figure shows the Subscriptions child sublist on the Customer record. Although
you cannot add/remove lines, you can edit the lines that are there (in this case, you can select or
de-select the check boxes).

Note: In SuiteScript, the first sublist line item is numbered 1, not 0.

The next figure shows the Apply sublist on the Accept Customer Payments record. Similar
to the Subscriptions sublist, you can manipulate the line items that appear, but you cannot
dynamically add or remove additional lines.

Working with Subtabs and Sublists
Sublist Types

102

SuiteScript Developer & Reference Guide

The last figure provides another example of a list sublist—the Billable Expenses Sublist sublist
on the Invoice record. Again, you can only manipulate the line item data provided. You
cannot dynamically add or remove items. Any changes you make to the data on this sublist
will not be committed to the database until you call nlapiSubmitRecord(record, doSourcing,
ignoreMandatoryFields) in your script.

Static List Sublists

Important: SuiteScript is not currently supported on static list sublists.

Static list sublists, also referred to as read-only sublists, contain static data. These sublists are
typically used for displaying associated records/data rather than child records/data. Technically,
this means that the data on a static list sublist is not actually part of the record (and therefore
not accessible to SuiteScript), and is not submitted with the record when the record is saved.

The following figure shows the System Notes sublist, which is accessed through the System
Information subtab on many records. Note that all data in the System Notes sublist is read-only
and is not even settable through the UI.

Working with Subtabs and Sublists
Sublist Types

103

SuiteScript Developer & Reference Guide

The next figure shows the Files sublist, which is accessed from the Communications subtab on
many records. In this case you can attach/detach a file to this sublist, but the file is maintained
entirely as a separate document. The data in this document (in this case a .txt file), is not
considered to be part of Customer record, which can be manipulated through the UI or
through SuiteScript.

The last figure shows the User Notes sublist, also accessed through the Communication subtab.
Although you can add a new Note to this sublist, the data you define on the actual Note record
is not available to this Customer record. Therefore, the User Notes sublist is considered to hold
static/read-only data.

Working with Subtabs and Sublists
Adding Subtabs with SuiteScript

104

SuiteScript Developer & Reference Guide

Note: In some cases you can use search joins in SuiteScript to search the data on a static
list sublist (for example, data related to notes, contacts, messages, or files that
appear on a particular record). In the previous example, you could use the file search
join to search for all files associated with this particular Customer record.

Adding Subtabs with SuiteScript
You can add subtabs to custom forms through UI point-and-click customization and through
SuiteScript. In scripting, you must use either of the following two nlobjForm methods,
depending on your use case:

• addTab(name, label) — to add a top-level tab

• addSubTab(name, label, tab) — to create a nested subtab

Important: You must define two subtabs for subtab UI labels to appear. If you define
only one subtab in your script, the UI label you provide for the subtab
will not actually appear in the UI.

Both methods return an nlobjTab object, through which you can further define the
properties of your tab.

Note: To add subtabs using UI customization, in the NetSuite Help Center, see the
help topics Adding Subtabs to a Custom Record and Configuring Subtabs for
Custom Entry and Transaction Forms.

Example

The following example shows how to use SuiteScript to add subtabs to a custom NetSuite
form. This script is a beforeLoad user event script that is deployed to the Sales Order. Note
that if you add only one subtab, the UI label you define for the subtab will not appear in
the UI. You must define two subtabs for subtab UI labels to appear.

When you are adding UI Objects to an existing form, be sure to prefix the internal
IDs for all elements with custpage, for example 'custpage_sample_tab' and
'custpage_field_email' (see sample). In the sample below, the nlobjTab and nlobjField UI
objects are being added to a custom transaction form on a Sales Order. (See the help topic
Custom Transaction Forms in the NetSuite Help Center if you are not familiar with this
form type.)

Also note that element internal IDs must be in all lowercase.

//Define the user event beforeLoad function
function tabsToSalesOrder(type, form)
{
//Define the values of the beforeLoad type argument
if (type == 'create')

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2877748.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2855162.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2855162.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_N2852806.html

Working with Subtabs and Sublists
Adding Sublists with SuiteScript

105

SuiteScript Developer & Reference Guide

 {
 //Add a new tab to the form
 var sampleTab = form.addTab('custpage_sample_tab', 'Sample Tab');

 //Add a field to the new tab
 var newFieldEmail = form.addField('custpage_field_email', 'email', 'Alt Email', null,
 'custpage_sample_tab');

 //Add a second field to the new tab
 var newFieldText = form.addField('custpage_field_text', 'textarea', 'Details', null,
 'custpage_sample_tab');

 //Add a subtab to the first tab
 var sampleSubTab = form.addSubTab('custpage_sample_subtab', 'Sample Subtab',
 'custpage_sample_tab');

 //Add a select field to the subtab
 var newSubField = form.addField('custpage_sample_field', 'select', 'My Customers', 'custome
r',
 'custpage_sample_subtab');

 //Add a second subtab to the first tab
 var sampleSubTab = form.addSubTab('custpage_sample_subtab2', 'Second Sample Subtab',
 'custpage_sample_tab');

 //Add a field to the second subtab
 var newSubField = form.addField('custpage_sample_field2', 'select', 'My Employees', 'employ
ee',
 'custpage_sample_subtab2');
 }
}

Adding Sublists with SuiteScript
You can add sublists to custom forms through UI point-and-click customization and through
SuiteScript. In scripting, you must use the nlobjForm.addSubList(name, type, label, tab)
method to add a sublist. This method returns an nlobjSubList object, through which you can
further define the properties of your sublist.

Important: The internal ID for all custom sublists, subtabs, and fields must be prefixed
with custpage. The rest of the ID name must be in lowercase.

When adding a sublist through scripting you must define:

Working with Subtabs and Sublists
Adding Sublists with SuiteScript

106

SuiteScript Developer & Reference Guide

1. The custom sublist internal ID.

Example : ' custpage _contacts'

2. The sublist type you are defining.

Example : 'editor', 'inlineeditor', 'list', or 'staticlist'

3. The UI label for the sublist.

Example : 'Custom Contacts'

4. The subtab on which the sublist will appear.

Example : 'general' or 'custpage_mynewsubtab'

Important: To add sublists through point-and-click customization, see the help topic
Custom Sublists in the NetSuite Help Center. When adding a sublist through
UI customization, you are essentially adding the data from a saved search,
the results of which are only associated with the record. This is the equivalent
of a static list sublist. The results are not considered to be part of the actual
record.

Example 1

This sample shows how to create a custom sublist and run a search every time the form is
loaded, edited, or viewed. This is a beforeLoad user event script.

function beforeLoadSublist(type, form)
{
 if (type=='edit' || 'view')
 {
 //add a sublist to the form. Specify an internal ID for the sublist,
 //a sublist type, sublist UI label, and the tab the sublist will appear on
 var contacts = form.addSubList('custpage_contacts', 'staticlist', 'Custom Contacts', 'g
eneral');

 //add fields to the sublist
 contacts.addField('entityid', 'text', 'Name');
 contacts.addField('phone', 'phone', 'Phone');
 contacts.addField('email', 'email', 'Email');

 // perform a Contact record search. Set search filters and return columns for
 // the Contact search
 var contactdata = nlapiSearchRecord('contact', null, new
 nlobjSearchFilter('company', null, 'anyOf', nlapiGetRecordId()),
 [new nlobjSearchColumn('entityid'), new nlobjSearchColumn('phone'),
 new nlobjSearchColumn('email')])

 // display the search results on the Custom Contact sublist
 contacts.setLineItemValues(contactdata)
}
}

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2861522.html

Working with Subtabs and Sublists
Adding Sublists with SuiteScript

107

SuiteScript Developer & Reference Guide

Example 2

The following example shows how to add an inline editor sublist to a Suitelet by instantiating
the nlobForm object (using nlapiCreateForm(title, hideNavbar)) and then calling
nlobjForm.addSubList(name, type, label, tab). Note that because you are not adding field or
sublist elements to an existing NetSuite form, you do not need to prefix the element internal
IDs with custpage.

Script:

function createSuiteletWithSublist(request, response)
{
 if (request.getMethod() == 'GET')
 {
 // create the form
 var form = nlapiCreateForm('Simple Form');

 // add fields to the form
 var field = form.addField('textfield','text', 'Text');
 field.setLayoutType('normal','startcol')
 form.addField('datefield','date', 'Date');
 form.addField('currencyfield','currency', 'Currency');
 form.addField('textareafield','textarea', 'Textarea');

 // add a select field and then add the select options that will appear in the dropdown
 var select = form.addField('selectfield','select','Custom');
 select.addSelectOption('','');
 select.addSelectOption('a','Albert');
 select.addSelectOption('b','Baron');
 select.addSelectOption('c','Chris');
 select.addSelectOption('d','Drake');
 select.addSelectOption('e','Edgar');

 // add a sublist to the form
 var sublist = form.addSubList('sublist','inlineeditor','Inline Editor Sublist', 'tab1');

 // add fields to the sublist
 sublist.addField('sublist1','date', 'Date');
 sublist.addField('sublist2','text', 'Name');
 sublist.addField('sublist3','currency', 'Currency');
 sublist.addField('sublist4','textarea', 'Large Text');
 sublist.addField('sublist5','float', 'Float');

 // make the Name field unique. Users cannot provide the same value for the Name field.
 sublist.setUniqueField('sublist2');

 form.addSubmitButton('Submit');

 response.writePage(form);
 }
}

Working with Subtabs and Sublists
Working with Sublist Line Items

108

SuiteScript Developer & Reference Guide

Note: The nlapiRefreshLineItems(type) API can be used to refresh static list sublists that
have been added using nlobjSubList. This API implements the behavior of the
Refresh button on the UI.

Working with Sublist Line Items
NetSuite provides several Sublist APIs to manipulate sublist line items. You can use these
APIs to add or remove line items, update multiple line items when a body field is changed, or
automate the population of line items when certain conditions exist on the form.

When scripting with sublists, you should know if you are scripting an Editor Sublists, Inline
Editor Sublists, or List Sublists sublist. Because List Sublists sublists are not dynamic, you
cannot add/remove lines. You can only get/set values that currently exist on the sublist.

Note, however, whether you are scripting an editor, inline editor, or list sublist, generally you
will specify one or more of the following in the sublist API:

1. The sublist internal ID

Example : 'salesteam' (appears in the UI as the Sales Team sublist)

2. The sublist line item (field) ID.

Example : 'isprimary' (appears in the UI as Primary)

Working with Subtabs and Sublists
Working with Sublist Line Items

109

SuiteScript Developer & Reference Guide

3. The sublist line number — doing so enables you to specify where on the sublist you want
to change, add, or remove a line. Note that first line on a sublist is 1 (not 0).

4. The value of the line item.

Example : The value can be defined directly in the API or it can be a passed in value that
was defined elsewhere in the script.

Example

nlapiSetLineItemValue('salesteam', 'isprimary', 2, 'T');

Adding and Removing Line Items

To add/remove sublist line items, follow the general guidelines provided below. The approach
you follow depends on whether you are writing a client script to attach to a record, or a server
script that loads a record from the database. (In this context, scripts that are considered to be
server scripts are Suitelets, user event scripts, and scheduled scripts. Scripts considered to be
client scripts are form- and record-level client scripts.)

Important: This section does not apply to List Sublists. List sublists contain information
that cannot be dynamically added or removed in either the UI or in
SuiteScript. For information on getting/setting existing values on a list sublist,
see Getting and Setting Line Item Values.

Client Scripts

1. (Optionally) Call nlapiGetLineItemCount(type) to get the number of lines in the sublist.
Alternatively you can call nlapiGetCurrentLineItemIndex(type) to return the number of
the currently select line item.

2. Call either nlapiInsertLineItem(type, line) or nlapiRemoveLineItem(type, line) to add/
remove a line. In the line argument you will specify the line number of the line you want
to add/remove.

3. If adding a line:

1. Call nlapiSelectNewLineItem(type) to select and insert a new line (as you would in
the UI).

2. Call nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged,
synchronous) to set the value of the line.

4. Call nlapiCommitLineItem(type) to commit/save the changes to the sublist.

5. Perform steps 3 and 4 as many times as necessary to add all line items.

Working with Subtabs and Sublists
Working with Sublist Line Items

110

SuiteScript Developer & Reference Guide

Server Scripts

1. Load the record object — for example using nlapiLoadRecord(type, id, initializeValues).

2. (Optionally) Call nlobjRecord.getLineItemCount(group) to get the number of lines in the
sublist.

3. Call either nlobjRecord.insertLineItem(group, linenum, ignoreRecalc) or
nlobjRecord.removeLineItem(group, linenum, ignoreRecalc) to add/remove a line. In the
group argument specify by line number where to add/remove the line. Line numbering
begins with 1, not 0.

4. If adding a line:

1. Call nlobjRecord.selectNewLineItem(group) to select and insert a new line (as you
would in the UI).

2. Call nlobjRecord.setCurrentLineItemValue(group, name, value) to set the value of
the line.

5. Call nlobjRecord.commitLineItem(group, ignoreRecalc) to commit/save the changes to
the sublist.

6. Submit the record using nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields).

Example 1 (Server Script)

This sample shows how to create a new Vendor Bill record and then add items to the Item
sublist and expenses to the Expenses sublist. Note that because you are adding new lines to
each sublist, you must call the nlobjRecord.selectNewLineItem() method. You then set all
values for the new lines using the nlobjRecord.setCurrentLineItemValue() method. When
you are finished adding values to each line in the sublist, you must commit each line to the
database. You will call the nlobjRecord.commitLineItem() method to commit each line.

var record = nlapiCreateRecord('vendorbill');
record.setFieldValue('entity', 196);
record.setFieldValue('department', 3);
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item','item',380);
record.setCurrentLineItemValue('item', 'location', 102);
record.setCurrentLineItemValue('item', 'amount', '2');
record.setCurrentLineItemValue('item', 'customer',294);
record.setCurrentLineItemValue('item','isbillable','T');
record.commitLineItem('item');

record.selectNewLineItem('expense');
record.setCurrentLineItemValue('expense','category',3);
record.setCurrentLineItemValue('expense', 'account', 11);
record.setCurrentLineItemValue('expense', 'amount','10');
record.setCurrentLineItemValue('expense','customer',294);
record.setCurrentLineItemValue('expense','isbillable','T');
record.commitLineItem('expense');

Working with Subtabs and Sublists
Working with Sublist Line Items

111

SuiteScript Developer & Reference Guide

var id = nlapiSubmitRecord(record, true);

This sample shows how to add a line to a sublist. When the record is saved, the updates to
the sublist are committed to the database.

//Load a sales order. 187 is the internal ID of the sales order
var rec = nlapiLoadRecord('salesorder', 187);

//Insert a new line at the start of Item sublist
rec.insertLineItem('item', 1);

//Set the value of quantity to 10 on the first line of the sublist
rec.setLineItemValue('item', 'quantity', 1, 10);

//Set the value of currency to 1 (the internal ID for US dollar) on the first line of the subli
st
rec.setLineItemValue('item', 'currency', 1, 1);

//Submit the record to commit the sublist changes to the database
var id = nlapiSubmitRecord(rec, true);

Example 2 (Server Script)

This sample shows how to use nlobjRecord.getLineItemCount(group), which is used to
determine the number of lines in a sublist. In this sample, a line item is added to the end of
the Items sublist. When the record is saved, the updates to the sublist are committed to the
database.

//Get the new record
var rec = nlapiGetNewRecord();

//Determine the number of lines on the Item sublist
var intCount = rec.getLineItemCount('item');

//Insert a line after the line that already exists
rec.insertLineItem('item', intCount + 1);

//Set the value of the line item
rec.setCurrentLineItemValue('item', 'quantity', intCount + 1, 10);

// Commit the sublist line changes
rec.commitLineItem('item');

// Submit the record to commit all change to the database
var id = nlapiSubmitRecord(rec, true);

Example 3 (Client Script)

This sample shows how to add a line item to a transaction using a client script. Be aware
that in client scripting you must always use nlapiCommitLineItem(type) to commit any
line item changes to the sublist.

Working with Subtabs and Sublists
Working with Sublist Line Items

112

SuiteScript Developer & Reference Guide

In this example you first insert the line and then commit the line. If you set the item field
using nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous),
you cannot call nlapiCommitLineItem until the server call for the item information has
completed. The only way to know that the server call is complete is to create a post-
sourcing function that sets a flag.

For example, suppose you want to insert a shipping line when a user clicks a button. You
can attach a function such as insertShippingRate() to that button, which adds an item
named “Shipping”, sets its rate, and then commits the line.

function insertShippingRate()
{
 nlapiSelectNewLineItem('item');

 /* important so that you know that the script was called from insertShippingRate() */
 nlapiSetCurrentLineItemValue('item', 'custcolinsertshippingrate', true);
 nlapiSetCurrentLineItemText('item', 'item', 'Shipping');
}
function doPostSourcing(type, fldname)
{
 if (type == 'item' && fldname == 'item' && nlapiGetCurrentLineItemValue
 ('item', 'custcolinsertshippingrate') == true)
 {
 nlapiSetCurrentLineItemValue('item', 'custcolinsertshippingrate', false);
 nlapiSetCurrentLineItemValue('item', 'rate', '7.50');
 nlapiCommitLineItem('item');
 }
}

Getting and Setting Line Item Values

You can use both client and server scripts to get/set line item values. The set/get guidelines
provided here can be used on Editor Sublists, Inline Editor Sublists, and List Sublists sublists.

Example 1

The following sample includes several Sublist APIs. This sample copies sales reps from the Sales
Team sublist of one sales order to another sales order, ignoring those on the Sales Team sublist
who are not sales reps.

// Copy all the reps from the original order to the adjusting order
 var iRep = 1;
 var reps = originalSo.getLineItemCount('salesteam');

 for (var rep = 1; rep <= reps; rep++)
 {
 // If the role is not sales rep, ignore it
 if (originalSo.getLineItemValue('salesteam', 'salesrole', rep) != '-2')
 continue;
 var reppct = originalSo.getLineItemValue('salesteam', 'contribution', rep);
 if (reppct != '0.0%')

Working with Subtabs and Sublists
Working with Item Groups in a Sublist

113

SuiteScript Developer & Reference Guide

 {
 var repId = originalSo.getLineItemValue('salesteam', 'employee', rep);
 // keep the percent the same
 if (reppct.substring(reppct.length-1) == '%')
 {
 //remove the percent sign % from the end
 reppct = reppct.substring(0, reppct.length-1);
 }
 so.insertLineItem('salesteam', iRep);
 so.setCurrentLineItemValue('salesteam', 'contribution', iRep, reppct);
 so.setCurrentLineItemValue('salesteam', 'employee', iRep, repId);

 // copy the role
 so.setCurrentLineItemValue('salesteam','salesrole',iRep,originalSo.getLineItemValue
 ('salesteam','salesrole', rep));

 // If primary rep on original order make it primary on the new sales order
 var primary = originalSo.getLineItemValue('salesteam', 'isprimary', rep);
 so.setCurrentLineItemValue('salesteam', 'isprimary', iRep, primary);
 iRep++

 so.commitLineItem('salesteam');
 }

 }
 // save the new order and return the ID
 var soId = nlapiSubmitRecord(so, true);

Example 3

The following sample is a validateLine client script which uses
nlapiGetCurrentLineItemValue(type, fldnam) to prevent the addition of Sales Order item lines
with an amount greater than 10000.

function validateLine(group)
{
 var newType = nlapiGetRecordType();
 if (newType == 'salesorder' && group == 'item' && parseFloat(nlapiGetCurrentLineItemValue('
item','amount')) > 10000)
 {
 alert('You cannot add an item with amount greater than 10000.')
 return false;
 }
 return true;
}

Working with Item Groups in a Sublist
NetSuite item groups are stocked and sold as single units, even though they consist of several
individual items. Item groups are used to sell vendor-specific objective evidence (VSOE) item
group bundles, which can contain both taxable and nontaxable items.

You can use SuiteScript to interact with item groups in the same way you use the UI. Item
Group type items are added to transactions as other line items are. In the case of an Item Group

Working with Subtabs and Sublists
Working with Sublists in Dynamic Mode and Client SuiteScript

114

SuiteScript Developer & Reference Guide

item, the item group expands to its member items. Item groups can optionally include start and
end lines. The SuiteScript behavior emulates the behavior of how you would add an item group
in the UI.

Example

In this example, an Item Group item is added to a transaction, and the tax code propagates to
the members of the group.

var rec = nlapiCreateRecord('cashsale');
rec.setFieldValue('entity', '76'); //set the customer
rec.selectNewLineItem('item');
rec.setCurrentLineItemValue('item', 'item', '66'); //item group item
rec.setCurrentLineItemValue('item', ‘quantity', 1);
rec.setCurrentLineItemValue(‘item', ‘taxcode', -7); //set to non-taxable
rec.commitLineItem('item');
var id = nlapiSubmitRecord(rec); //on submit the item group expands

Working with Sublists in Dynamic Mode and Client
SuiteScript

When you copy, create, load, or transform a record in dynamic mode, you are also interacting
with all of the record's elements in dynamic mode; this includes a record's sublists.

Note: When using client SuiteScript on a sublist, you must also script in a way
that emulates the behaviors of the UI. Consequently, an API such as
nlapiSetLineItemValue(type, fldnam, linenum, value) will generally not be
supported in client scripts. Read the rest of this section for more details.

Note: If you are unfamiliar with the concept of dynamic scripting, see the help topic
Working with Records in Dynamic Mode for details.

When scripting against a sublist that is in dynamic mode, the following APIs will NOT work
when adding a line or changing the values of an existing line:

• nlapiSetLineItemValue(type, fldnam, linenum, value) - used when scripting in a “current
record” context, for example in user event scripts.

• nlobjRecord.setLineItemValue(group, name, linenum, value) - used when scripting the
nlobjRecord object itself, as it exists on the server.

These APIs will not work in dynamic mode or in client SuiteScript because they have no
UI correlation. One of the primary components of dynamic and client scripting is that they
emulate the behaviors of the UI.

When users interact with sublists in the UI, they first select the sublist they want to work with,
then they select the line they want to add or change, and finally they click the Add button to
commit the line to the database. When you are scripting a sublist in dynamic mode or in client

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

Working with Subtabs and Sublists
Working with Sublists in Dynamic Mode and Client SuiteScript

115

SuiteScript Developer & Reference Guide

SuiteScript, calling nlapiSetLineItemValue(type, fldnam, linenum, value) does not provide
enough context for the script to execute. Instead, you will follow one of these two patterns when
adding or changing a line:

To add a new line:

1. nlapiSelectNewLineItem(type) - to specify the sublist you want to work with.

2. nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous) - to set
values on the current line.

3. nlapiCommitLineItem(type) - to commit the line to the database.

Example:

This sample creates a new sales order in dynamic mode, and then adds two new items to
the Items sublist.

var record = nlapiCreateRecord('salesorder', {recordmode: 'dynamic'});

// add the first item
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item', 'item', 556);
record.setCurrentLineItemValue('item', 'quantity', 2);
record.commitLineItem('item');

// add the second item
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item', 'item', 380);
record.setCurrentLineItemValue('item', 'quantity', '2');
record.setCurrentLineItemValue('item', 'amount', '0.1');
record.commitLineItem('item');

To change values on an existing line:

1. nlapiSelectLineItem(type, linenum) - to specify the sublist you want to work with and the
existing line you want to change.

2. nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous) - to set
values on the current line.

3. nlapiCommitLineItem(type) - to commit the line to the database.

Example:

This sample loads a sales order in dynamic mode, and then modifies a line that already
exists.

var record = nlapiLoadRecord('salesorder', 55, {recordmode: 'dynamic'});

// modify an existing line
record.selectLineItem('item', 1);

Working with Subtabs and Sublists
Working with Sublists in Standard Mode and Client SuiteScript

116

SuiteScript Developer & Reference Guide

record.setCurrentLineItemValue('item', 'item', 556);
record.setCurrentLineItemValue('item', 'quantity', 2);
record.commitLineItem('item');

•Example:

This sample loads a sales order in dynamic mode, and then inserts a new item on line one.
The item that was previously on line one moves to line two.

var record = nlapiLoadRecord('salesorder', 1966, {recordmode: 'dynamic'});
record.insertLineItem('item', 1);
record.setCurrentLineItemValue('item','item', 98);
record.commitLineItem('item');

Sublist Errors

You can only set line items that are valid. If you attempt to set a line that does not exist, you will
receive an “Invalid Sublist Operation” out-of-bounds error. The exception to this is on Suitelets.
Because Suitelets contain only your data, you will not receive a NetSuite error.

Example

Working with Sublists in Standard Mode and Client
SuiteScript

In standard mode, sublist values are not automatically sourced when you select a record in
SuiteScript.

Do the following steps to source values when you select a record:

1. Submit the record with a new placeholder sublist line item.

2. Reload the record.

3. Remove the line item.

4. Set appropriate line item values.

5. Submit the record. Once submitted, the record is pre-selected on the form for the next
new transaction.

6. Reload the record to verify that values are automatically sourced.

Example

The following example shows how to update the Payment sublist of a Deposit record in
standard mode:

Working with Subtabs and Sublists
Working with Sublists in Standard Mode and Client SuiteScript

117

SuiteScript Developer & Reference Guide

var rec = nlapiCreateRecord('deposit');

// Set the account.
rec.setFieldValue('account', 123);
// In Standard mode, setFieldValue does not source values in the Payment sublist.

// Insert a placeholder line to enable record submission.
rec.selectNewLineItem('other');
rec.setCurrentLineItemValue('other', 'account', 456);
rec.setCurrentLineItemValue('other', 'amount', 0);
rec.commitLineItem('other');
var id = nlapiSubmitRecord(rec);

// Load the record.
var fin = nlapiLoadRecord('deposit', id);
// The Payment sublist is now populated.

// Remove the placeholder line.
fin.removeLineItem('other', 1);

// Apply values from the Payment sublist.
fin.setLineItemValue('payment','deposit','1','T');

// Submit the finalized record.
var id = nlapiSubmitRecord(fin);

Working with Online Forms 118

SuiteScript Developer & Reference Guide

Chapter 17 Working with Online Forms
Only the APIs listed in the following table are supported on online forms.

Important: These are also the only APIs supported on externally available Suitelets
(Suitelets set to Available Without Login on the Script Deployment page).
For more information on externally available Suitelets, see SuiteScript and
Externally Available Suitelets.

SuiteScript APIs available on online forms and externally available Suitelets

• nlapiAddDays(d, days)

• nlapiAddMonths(d, months)

• nlapiCancelLineItem(type)

• nlapiDateToString(d, format)

• nlapiDisableField(fldnam, val)

• nlapiDisableLineItemField(type, fldnam, val)

• nlapiEncrypt(s, algorithm, key)

• nlapiEscapeXML(text)

• nlapiFormatCurrency(str)

• nlapiGetCurrentLineItemIndex(type)

• nlapiGetCurrentLineItemText(type, fldnam)

• nlapiGetCurrentLineItemValue(type, fldnam)

• nlapiGetFieldText(fldnam)

• nlapiGetLineItemText(type, fldnam, linenum)

• nlapiIsLineItemChanged(type)

• nlapiRefreshLineItems(type)

• nlapiRemoveLineItemOption(type, fldnam, value)

• nlapiRemoveSelectOption(fldnam, value)

• nlapiSelectLineItem(type, linenum)

• nlapiSelectNewLineItem(type)

• nlapiGetLineItemCount(type)

• nlapiGetFieldValue(fldnam)

• nlapiSetFieldValue(fldnam, value,
firefieldchanged, synchronous)

• nlapiGetLineItemValue(type, fldnam, linenum)

• nlapiSelectNode(node, xpath)

• nlapiSelectNodes(node, xpath)

• nlapiSelectValue(node, xpath)

• nlapiSelectValues(node, path)

• nlapiStringToDate(str, format)

• nlapiStringToXML(text)

• nlapiXMLToString(xml)

• nlapiSetLineItemValue(type, fldnam, linenum,
value)

• nlapiInsertLineItem(type, line)

• nlapiRemoveLineItem(type, line)

• nlapiGetRecordType()

• nlapiGetRecordId()

• nlapiGetRole()

• nlapiGetUser()

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

Why are only certain APIs supported on online forms?

For security reasons, many SuiteScript APIs are not supported on online forms or externally
available (Available Without Login) Suitelets. Online forms and externally available Suitelets

Working with Online Forms 119

SuiteScript Developer & Reference Guide

are used for generating stateless pages that access or manipulate account information that is
not considered to be confidential. Therefore, scripts running on these pages cannot be used to
access information on the server because that would require a valid NetSuite session (through
user authentication).

Note that server-side SuiteScript execution for such pages (for example, user events and/or
Suitelet page generation or backend code) have no such restrictions.

Note: nlapiGetRole() always returns -31 (the online form user role) when used in this
context; nlapiGetUser() returns -4 (the return value for a “backdoor” entity).

The APIs listed in the previous section all operate on the current page and will run as expected
without a valid NetSuite session. Note that both types of pages (online forms and externally
available Suitelets) are hosted on a NetSuite domain called forms.netsuite.com. Having a
separate domain for online forms and externally available Suitelets prevents secure NetSuite
sessions established on system.netsuite.com from carrying over to these pages.

NetSuite supports TLS 1.0, 1.1, and 1.2 encryption for forms.netsuite.com,
system.netsuite.com, and other NetSuite domains. Only requests sent using TLS encryption
are granted access.

The following figure uses a Suitelet Script Deployment page to show the two domains types.
In this case, the Available Without Login preference is selected. When this Suitelet is called, it
will be called from the forms.netsuite.com domain. So long as only the APIs listed in the table
SuiteScript APIs available on online forms and externally available Suitelets have been used (in
addition to any UI Objects), this externally available Suitelet will load and run as intended.

If the Available Without Login preference is not set, the Suitelet will be called from the login
domain system.netsuite.com

Note: Although it is not shown on the Script Deployment record, the internal URL is
prepended with https://system.netsuite.com.

Inline Editing and SuiteScript
Inline Editing and SuiteScript Overview

120

SuiteScript Developer & Reference Guide

Chapter 18 Inline Editing and SuiteScript
The following topics are covered in this section:

• Inline Editing and SuiteScript Overview

• Why Inline Edit in SuiteScript?

• Inline Editing Using nlapiSubmitField

• Consequences of Using nlapiSubmitField on Non Inline Editable Fields

• Inline Editing (xedit) as a User Event Type

• What's the Difference Between xedit and edit User Event Types?

• Inline Editing and nlapiGetNewRecord()

• Inline Editing and nlapiGetOldRecord()

Inline Editing and SuiteScript Overview
In the NetSuite UI, inline editing lets you edit fields directly from a record list or from a set of
search results. (See the help topic Using Inline Editing in the NetSuite Help Center for general
information on inline editing not related to SuiteScript.)

In SuiteScript, the equivalent of inline editing is changing the value of a field without loading
and submitting the entire record the field appears on. This is done using nlapiSubmitField(type,
id, fields, values, doSourcing). See Inline Editing Using nlapiSubmitField for details.

Be aware that in SuiteScript, inline editing and mass updating are considered to be event
types that can trigger user event scripts. When users inline edit a field in the UI, or when they
perform a mass update, these two event contexts can trigger the execution of a user event script
if the script's context type has been set to xedit. See Inline Editing (xedit) as a User Event Type.

Important: When using SuiteScript to inline edit a field on a record, note the following:

• In the UI and in SuiteScript, you can only perform inline editing on body fields. You
cannot inline edit sublist fields. If you do not know the distinction between body and
sublist fields, see Working with Fields Overview in the NetSuite Help Center.

• In SuiteScript, you cannot inline edit select fields. In other words, you cannot call
nlapiSubmitField on a select field.

• In the NetSuite UI, users cannot set fields that are not inline editable. SuiteScript, however,
does let you set non inline editable fields using nlapiSubmitField, but this is NOT the
intended use for this API. See Consequences of Using nlapiSubmitField on Non Inline
Editable Fields to learn about the increased governance cost of using this API on non
inline editable fields.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N495192.html

Inline Editing and SuiteScript
Why Inline Edit in SuiteScript?

121

SuiteScript Developer & Reference Guide

• You can use the nlapiSubmitField function to inline edit inline-editable body fields
on SuiteScript-supported records only. Do not use nlapiSubmitField (or any other
SuiteScript API) on a record that does not officially support SuiteScript. For a list of
records that officially support SuiteScript, see SuiteScript Supported Records in the
NetSuite Help Center.

• If you want to perform inline editing through the UI or through SuiteScript, you must
first enable the Inline Edit feature in your account. Enable this feature by going to Setup
> Company > Enable Features. In the Data Management section, click the Inline Editing
check box.

Why Inline Edit in SuiteScript?
To change values on a record you can either load and submit the entire record, or you can call
nlapiSubmitField(type, id, fields, values, doSourcing) on a specified body field or fields. Calling
the nlapiSubmitField function, which is the programmatic equivalent of inline editing, requires
less database processing since the entire record object is not being loaded to make a single field
update. Note that in the UI and in SuiteScript, not all fields are inline editable.

Important: In the NetSuite UI, users cannot set fields that are not inline editable.
SuiteScript, however, does let you set non inline editable fields using
nlapiSubmitField, but this is NOT the intended use for this API. See
Consequences of Using nlapiSubmitField on Non Inline Editable Fields to
learn about the increased governance cost of using this API on non inline
editable fields.

Inline Editing Using nlapiSubmitField
The SuiteScript equivalent of inline editing a single field or multiple fields on a record is calling
the nlapiSubmitField(type, id, fields, values, doSourcing) function. After updating a field's value
using nlapiSubmitField, you do not need to then call nlapiSubmitRecord to commit the change
to the database.

The following figure shows that the Phone field on a customer record is being inline edited in
the UI. To save the change, a user needs to click away from the field.

Inline Editing and SuiteScript
Consequences of Using nlapiSubmitField on Non Inline Editable Fields

122

SuiteScript Developer & Reference Guide

In SuiteScript, the programmatic equivalent of inline editing the Phone field on customer
record 96 is:

var updatefield = nlapiSubmitField('customer', '96', 'phone', '504-231-3754');

In one call, you can reference a specific record and field, and then set a new value for that
field. The entire process consumes only 10 units, which, in many cases, makes updating fields
through nlapiSubmitField preferable to loading a record, referencing the field on the record,
setting a value for the field, and then submitting the entire record to the database. For example,
the following script consumes 30 units to accomplish the same thing as the previous inline
editing sample:

var rec = nlapiLoadRecord('customer', '96'); //10 units
rec.setFieldValue('phone', '504-231-3754');
var id = nlapiSubmitRecord(rec); //20 units

Note that with inline editing in SuiteScript you can update multiple fields on a record, and the
unit count remains as 10. In this example, three fields are updated, however, there is still only
one call to nlapiSubmitField. For example:

var fields = new Array();
var values = new Array();
fields[0]='phone';
values[0] = "800-555-1234";
fields[1] = 'url';
values[1] = "www.goodtimeswithsuitescript.com";
fields[2] = 'billpay';
values[2] = "T";
var updatefields = nlapiSubmitField('customer', '149', fields, values);

Important: If you are initiating a scheduled script from a user event script, and the user
event type is set to xedit, no call to nlapiSubmitField within that scheduled
script will actually save the field specified in nlapiSubmitField.

Important: In the NetSuite UI, users cannot set fields that are not inline editable.
SuiteScript, however, does let you set non inline editable fields using
nlapiSubmitField, but this is NOT the intended use for this API. See
Consequences of Using nlapiSubmitField on Non Inline Editable Fields to
learn about the increased governance cost of using this API on non inline
editable fields.

Consequences of Using nlapiSubmitField on Non Inline
Editable Fields

In the NetSuite UI, only certain fields are inline editable. These are fields that have no slaving
relationship to other fields. When users update a field that is inline editable, only the data for
that field is updated; there is no cascading effect on other data contained in the record.

Inline Editing and SuiteScript
Inline Editing (xedit) as a User Event Type

123

SuiteScript Developer & Reference Guide

Although nlapiSubmitField(...) is the programmatic equivalent of inline editing, it is possible
to use this API to update fields that are not inline editable in the UI. If a non inline editable
field is submitted for update, all the data on the record will be updated appropriately. However,
to support this, when a non inline editable field is submitted, the NetSuite backend must load
the record, set the field(s), and then submit the record. Completing the “load record, set field,
submit record” lifecycle for a record allows all slaving and validation logic on the record to
execute.

Note: If an array of fields is submitted using nlapiSubmitField(...), and one field in the array
is non inline editable, NetSuite also applies the same solution: the record is loaded
in the backend, all fields are set, and the record is submitted.

Governance Implications
When you use nlapiSubmitField(...) as it is intended to be used (to set one or more fields that
are inline editable in the UI), the SuiteScript governance cost is 10 units.

However, when you use nlapiSubmitField(...) to update fields that are NOT inline editable in
the UI, the unit cost for nlapiSubmitField(...) is higher. Your script is charged the units it takes
to load and submit a record.

For example, the unit cost of nlapiSubmitField(...) to set a non inline editable field on a
transaction is:

1. load the record (nlapiLoadRecord) = 10 units

2. set the field = no units

3. submit the record (nlapiSubmitRecord) = 20 units

Total = 30 units

It is best practice to use nlapiSubmitField(...) as it is intended to be used: to set fields that are
inline editable in the UI. To help you know which fields are inline editable, you can refer to the
UI.

Inline Editing (xedit) as a User Event Type
To set a user event script to execute in response to an inline edit field change or a mass
update, specify xedit as the type argument in your script. The xedit type can be specified in
beforeSubmit or afterSubmit user event scripts.

The following sample shows a user event script that will execute when a user inline edits a
record, or the record is updated in a mass update. This script shows how to get all fields that
were inline edited on the record or during the mass update.

function getUpdatedFields(type)
{

Inline Editing and SuiteScript
What's the Difference Between xedit and edit User Event Types?

124

SuiteScript Developer & Reference Guide

 // if the record is inline edited or mass updated, run the script
 if (type == ' xedit ')
 {
 // call nlapiGetNewRecord to get the fields that were inline edited/mass updated
 var fields = nlapiGetNewRecord().getAllFields()

 // loop through the returned fields
 for (var i = 0; i < fields.length; i++)
 {
 if (fields[i] == 'phone')
 nlapiSetFieldValue('phone', nlapiGetFieldValue('phone'))
 }
 }
}

Note: User event scripts are not executed upon mass updates of child matrix items from
their parent items.

What's the Difference Between xedit and edit User Event
Types?

When the user event type argument is set to xedit, it means that the execution context for the
script is inline edit or mass update. In other words, if a user has inline edited a field on a record
(or if the record has been part of a mass update), the user event script will execute. In contrast,
user event scripts set to execute when the type argument is set to edit will execute when the
record is edited in all other contexts. The script will not execute as a result of an inline edit or
mass update.

Inline Editing and nlapiGetNewRecord()
In a user event script, if you have set the user event type argument to xedit, and you are using
nlapiGetNewRecord() to return all the newly updated fields, be aware that only the fields which
have been updated through an xedit event (inline edited or mass updated) will be returned. In
many cases, this is only one or two fields.

In contrast, if the user event type argument is set to edit, and you call nlapiGetNewRecord() in
a beforeSubmit, you will get back all the fields on the record.

For xedit user events, you should call nlapiGetNewRecord().getAllFields() to return an array of
all the fields being changed in the inline edit, mass update, or nlapiSubmitField() operation.

Note: If you call getFieldValue() on a field that is not in that array, null is returned.

Inline Editing and nlapiGetOldRecord()
Although calling nlapiGetOldRecord() in an inline editing context requires more processing
from the NetSuite database (and therefore may add to the user response time), there is

Inline Editing and SuiteScript
Inline Editing and nlapiGetOldRecord()

125

SuiteScript Developer & Reference Guide

less ambiguity when calling this method in an inline editing context than when calling
nlapiGetNewRecord().

The following sample shows how nlapiGetOldRecord() is used in a user event script that
executes in the context of an inline edit or mass update. This script logs all the revised field
IDs in the record prior to being committed to the database. If the phone field is modified, the
change is reverted.

function getUpdatedFields(type)
{
 // if the record is inline edited or mass updated, run this script
 if (type == 'xedit')
 {
 var recOldEmployee = nlapiGetOldRecord();
 var recUpdEmployee = nlapiGetNewRecord();

 // Get all the field IDs in the record
 var lstEmployeeFields = recOldEmployee.getAllFields();

 // Traverse through all the employee fields
 for (var i = 0; i < lstEmployeeFields.length; i++)
 {
 // If the record has a modified phone field, log the original and revised phone num
bers
 if (lstEmployeeFields[i] == 'phone')
 {
 nlapiLogExecution('DEBUG', 'Old Phone #', recOldEmployee.getFieldValue('phone')
);
 nlapiLogExecution('DEBUG', 'New Phone #', recUpdEmployee.getFieldValue('phone')
);

 // Revert the change
 nlapiSetFieldValue('phone', recOldEmployee.getFieldValue('phone'));
 }
 }
 }
}

Script Types Overview 126

SuiteScript Developer & Reference Guide

Chapter 19 Script Types Overview
Script types are organized primarily by where they run (on the client or on the server). They are
also organized by the types of tasks you are trying to complete or the data you want to capture.

Use the SuiteScript API to create the following types of scripts.

• User Event Scripts: User Event scripts are triggered when users work with records and data
changes in NetSuite as they create, open, update, or save records. User Event scripts are
useful for customizing the workflow and association between your NetSuite entry forms.
These scripts can also be used for doing additional processing before records are entered
or for validating entries based on other data in the system.

• Suitelets: Suitelets enable the creation of dynamic web content. Suitelets can be used to
implement custom front and backends. Through API support for scripting forms and lists,
these Suitelets can also be used to build NetSuite-looking pages. NetSuite tasklinks can be
created to launch a Suitelet. These tasklinks can be used to customize existing centers.

• RESTlets: RESTlets are server-side scripts that can be used to define custom, RESTful
integrations to NetSuite. RESTlets follow the principles of the REST architectural style and
use HTTP verbs, HTTP headers, HTTP status codes, URLs, and standard data formats.
They operate in a request-response model, and an HTTP request to a system-generated
URL invokes each RESTlet.

• Scheduled Scripts: Scheduled scripts are executed on-demand in real-time or via a user-
configurable schedule. Scheduled scripts are useful for batch processing of records.

• Client Scripts: Client scripts are executed on the client. These scripts can be attached to
and run on individual forms, or they can be deployed globally and executed on entity and
transaction record types. Global client scripts enable centralized management of scripts
that can be applied to an entire record type.

• Portlet Scripts: Portlet scripts are used to create custom dashboard portlets. For example,
you can use SuiteScript to create a portlet that is populated on-the-fly with company
messages based on data within the system.

• Mass Update Scripts: Mass update scripts allows you to programmatically perform custom
mass updates to update fields that are not available through general mass updates. You can
also use action scripts to run complex calculations, as defined in your script, across many
records.

• Workflow Action Scripts: Workflow action scripts allow you to create custom actions that
are defined on a record in a workflow.

• Bundle Installation Scripts: Bundle installation scripts fire triggers that execute as part of
bundle installation, update, or uninstall. Trigger execution can occur either before install,

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2779037.html

Script Types Overview 127

SuiteScript Developer & Reference Guide

after install, before update, after update, or before uninstall. These triggers automatically
complete required setup, configuration, and data management tasks for the bundle.

Note that when you create a SuiteScript file, you will need to designate the type of script you
want to write. You will do this by going to Setup > Customization > Scripts > New > [type],
where type is one of the types shown below:

To actually run a script in NetSuite, see Running a Script in NetSuite.

SuiteScript Execution Diagram 128

SuiteScript Developer & Reference Guide

Chapter 20 SuiteScript Execution Diagram
When writing your scripts, it is important to understand where the scripts will run (client-
side or server-side) and when the scripts will run (before data loads into a page loads, after an
update is made to the data, or after the data has been saved and committed to the database).
Understanding the basic concepts of where and when scripts will run will help you understand
the SuiteScript API. It will also help you when debugging your code should you encounter
problems.

The following diagram provides an overview showing where script types run. For an overview
on each script type, see Script Types Overview.

Client Scripts
What is Client SuiteScript?

129

SuiteScript Developer & Reference Guide

Chapter 21 Client Scripts
The following topics are covered in this section. If you are new to SuiteScript, these topics
should be read in order.

• What is Client SuiteScript?

• Client Script Execution

• Client Event Types

• Form-level and Record-level Client Scripts

• Client Script Metering

• Role Restrictions in Client SuiteScript

• How Many Client Events Can I Execute on One Form?

• Error Handling and Debugging Client SuiteScript

• Client Remote Object Scripts

• Running a Client Script in NetSuite

• Client SuiteScript Samples

What is Client SuiteScript?
Client scripts are SuiteScripts executed in the browser. They can run on most standard records,
custom record types, and custom NetSuite pages (for example, Suitelets).

Note: To know which standard record types support client SuiteScript, see SuiteScript
Supported Records in the NetSuite Help Center. If a record supports client scripts, an
X will appear in the column called “Scriptable in Client SuiteScript”.

Generally, client scripts are used to validate user-entered data and to auto-populate fields or
sublists at various form events. Such events can include loading or initializing a form, changing
a field, or saving a record. Another use case for client scripts is to source data from an external
data source to a field. This is accomplished using the API nlapiRequestURL(url, postdata,
headers, callback, httpMethod).

Client scripts are executed by pre-defined event “triggers.” These triggering event types types
are discussed in the section Client Event Types. These events include:

• Initializing forms

• Entering or changing a value in a field (before and after it is entered)

• Entering or changing a value in a field that sources another field

• Selecting a line item on a sublist

Client Scripts
Client Script Execution

130

SuiteScript Developer & Reference Guide

• Adding a line item (before and after it is entered)

• Saving a form

• Searching for another record

• Loading, saving or deleting a record

Once you have created your client script, you can attach your .js script file to the form you are
customizing.

If you have created a client script that you want to execute across an entire record type (for
example, all Customer records in the system), then you can deploy the script to the specified
record type. Client scripts deployed globally affect the behavior of all the records they are
deployed to, rather than a specific form on a single record.

Client Script Execution
Client scripts are executed within a browser. Whether they are client scripts attached to
individual forms, or client script deployed globally to an entire record type, all execution occurs
in the browser.

Record-level (globally deployed) client scripts are executed after any existing form-based client
scripts are run, and before any user event scripts. This means that record-level client scripts can
run on both built-in and custom forms.

Note that there are some scripts that are considered to be client scripts, yet they make calls back
to a NetSuite database. In this case you are working with records as “remote objects” on the
client.

The following sample is a client script that has been attached to a Sales Order form. (For
information on attaching client scripts to forms, see Step 3: Attach Script to Form.) When the
user saves the Sales Order, the script gets the value of the item field on the Item sublist, then
loads a specific Inventory Item record based on the value of the item in the Item sublist. The
script then sets a value on the Inventory Item record and submits the record. Although there
is backend activity being executed in this script, the script's initial execution is based on the
saveRecord client event trigger (see Client Event Types), therefore it is still considered to be a
client script.

// Client side script on sales order, on save
// Load the 1st item and mark it inactive
function onSave()
{
 var id = nlapiGetLineItemValue('item', 'item', 1);
 var record = nlapiLoadRecord('inventoryitem', id);
 record.setFieldValue('isinactive', 'T');
 nlapiSubmitRecord(record);

 return true;
}

Client Scripts
Client Event Types

131

SuiteScript Developer & Reference Guide

Client Event Types
In NetSuite, client scripts can be executed on 10 different client-side events. These client events
can occur when a user loads a NetSuite form into the browser, or when a user selects a field or
a field is updated. Field updates can occur when a user updates a field, or when a field is auto-
updated through a sourcing relationship with another field. A client event can also occur when
a user clicks the Submit or Save button on a NetSuite page.

The following table describes each client event type and the actions associated with the
event. Note that the functions that are called on each event type do not have to be written as
pageInit() or fieldChanged(), and so on. However, when writing your client script, it is best
practice to indicate the event type in the function name, for example: pageInit_alertSalesRep(),
or validateField_department(), or saveRecordCustomer().

Client Event Type
(and sample
function name)

Parameters Returns Description

pageInit type : the mode in
which the record is
being accessed. These
modes can be set to:

• create

• copy

• edit

 This client event occurs when the page
completes loading or when the form is reset.
This function is automatically passed the type
argument from the system.

This is similar to an onLoad JavaScript client-side
event.

See Page Init Sample.

saveRecord Boolean This client event occurs when the submit button
is pressed but prior to the form being submitted.
You should always return either true or false
from a saveRecord event. A return value of false
suppresses submission of the form.

See Save Record Sample.

validateField type : the sublist
internal ID

name : the field
internal ID

linenum : line number
if this is a sublist. Line
numbers start at 1, not
0.

Boolean This client event occurs whenever a field is about
to be changed by the user or by a client side call.
Returning false from this function prevents the
field's value from changing.

This function is automatically passed up to three
arguments by the system: type, name, linenum.

This event type is similar to an onBlur JavaScript
client-side event.

In NetSuite, validateField events execute on
fields added in beforeLoad user event scripts.

Note: This event type does NOT apply to drop-
down select or check box fields.

See Validate Field Sample.

Client Scripts
Client Event Types

132

SuiteScript Developer & Reference Guide

Client Event Type
(and sample
function name)

Parameters Returns Description

fieldChanged type : the sublist
internal ID

name : the field
internal ID

linenum : line number
if this is a sublist. Line
numbers start at 1, not
0.

 This client event occurs whenever a field is
changed by the user or by a client side call.
This event can also occur directly through
beforeLoad user event scripts.

This client event does not occur when field
information is changed or appears in the page
URL. Use the pageInit event to handle URLs that
may contain updated field values.

This function is automatically passed up to three
arguments by the system: type, name, linenum.

This event type is similar to an onChange
JavaScript client-side event.

See Field Changed Sample.

postSourcing type : the sublist
internal ID

name : the field
internal ID

 This client event occurs following a field change
once all the field's child field values are sourced
from the server. Enables fieldChange style
functionality to occur once all dependent field
values have been set.

This function is automatically passed up to two
arguments from the system: type, name.

See Post Sourcing Sample.

lineInit type : the sublist
internal ID

 This client event occurs when an existing line
is selected. It can be thought of as the pageInit
function for sublist line items (inlineeditor
and editor sublists only). This function is
automatically passed the type argument from
the system.

validateLine type : the sublist
internal ID

Boolean This client event occurs prior to a line being
added to a sublist (inlineeditor or editor sublists
only). It can be thought of as the saveRecord
equivalent for sublist line items (inlineeditor and
editor).

Returns false to reject the operation.
References to fields should be done using
nlapiGetCurrent*** functions.

This function is automatically passed the type
argument from the system.

recalc type : the sublist
internal ID

 This event occurs after a sublist change, but only
if the sublist change causes the total to change.

This event is designed to be used for updating
a global total, not for manipulating the
current line item value. Do not call any

Client Scripts
Form-level and Record-level Client Scripts

133

SuiteScript Developer & Reference Guide

Client Event Type
(and sample
function name)

Parameters Returns Description

getCurrentLineItem or setCurrentLineItem
functions for this event; they will not work!
Instead use the validateLine event.

Notes:

• Recalc functions will not execute when
the Add Multiple button is used to add
multiple line items.

• Scripts that execute on recalc events
do not need to include a call to
nlapiCommitLineItem(type) since
recalculation occurs automatically.
Calling nlapiCommitLineItem will end up
calculating the line twice.

validateInsert type : the sublist
internal ID

Boolean The validateInsert event occurs when you insert
a line into an edit sublist. For information on
the edit sublist type, see Editor Sublists in the
NetSuite Help Center.

The UI equivalent of this event is when a user
selects an existing line in a sublist and then clicks
the Insert button. In SuiteScript, the equivalent
action is calling nlobjRecord.insertLineItem(...).
Note that returning false on a validateInsert
blocks the insert.

validateDelete type : the sublist
internal ID

Boolean The validateDelete event occurs when you try
to remove an existing line from an edit sublist.
Returning false blocks the removal.

For information on the edit sublist type, see
Editor Sublists in the NetSuite Help Center.

*The ValidateField and FieldChanged scripts require a null line item for body fields.

Form-level and Record-level Client Scripts

Form-based client scripts run against specific fields and forms. Record-level client scripts,
similar to user event scripts, are deployed globally and run against an entire record type. For
example, record-level client scripts can be deployed to run against all Invoice records or all
Customer records in the system.

Record-level client scripts run independent of any client scripts already attached to a specific
form on the record. Record-level client scripts can also be used on forms and lists that have
been generated through UI Objects during Suitelets development. Form-based client scripts
cannot be used by Suitelets.

Client Scripts
Client Script Metering

134

SuiteScript Developer & Reference Guide

Additionally, record-level clients scripts allow you to set audience definitions on the Script
Deployment page. Defining an audience for the script deployment allows you to specify which
members of your company, which departments, and which roles will be able to see the record-
level customizations that have been implemented.

To deploy record-level client scripts into your account, you must follow the deployment model
used for Suitelet, user event, scheduled, and portlet scripts. (See Running Scripts in NetSuite
Overview to learn how to run a record-level script in NetSuite.)

Form-level client scripts, however, require only that the client script is attached to the
individual form it is running against. For details on attaching client scripts to forms, see Step 3:
Attach Script to Form.

Note: You can deploy up to 10 record-level client script to any record types that are
already supported in the existing form-based model. For information on records
supported in client scripting, see SuiteScript Supported Records in the NetSuite
Help Center.

Client Script Metering
Client scripts are metered or governed on a per-script basis. For example, if an account has one
form-level client script attached to a form, and one record-level client script deployed to the
record (which contains the form), each client script can total 1000 units. Units are not shared
among the client scripts that are associated with a form or record.

Note: For information on script metering and the SuiteScript governance model, see
SuiteScript Governance.

Role Restrictions in Client SuiteScript
Running a client script to access a record will result in an error if the role used does not have
permission to view/edit that record. Client SuiteScript respects the role permissions specified in
the user's NetSuite account.

Example

The following is a client script, which you can attach to a custom sales order form and set to
execute on the field change client event.

function email(){
 var salesRep = nlapiGetFieldValue('salesrep');
 var salesRepEmail = nlapiLookupField('employee', salesRep, 'email');
 alert(salesRepEmail);
}

If you are logged in as admin, when you load the sales order with this form, and then select the
Sales Rep field, you will receive the alert. However, if you log in using a non-admin role (such as

Client Scripts
How Many Client Events Can I Execute on One Form?

135

SuiteScript Developer & Reference Guide

Sales Manager), or a role that does not have permission to view/edit Employee records, you will
receive an error when you select the Sales Rep field.

To work around this issue, as the script developer you must consider the types of users who
may be using your custom form and running the script. Consider which record types they do
and do not have access to. If it is vital that all who run the script have access to the records in
the script, you may need to redefine the permissions of the users (if your role is as an admin).
Or you may need to rewrite your script so that it references only those record types that all
users have access to.

Another consideration is to write the script as a server-side user event script and set the
“Execute As Admin” preference on the script's Script Deployment page. Note that in the sample
script above, you would not be able to run the script as a user event script and throw an alert, as
alerts are a function of client scripts only. However, you could rewrite the script so that it emails
the user the sales rep's email address (instead of throwing an alert).

Note: For information on user event scripts, see User Event Scripts. For information on
executing scripts as admin, see Executing Scripts Using a Specific Role.

How Many Client Events Can I Execute on One Form?
Client scripts have a limit of 10 client events per form. The following figure shows the Custom
Code tab on a Custom Entry Form for a Customer record. If you choose, you can run a script
that contains client event functions for all 10 available event types. This figure shows only five
client event functions are specified within this script, but all 10 in one script file is supported.

For information on client event functions, see Client Event Types.

Client Scripts
Error Handling and Debugging Client SuiteScript

136

SuiteScript Developer & Reference Guide

Note: For information on attaching a client script to a form and running the script in your
account, see Step 3: Attach Script to Form.

Error Handling and Debugging Client SuiteScript

Important: You cannot debug form or record-level client scripts in the SuiteScript
Debugger. To debug client scripts, NetSuite recommends using either the
Firebug debugger, which integrates with Firefox, or the Microsoft Script
Debugger, which integrates with Internet Explorer. For instructions on
working with either of these debuggers, please see the documentation
provided with each product.

Regarding error handling in client SuiteScript, NetSuite catches and throws alerts for all
unhandled SuiteScript errors that occur in both form- and record-level client scripts.

Note that alerts provide the scriptId of the Script record. This is information that will help
NetSuite administrators locate the specific SuiteScript file that is throwing the error.

Also note that like other script types, the Script record page for record-level client scripts
includes an Unhandled Errors subtab. NetSuite administrators can use this tab to specify
who, if anyone, they want to receive emailed messages when script errors occur. (Go to
Customization > Scripting > Scripts > New > Client to access the Script record page for record-
level client scripts.)

Additionally, the Script Deployment page for record-level client scripts includes an Execution
Log subtab, on which all script errors are logged. (Go to Customization > Scripting > Script
Deployments > to select your deployment.)

Client Remote Object Scripts
A client remote object script is a client-side SuiteScript that makes a call to the NetSuite server
to create, load, copy, or transform a record object.

The following is an example of a client remote object script. On the saveRecord client event, the
script executes the nlapiCreateRecord(...) function to create a new estimate record. This script
creates the new Estimate, sets values on the new record, and then submits the record, all from
within a script that is executed on the client.

Example

function onSave()
{
// access the NetSuite server to instantiate a new Estimate

Client Scripts
Running a Client Script in NetSuite

137

SuiteScript Developer & Reference Guide

var rec = nlapiCreateRecord('estimate'); rec.setFieldValue('entity','846');
rec.insertLineItem('item',1);
rec.setLineItemValue('item','item', 1, '30');
rec.setLineItemValue('item','quantity', 1, '500');

var id = nlapiSubmitRecord(rec, true);

return true;
}

Important: You cannot use client remote object scripts to access a remote object in
dynamic mode. See the help topic Client Scripting and Dynamic Mode for
details.

Running a Client Script in NetSuite
To run a client script in NetSuite, you must:

1. Create a JavaScript file for your client script.

2. Load the file into NetSuite.

3. Attach your script file to a custom form (if you have written a form-level client script).

4. Create a Script record (if you have written a record-level client script).

5. Define all runtime options on the Script Deployment page (if you have written a record-
level client script).

If you are new to SuiteScript and need information on each of these steps, see Running Scripts
in NetSuite Overview.

Client SuiteScript Samples
The following samples are covered in this section. They illustrate how client event functions are
used to interact with the form.

• Writing Your First Client Script

• Page Init Sample

• Save Record Sample

• Post Sourcing Sample

• Validate Field Sample

• Field Changed Sample

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2943025.html

Client Scripts
Client SuiteScript Samples

138

SuiteScript Developer & Reference Guide

Writing Your First Client Script

A great way to get started with client scripts is to deploy a script that has a function on every
exposed event. Consider the following client script:

function myPageInit(type)
{
 alert ('myPageInit');
 alert ('type=' + type);
}

function mySaveRecord()
{
 alert ('mySaveRecord');
 returntrue ;
}

function myValidateField(type, name, linenum)
{
 if (name == 'custentity_my_custom_field')
 {
 alert ('myValidateField');
 alert ('type=' + type);
 alert ('name=' + name);
 alert ('linenum=' + linenum);
 }
 returntrue ;
}

function myFieldChanged(type, name, linenum)
{
 alert ('myFieldChanged');
 alert ('type=' + type);
 alert ('name=' + name);
 alert ('linenum=' + linenum);
}

function myPostSourcing(type, name)
{
 alert ('myPostSourcing');
 alert ('type=' + type);
 alert ('name=' + name);
}

function myLineInit(type)
{
 alert ('myLineInit');
 alert ('type=' + type);
}

function myValidateLine(type)
{
 alert ('myValidateLine');
 alert ('type=' + type);
}

function myValidateInsert(type)
{

Client Scripts
Client SuiteScript Samples

139

SuiteScript Developer & Reference Guide

 alert ('myValidateInsert');
 alert ('type=' + type);
}

function myValidateDelete(type)
{
 alert ('myValidateDelete');
 alert ('type=' + type);
}

function myRecalc(type)
{
 alert ('myRecalc');
 alert ('type=' + type);
}

This sample displays all the available arguments for every script-triggered event. Notice that
some functions return a Boolean while some do not. Also note that some functions have
linenum as one of the arguments. Sublist functions do not have a linenum argument because
the event is confined to the specific line that triggered it.

The function myValidateField has an additional if block to check whether the event was
invoked by a custom field with the id custentity_my_custom_field . This ensures the logic is
executed only under the correct circumstances.

Note: It is important to check the argument values to branch execution logic. This
improves performance and avoids logic executed indiscriminately.

To obtain a better understanding on when these client script events are triggered and what
the arguments contain, upload the JavaScript file to the SuiteScript folder in the NetSuite file
cabinet, and deploy the script by specifying the functions in a script record.

Client Scripts
Client SuiteScript Samples

140

SuiteScript Developer & Reference Guide

Note: When saved the Script record is saved, the system will automatically prefix the script
ID with customscript. In the figure above, the final unique ID for this client script
will be customscript_wlf_my_client_script. This custom script record identifier
can be passed as a value to the scriptId parameter that is included in several
SuiteScript APIs.

The previous screenshot demonstrates the definition of a record-level client script. This script is
deployed globally to any records specified in the Deployments tab (see figure). In this case, this
script will be deployed to all Case records in the system.

Client Scripts
Client SuiteScript Samples

141

SuiteScript Developer & Reference Guide

When a person opens any Case record, the following alerts are thrown right way on the
pageInit (page load) trigger:

When you click OK to begin editing the record, the type=edit alert is thrown.

Client Scripts
Client SuiteScript Samples

142

SuiteScript Developer & Reference Guide

Page Init Sample

The Page Init function is called when the form is first loaded. Some of the functions that can be
performed on PageInit include the following:

• Populate field defaults

• Disable or enable fields

• Change field availability or values depending on the data available for the record

• Add flags to set initial values of fields

• Provide alerts where the data being loaded is inconsistent or corrupt

• Retrieve user login information and change field availability or values accordingly

• Validate that fields required for your custom code (but not necessarily required for the
form) exist

Examples

Set Default Field Values for a Field

function pageInit()
{
 // if fieldA is either NULL or equal to "valueA"
 if ((nlapiGetFieldValue('fieldA').length == 0) || (nlapiGetFieldText('fieldA') == "valueA"))
 {
 // then set fieldA to valueB
 nlapiSetFieldText('fieldA', nlapiGetFieldText('valueB'));
 }
}

Disable a Field

Client Scripts
Client SuiteScript Samples

143

SuiteScript Developer & Reference Guide

function pageInit()
{
 //On init, disable two optional Other fields: fieldA and fieldB.
 nlapiDisableField('custrecord_other_fieldA', true);
 nlapiDisableField('custrecord_other_fieldB', true);
}

Display User Profile Information

function pageInit()
{
 //On page init display the currently logged in User's profile information.

 // Set variables
 var userName = nlapiGetUser(); // entity id of the current user
 var userRole = nlapiGetRole(); // id of the current user's role
 var userDept = nlapiGetDepartment(); // id of the current user's department
 var userLoc = nlapiGetLocation(); // id of the current user's location

 // Display information
 alert("Current User Information" + "\n\n" +
 "Name: " + userName + "\n" +
 "Role: " + userRole + "\n" +
 "Dept: " + userDept + "\n" +
 "Loc: " + userLoc
);
}

Save Record Sample

The Save Record function is called when the user requests the form to be saved. This function
returns false to reject the operation. Use the Save Record function to provide alerts to the user
before committing the data. If it is necessary for the user to make changes before committing
the data, return false — otherwise display the alert, return true and allow the user to commit
the data.

You can also use the Save Record function to:

• Enable fields that were disabled with other functions

• Redirect the user to a specified URL

Examples

Requesting Additional Information

function saveRecord()
{
 // Check to see that fieldA is populated. If not, block the save and warn with a popup.

 if (String(nlapiGetFieldValue('fieldA')).length == 0)
 {

Client Scripts
Client SuiteScript Samples

144

SuiteScript Developer & Reference Guide

 alert("Please provide a value for fieldA");
 return false;
 }
 alert("Are you sure you want to Save the record?");
 return true;
}

Redirect the User to Another Location

function saveRecord()
{
 window.open('https://system.netsuite.com/[url string]');void(0)
 return true;
}

Post Sourcing Sample

(Transaction Forms Only)

The Post Sourcing function is called when a field is modified that sources information from
another field. Event handlers for this function behave similar to event handlers for the Change
Field function except that the function is called only after all sourcing is completed — it waits
for any slaved or cascaded field changes to complete before calling the user defined function.
Therefore, the event handler is not triggered by field changes for a field that does not have any
slaved fields.

If there is at least one field sourced from a drop down (either a built-in sourcing or one created
through customization) the post sourcing event is fired. Therefore, if you need to do something
based on sourced values, you should do it in Post Sourcing rather than from Field Changed.

Example

On Sales order – Post sourcing

// Wait for all sourcing to complete from item field, get the rate field. If rate < 10, set it
to 20.
// Execute this post sourcing function
function postSourcing(type, name)
{
 // Execute this code when all the fields from item are sourced on the sales order.

 if(type =='item' && name =='item')
 {
 // Once all the fields from item are sourced
 var rate = nlapiGetCurrentLineItemValue('item', 'rate');
 var line = nlapiGetCurrentLineItemIndex(type);

 if(rate < 10)
 {
 nlapiSetCurrentLineItemValue('item', 'rate', 20);
 }
 }

Client Scripts
Client SuiteScript Samples

145

SuiteScript Developer & Reference Guide

}

Validate Field Sample

The ValidateField function is called whenever the user changes the value of a field. This
function returns false to reject the value.

Note: This event type does not apply to drop-down or check box fields.

Use the Validate Field function to validate field lengths, restrict field entries to a predefined
format, restrict submitted values to a specified range, validate the submission against entries
made in an associated field,

Examples

Validate Field Lengths

function ValidateField(type, name)
{
 // if fieldA is not at least 6 characters, fail validation
 if (name == 'fieldA')
 {
 var fieldALength = String(nlapiGetFieldValue('fieldA')).length;

 if (fieldALength < 6)
 {
 alert("FieldA must be at least 6 characters.");
 return false;
 }
 }
 // Always return true at this level, to continue validating other fields
 return true;
}

Validate Field is Uppercase

This sample uses a validate field function that ensure the value in the field with ID
custrecord_mustbe_uppercase is always set to uppercase.

function validateFieldForceUppercase(type, name)
{
 if (name == 'custrecord_mustbe_uppercase')
 {
 //obtain theupper casevaluevar upperCase = nlapiGetFieldValue('custrecord_mustbe_uppercase'
).toUpperCase();

 //make sureit hasn'tbeen setif (upperCase != nlapiGetFieldValue('custrecord_mustbe_uppercas
e'))
 {
 nlapiSetFieldValue('custrecord_mustbe_uppercase', upperCase, false);
 }
 returntrue ;

Client Scripts
Client SuiteScript Samples

146

SuiteScript Developer & Reference Guide

 }
}

Since this function is invoked every time there is an attempt to move the focus way from a
field, the first if block ensures the uppercase logic is executed only for the correct field. Since
using the API nlapiSetFieldValue would also trigger events, the second if block is put in place to
ensure the code will not get into an infinite loop. The final return true statement ensures the
focus can be successfully taken away from the field.

Field Changed Sample

The Field Changed function is called when a new value for a field is accepted. Use the Field
Changed function to provide the user with additional information based on user input, disable
or enable fields based on user input.

Examples

Requesting Additional Information

function FieldChanged(type, name)
{
 // Prompt for additional information, based on values already selected.
 if ((name == 'fieldA') && (nlapiGetFieldText('fieldA') == "Other"))
 {
 alert("Please provide additional information about fieldA
 in the text field below.");
 }
}

User Event Scripts
What Are User Event Scripts?

147

SuiteScript Developer & Reference Guide

Chapter 22 User Event Scripts
The following topics are covered in this section. If you are new to user event scripts, these topics
should be read in order:

• What Are User Event Scripts?

• User Event Script Execution

• Setting the User Event type Argument

• User Event Script Execution Types

• How Many User Events Can I Have on One Record?

• Running a User Event Script in NetSuite

• User Event Script Samples

What Are User Event Scripts?
User event scripts are executed on the NetSuite server. They are executed when users perform
certain actions on records, such as create, load, update, copy, delete, or submit. Most standard
NetSuite records and custom record types support user event scripts.

Important: User event scripts cannot be executed by other user event scripts or by
workflows with a Context of User Event Script. In other words, you cannot
chain user event scripts. You can, however, execute a user event script from a
call within a NetSuite scheduled script, a portlet script, or a Suitelet.

With user event scripts you can do such things as:

• Implement custom validation on records

• Enforce user-defined data integrity and business rules

• Perform user-defined permission checking and record restrictions

• Implement real-time data synchronization

• Define custom workflows (redirection and follow-up actions)

• Implement custom form customizations

Note: To know which standard record types support user event scripts, see SuiteScript
Supported Records in the NetSuite Help Center. If a record supports user event
scripts, an X will appear in the column called “Scriptable in Server SuiteScript”.

Which User Event Types are Available in SuiteScript?
The user events types that are available in scripting are:

User Event Scripts
User Event Script Execution

148

SuiteScript Developer & Reference Guide

• Before Load – event occurs when a read operation on a record takes place. A Before Load
event occurs when a user clicks Edit or View on an existing record, or clicks New to create
a new record.

• Before Submit – event occurs when a record is submitted, but before the changes are
committed to the database. A Before Submit event occurs when a user clicks Save (or
Submit) on a record.

• After Submit – event occurs after the changes to the record are committed to the database.
An After Submit event occurs after a user has clicked Save (or Submit) on a record.

See User Event Script Execution Types or specific details on these event types.

User Event Script Execution

User event scripts are executed based on operation types defined as: beforeLoad,
beforeSubmit, and after submit. See the following sections for details:

• User Event beforeLoad Operations

• User Event beforeSubmit and afterSubmit Operations

For information on the arguments each user event function takes, see Setting the User Event
type Argument.

User Event beforeLoad Operations

The following steps and diagram provide an overview of what occurs during a beforeLoad
operation:

1. The client sends a read operation request for record data. (The client request can come
from the user interface, web services, server–side SuiteScript calls, CSV imports, or
XML.)

2. Upon receiving the request, the application server performs basic permission checks on
the client.

3. The database loads the requested information into the application server for processing.
This is where the beforeLoad operation occurs – before the requested data is returned to
the client.

4. The client receives the now validated/processed beforeLoad data.

User Event Scripts
User Event Script Execution

149

SuiteScript Developer & Reference Guide

Note: Standard records cannot be sourced during a beforeLoad operation. Use the
pageInit client script for this purpose. See Client Scripts.

User Event beforeSubmit and afterSubmit Operations

The following steps and diagram provide an overview of what occurs on submit (
beforeSubmit and afterSubmit) operations:

1. The client performs a write operation by submitting data to the application server. (The
client request can come from the user interface, web services, server–side SuiteScript
calls, CSV imports, or XML.) The application server:

a. performs basic permission checks on the client

b. processes the submitted data and performs specified validation checks during a
beforeSubmit operation

The submitted data has NOT yet been committed to the database.

2. Once data has been validated, it is committed to the database.

3. If this (newly committed) data is then called by an afterSubmit operation, the data is
taken from the database and is sent to the application server for additional processing.
Examples of afterSubmit operations on data that are already committed to the database
include, but are not limited to:

a. sending email notifications (regarding the data that was committed to the
database)

b. creating child records (based on the data that was committed to the database)

User Event Scripts
Setting the User Event type Argument

150

SuiteScript Developer & Reference Guide

c. assigning tasks to employees (based on data that was committed to the database)

Note: Asynchronous afterSubmit user events are only supported during webstore
checkout.

Setting the User Event type Argument

For User Event scripts, you can associate a script execution context with the type argument of
the script's function. For example, if you have a script associated with a beforeLoad operation
for a given record, and you would like to cause an action only when the record is initially
created, specify create as the script execution type.

Important: The type argument is an auto-generated argument passed by the system.
You can NOT set this as a parameter for a specific deployment like other
function arguments.

//Define the User Event function for a beforeLoad operation.
function beforeLoadSalesOrder(type)
{
 var newRecord = nlapiGetNewRecord();
 var cutoffRate = custscript_maximumdiscountlevel;
 var discountRate = newRecord.getFieldValue('discountrate');

 //Define the value of the type argument.
 if (type == ' create ' && discountRate != null && discountRate.length > 0

User Event Scripts
Setting the User Event type Argument

151

SuiteScript Developer & Reference Guide

 && cutoffRate != null && cutoffRate.length > 0)
 {
 discountRate = Math.abs(parseFloat(discountRate));
 ...remainder of code...

Event type arguments vary depending on whether the event will occur on beforeLoad,
beforeSubmit, or afterSubmit operations. The following table lists the script execution event
types you can use with each operation.

Note: When deploying user event scripts in NetSuite, you can also define a script
execution event type using the Event Type drop-down list on the Script
Deployment page. Be aware that the event type you choose from the drop-down
list will override the type(s) specified in the actual script. For details, see Setting
Script Execution Event Type from the UI. For general information on defining other
deployment parameters for User Event scripts, see Steps for Defining a Script
Deployment.

All of the events have the common type argument which indicates the type of operation
that invoked the event. This argument allows the script code to branch out to different logic
depending on the operation type. For example, a script with “deltree” logic that deletes a record
and all of its child records should only be invoked when type equals to “delete”. It is very
important that user event scripts check the value of the type argument to avoid indiscriminate
execution.

The following sample demonstrates how to check the value of the type argument for each
event. Event types include beforeLoad, beforeSubmit, afterSubmit. (See User Event Script
Execution Types for more details.)

function myBeforeLoadUE(type)
{
 if (type == 'create')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is create');
 }

 if (type == 'view')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is view');
 }

 if (type == 'edit')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is edit');
 }
}

function myBeforeSubmitUE(type)
{
 if (type == 'create')
 {

User Event Scripts
Setting the User Event type Argument

152

SuiteScript Developer & Reference Guide

 nlapiLogExecution('DEBUG', 'type argument', 'type is create');
 }

 if (type == 'delete')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is delete');
 }

 if (type == 'edit')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is edit');
 }

 if (type == 'cancel')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is cancel');
 }
}

function myAfterSubmitUE(type)
{
 if (type == 'create')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is create');
 }

 if (type == 'delete')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is delete');
 }

 if (type == 'edit')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is edit');
 }

 if (type == 'approve')
 {
 nlapiLogExecution('DEBUG', 'type argument', 'type is approve');
 }
}

Note: Logging done with nlapiLogExecution may be classified into 4 types: DEBUG, AUDIT,
ERROR, and EMERGENCY. The source code should correctly set the logging type.
Log type filtering may be set during runtime to give concise and useful logged
information.

After uploading the source code file to the SuiteScript folder in the File Cabinet, a user event
script record is defined by going to Set Up > Customization > Scripts > New > User Event. The
following shows the script record definition page.

User Event Scripts
User Event Script Execution Types

153

SuiteScript Developer & Reference Guide

User Event Script Execution Types
The following table lists all the execution context types that are supported in each user event
type:

Operation Type Execution Event Type Notes

beforeLoad type : the read operation type

• create

• edit

• view

• copy

• print

• email

• quickview

form : an nlobjForm object
representing the current form

request : an nlobjRequest
object representing the GET
request (Only available for
browser requests.)

Event occurs whenever a read operation on a record
occurs. These operations include navigating to a record
in the UI, reading a record in web services, or calling
nlapiLoadRecord.

The function cannot be used to source standard records.
Use the pageInit client script for this purpose. See Client
Event Types.

The user-defined function is executed prior to returning
the record or page. The function is passed either the type,
form, or request arguments by the system.

Note: beforeLoad user events cannot be triggered
when you load/access an online form.

beforeSubmit type : the write operation type

• create

• edit

• delete

Events on a beforeSubmit operation occur prior to any
write operation on the record. Changes to the current
record at this stage will be persisted during the write
operation.

The beforeSubmit operation is useful for validating
the submitted record, performing any restriction and

User Event Scripts
User Event Script Execution Types

154

SuiteScript Developer & Reference Guide

Operation Type Execution Event Type Notes

• xedit - (see Inline Editing
and SuiteScript)

• approve - (only available
for certain record types)

• reject - (only available for
certain record types)

• cancel - (only available
for certain record types)

• pack- (only available for
certain record types, for
example Item Fulfillment
records)

• ship - (only available for
certain record types, for
example Item Fulfillment
records)

• markcomplete
(specify this type for a
beforeSubmit script to
execcute when users
click the Mark Complete
link on call and task
records)

• reassign (specify this
type for a beforeSubmit
script to execute when
users click the Grab link
on case records)

• editforecast (specify this
type for a beforeSubmit
script to execute
when users update
opportunity and
estimate records using
the Forecast Editor)

permission checks, and performing any last-minute
changes to the current record.

Notes:

• The approve, cancel, and reject argument types are
only available for record types such as sales orders,
expense reports, timebills, purchase orders, and
return authorizations.

• Only beforeLoad and afterSubmit user event scripts
will execute on the Message record type when a
message is created by an inbound email case capture.
Scripts set to execute on a beforeSubmit event will
not execute.

• User Event Scripts cannot override custom field
permissions. For instance, if a user’s role permissions
and a custom field’s permissions differ, beforeSubmit
cannot update the custom field, even if the script is
set to execute as Administrator.

Best practices: To set a field on a record or make ANY
changes to a record that is being submitted, do so on a
beforeSubmit operation, NOT an afterSubmit operation.
If you set a field on an afterSubmit, you will be duplicating
a record whose data has already been committed to the
database.

Important: Do not attempt to load or submit the
current record with nlapiLoadRecord or
nlapiSubmitRecord on a beforeSubmit
event. Doing so will result in the loss of
data.

afterSubmit type : the write operation type

• create

• edit

• delete

• xedit - (see Inline Editing
and SuiteScript)

• approve - (only available
for certain record types)

Events on an afterSubmit operation occur immediately
following any write operation on a record.

Note: Asynchronous afterSubmit user events are only
supported during webstore checkout.

The afterSubmit operation is useful for performing any
actions that need to occur following a write operation
on a record. Examples of these actions include email
notification, browser redirect, creation of dependent
records, and synchronization with an external system.

User Event Scripts
How Many User Events Can I Have on One Record?

155

SuiteScript Developer & Reference Guide

Operation Type Execution Event Type Notes

• cancel - (only available
for certain record types)

• reject - (only available for
certain record types)

• pack - (only available for
certain record types, for
example Item Fulfillment
records)

• ship - (only available for
certain record types, for
example Item Fulfillment
records)

• dropship - (for purchase
orders with items
specified as “drop ship”)

• specialorder - (for
purchase orders with
items specified as
“special order”)

• orderitems - (for
purchase orders with
items specified as “order
item”)

• paybills - (use this type
to trigger afterSubmit
user events for Vendor
Payments from the Pay
Bill page. Note that
no sublist line item
information will be
available . Users must
do a lookup/search to
access line item values.)

Note: The approve, cancel, and reject argument types
are only available for record types such as sales
orders, expense reports, timebills, purchase
orders, and return authorizations.

Best Practices: Users should be doing post-processing of
the current record on an afterSubmit.

Use Case:

1. Load the record you want to make changes to by calling
the nlapiLoadRecord API. Do NOT load the record object
by using nlapiGetRecord, as this API returns the record in
READ ONLY mode; therefore, changes made to the record
cannot be accepted and an error is thrown.

2. After using nlapiLoadRecord to load the record, make
the changes to the record, and submit the record.

For example, if you have a sales order that you want tied to
an estimate, load the sales order record, update it with any
information, and submit it again.

How Many User Events Can I Have on One Record?

There is no limit to the number of user event scripts you can execute on a particular record
type. For example, you could have 10 beforeLoad, 9 beforeSubmit, and 15 afterSubmit
executing functions on a Customer record. However, assigning this many executable functions
to one record type is highly discouraged, as this could negatively affect user experience with
that record type. In other words, if you have 10 beforeLoad scripts that must complete their
execution before a record loads into the browser for the user, this may significantly increase the
time it takes for the record to load. As a consequence, the user's experience working with the
record will be negatively affected.

User Event Scripts
Running a User Event Script in NetSuite

156

SuiteScript Developer & Reference Guide

Developers who include scripts in their bundles should also be aware of the number of user
events scripts that might already be deployed to records types in the target account. For
example, if 8 beforeSubmit user event scripts are deployed to the Sales Order record in the
target account, and your bundle includes another 7 beforeSubmit user event scripts on the Sales
Order record type, this is 15 beforeSubmit scripts running every time a user clicks Save on the
record. Although all of the scripts will run, the time it takes for the record to actually save may
be significantly increased, again, negatively affecting user experience with the record.

If you must run multiple user event scripts on one record type, and are experiencing very
slow execution times, use the Script Performance Monitor SuiteApp to troubleshoot the
issue. The Script Performance Monitor keeps 30 days worth of performance data for each
scriptable record type. You can view the overall execution time of each record instance, as well
as the execution time of each individual script. See the help topic Application Performance
Management (APM) for additional information.

Running a User Event Script in NetSuite
To run a user event script in NetSuite, you must:

1. Create a JavaScript file for your user event script.

2. Load the file into NetSuite.

3. Create a Script record.

4. Define all runtime options on the Script Deployment page.

If you are new to SuiteScript and need information on each of these steps, see Running Scripts
in NetSuite Overview.

User Event Script Samples
The following samples are provided in this section:

• Generating a Record Log

• Creating Follow-up Phone Call Records for New Customers

• Enhancing NetSuite Forms with User Event Scripts

Generating a Record Log

This user event script creates an execution log entry containing the type, record type, and
internalId of the current record.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4283522055.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4283522055.html

User Event Scripts
User Event Script Samples

157

SuiteScript Developer & Reference Guide

function beforeLoad(type,form)
{
 var newId = nlapiGetRecordId();
 var newType = nlapiGetRecordType();
 nlapiLogExecution('DEBUG','<Before Load Script> type:'+type+', RecordType: '+newType+', Id:'
+newId);
}
function beforeSubmit(type)
{
 var newId = nlapiGetRecordId();
 var newType = nlapiGetRecordType();
 nlapiLogExecution('DEBUG','<Before Submit Script> type:'+type+', RecordType: '+newType+', Id
:'+newId);
}
function afterSubmit(type)
{
 var newId = nlapiGetRecordId();
 var newType = nlapiGetRecordType();
 nlapiLogExecution('DEBUG','<After Submit Script> type:'+type+', RecordType: '+newType+', Id:
'+newId);
}

Creating Follow-up Phone Call Records for New Customers

A CRM use case that could be addressed with user event scripts is creating a follow-up phone
call record for every newly created customer record. The solution is to deploy a script on the
customer record's afterSubmit event that will create the phone call record.

In the above use case, afterSubmit is a better event to handle the logic than beforeSubmit. In
the beforeSubmit event, the customer data has not yet been committed to the database. Hence,
putting the phone call logic in the afterSubmit event guarantees there will not be an orphan
phone call record.

Note: During design time, developers should carefully consider in which event to
implement their server logic.

function followUpCall_CustomerAfterSubmit(type)
{
 //Only executethe logic if a new customer is created
 if (type == 'create')
 {
 //Obtain a handle to the newly created customer record
 var custRec = nlapiGetNewRecord();

 if (custRec.getFieldValue('salesrep') != null)
 {
 //Create a new blank instance of a Phone Call
 var call = nlapiCreateRecord("phonecall");

 //Setting the title field on the Phone Call record
 call.setFieldValue('title', 'Make follow-up call to new customer');

User Event Scripts
User Event Script Samples

158

SuiteScript Developer & Reference Guide

 //Setting the assigned field to the sales rep of the new customer
 call.setFieldValue('assigned', custRec.getFieldValue('salesrep'));

 //Use the library function to obtain a date object that represents tomorrow
 var today = newDate();
 var tomorrow = nlapiAddDays(today, 1);
 call.setFieldValue('startdate', nlapiDateToString(tomorrow));

 //Setting the phone field to the phone of the new customer
 call.setFieldValue('phone', custRec.getFieldValue('phone'));

 try
 {
 //committing the phone call record to the database
 var callId = nlapiSubmitRecord(call, true);
 nlapiLogExecution('DEBUG', 'call record created successfully', 'ID = ' + callId);
 }
 catch (e)
 {
 nlapiLogExecution('ERROR', e.getCode(), e.getDetails());
 }
 }
 }
}

Note: APIs such as nlapiSubmitRecord that access the database should be wrapped in try-
catch blocks.

The phone call use case may be further enhanced by redirecting the user to the Phone Call page
once it is created. This is accomplished by putting in redirect logic after the phone call record is
submitted.

try
{
 //committing the phone call record to the database
 var callId = nlapiSubmitRecord(call, true);
 nlapiLogExecution('DEBUG', 'call record created successfully', 'ID = ' + callId);

 //Redirect the user to the newly created phone call
 nlapiSetRedirectURL('RECORD', 'phonecall', callId, false, null);
}
catch (e)
{
 nlapiLogExecution('ERROR', e.getCode(), e.getDetails());
}

User event scripts are not only triggered as a result of user actions carried out through the
browser, they are also triggered by other means as well (for example, CSV or Web Services).

Examples:

• Using CSV to import records triggers before submit and after submit events

User Event Scripts
User Event Script Samples

159

SuiteScript Developer & Reference Guide

• Using the SuiteTalk “GET” operation to retrieve an existing record would trigger its before
load event.

Sometimes these events invoke scripts not designed to be executed in that manner
and create undesirable results. To prevent a script from getting executed by the wrong
execution context, use the nlobjContext object as a filter.

For example, to ensure a before load user event script is executed only when a record is
created using the browser interface, the script must check both the type argument and the
execution context as (as shown below):

 function myBeforeLoadUE(type)
 {
 //obtain the context object
 var context = nlapiGetContext();
 if (type == 'create' && context.getExecutionContext == 'userinterface')
 {...}
 }

Note that the API nlapiGetContext() is not exclusive to user event scripts. It can also be used in
Client Scripts and Suitelets.

Note: The nlobjContext object provides metadata of the script's context. Use this
information to help implement fine-grained control logic in SuiteScript.

Enhancing NetSuite Forms with User Event Scripts

Another common use of user event scripts is to dynamically customize or enhance entry forms
and transactions forms. This approach gives NetSuite forms the ability to customize themselves
in runtime – something that cannot be done with pre-configured, roles-based forms.

In NetSuite, entry forms and transaction forms are customized by administrators. The
placement of UI elements (fields, tabs, sublists) on a form can be arranged, or be made inline
or hidden depending on the business needs of the end users. Multiple forms can be created for
a record type and assigned to specific roles. Typically this kind of customization is done during
design time. Custom forms are confined to specific roles and do not allow for a lot of runtime
customization. A user event script on a record's beforeLoad event can provide flexibility to
runtime customization.

Note: For more specific information about NetSuite entry forms and transaction forms, see
the help topic Custom Forms in the NetSuite Help Center.

The key to using user event scripts to customize a form during runtime is a second argument
named form in the beforeLoad event. This optional argument is the reference to the entry/

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2852749.html

User Event Scripts
User Event Script Samples

160

SuiteScript Developer & Reference Guide

transaction form. Developers can use this to dynamically change existing UI elements, or add
new ones. The UI elements are added using the UI Objects API.

A use case for this scripting capability could be the following:

To improve month-end sales, a company introduces an end-of-month promotion that is only
active for the last five days of the month. All sales order forms must have a custom field called
“Eligible EOM Promotion” on the last five days of the month.

The following is a sample user event script that is meant to be deployed on the beforeLoad
event of the sales order record.

/***
 *This function is a module to implement at end of
 * month(last 5 days of month) promotion for sales
 * orders. It is meant to be deployed on the before
 * load event of the sales order record.
 */
function customizeUI_SalesOrderBeforeLoad(type, form)
{
 var currentContext = nlapiGetContext();

 //Execute the logic only when creating a sales order with the browser UI
 if (type == 'create' && currentContext.getExecutionContext() == 'userinterface')
 {
 var fieldId = 'custpage_eom_promotion';
 var fieldLabel = 'Eligible EOM promotion';
 var today = newDate();
 var month = today.getMonth();
 var date = today.getDate();
 nlapiLogExecution('DEBUG', 'month date', month + ' ' + date);

 //February
 if (month==1)
 {
 if (date==24 | date==25 | date==26 | date==27 | date==28 | date==29)
 form.addField(fieldId, 'checkbox', fieldLabel);
 }
 //31-day months
 elseif (month==0 | month==2 | month ==4 | month==6 | month==7 | month==9 | month==11)
 {
 if (date==27 | date==28 | date==29 | date==30 | date==31)
 form.addField(fieldId, 'checkbox', fieldLabel);
 }
 //30-day months
 else
 {
 if (date==26 | date==27 | date==28 | date==29 | date==30)
 form.addField(fieldId, 'checkbox', fieldLabel);
 }
 }
}

When the script is deployed, all sales order forms will display the Eligible EOM Promotion
check box during the last five days of the month.

User Event Scripts
User Event Script Samples

161

SuiteScript Developer & Reference Guide

Note that since these UI elements are created dynamically, they are superficial and do not have
supporting back end data models. There is a disconnect between the UI and back end data,
hence the script-created fields' values will not be saved.

UI elements (such as the Eligible EOM promotion field) created with user event scripts and
SuiteScript Objects are scriptable by client script APIs. A remedy to the disconnect problem is
linking the script-created field to a real field (with back end data support) via a client script.
The value of the real field, which might be made hidden or inline on the form definition, is
driven by the value entered in the script-created field. As a result, the real fields are populated
and the data is saved.

Suitelets
What Are Suitelets?

162

SuiteScript Developer & Reference Guide

Chapter 23 Suitelets
The following topics are covered in this section. If you are not familiar with Suitelets, these
topics should be read in order.

• What Are Suitelets?

• Suitelet Script Execution

• Building Custom Workflows with Suitelets

• Building Suitelets with UI Objects

• Backend Suitelets

• Reserved Parameter Names in Suitelet URLs

• SuiteScript and Externally Available Suitelets

• Running a Suitelet in NetSuite

• Suitelets Samples

What Are Suitelets?
Suitelets are extensions of the SuiteScript API that give developers the ability to build custom
NetSuite pages and backend logic. Suitelets are server-side scripts that operate in a request-
response model. They are invoked by HTTP GET or POST requests to system generated URLs.

Note: Suitelets are not intended to work inside web stores. Use online forms to embed
forms inside a web store.

Shown below are screenshots of a Suitelet with a few fields. The Suitelet is invoked by making
a GET request from the browser. Notice that this Suitelet is built with SuiteScript UI Objects,
which encapsulate scriptable interface components that have a NetSuite look-and-feel.

Once a Suitelet has been deployed, developers can create NetSuite tasklinks to these scripts,
which can then be used to customize existing NetSuite centers.

Suitelets
What Are Suitelets?

163

SuiteScript Developer & Reference Guide

When the Submit button is clicked, the same Suitelet is invoked again with a HTTP POST
event. The values entered in the previous screen are displayed in inline (read-only) mode.

Below is the source code for this Suitelet. It is executed on the server, which generates HTML
and sends it to the browser.

function gettingStartedSuitelet(request, response)
{
 if (request.getMethod() == 'GET')
 {
 //Create the form and add fields to it
 var form = nlapiCreateForm("Suitelet - GET call");
 form.addField('custpage_field1', 'text', 'Text Field').setDefaultValue('This is a text fie
ld');
 form.addField('custpage_field2', 'integer', 'Integer Field').setDefaultValue(10);
 form.addField('custpage_field3', 'select', 'Select Field', 'customer');

 form.addSubmitButton('Submit');

 response.writePage(form);
 }
 //POST call
 else
 {
 var form = nlapiCreateForm("Suitelet - POST call");

 //create the fields on the form and populate them with values from the previous screen
 var resultField1 = form.addField('custpage_res1', 'text', 'Text Field value entered: ');
 resultField1.setDefaultValue(request.getParameter('custpage_field1'));
 resultField1.setDisplayType('inline');

 var resultField2 = form.addField('custpage_res2', 'integer', 'Integer Field value entered:
');
 resultField2.setDefaultValue(request.getParameter('custpage_field2'));
 resultField2.setDisplayType('inline');

 var resultField3 = form.addField('custpage_res3', 'select', 'Select Field value entered: ',
 'customer');
 resultField3.setDefaultValue(request.getParameter('custpage_field3'));
 resultField3.setDisplayType('inline');

 response.writePage(form);
 }
}

The entry point of the function has two mandatory arguments: request and response. These
arguments are instances of nlobjRequest and nlobjResponse, respectively.

Suitelets
Suitelet Script Execution

164

SuiteScript Developer & Reference Guide

Typically, invoking a Suitelet via a browser would make a HTTP GET call. The type of HTTP
call is determined by the nlobjRequest.getMethod() API. The code creates an nlobjForm object
and populates it with SuiteScript UI Objects. The populated form is sent to the response object
via the nlobjResponse.writePage(pageobject) API.

When the user clicks the Submit button, an HTTP POST call is made. The code's else block
obtains the values entered in the first page from the request object and populates them into
another nlobjForm object and sends it to response.writePage(pageobject).

Note: The JavaScript alert function is not supported in server-side scripts, such as
Suitelets.

function alert_test ()
{
alert('Hello World');
}

Suitelet Script Execution
The following steps and diagram provide an overview of the Suitelet execution process:

1. Client initiates an HTTP GET or POST request (typically from a browser) for a system-
generated URL. A web request object (nlobjRequest) contains the data from the client's
request.

2. The user's script is invoked, which gives the user access to the entire Server SuiteScript
API as well as a web request and web response object.

3. NetSuite processes the user's script and returns a web response object (nlobjResponse) to
the client. The response can be in following forms:

• Free-form text

• HTML

• RSS

• XML

• A browser redirect to another page on the Internet

Important: You can only redirect to external URLs from Suitelets that are
accessed externally (in other words, the Suitelet has been
designated as “Available Without Login” and is accessed from its
external URL).

• A browser redirect to an internal NetSuite page. The NetSuite page can be either
a standard page or custom page that has been dynamically generated using UI
Objects.

Suitelets
Building Custom Workflows with Suitelets

165

SuiteScript Developer & Reference Guide

4. The data renders in the user's browser.

Building Custom Workflows with Suitelets
With the user event scripts, Suitelets, and UI Objects, SuiteScript developers can create custom
workflows by chaining together standard and/or custom NetSuite pages. These workflows may
be complemented by custom backend logic.

The following diagram shows how a SuiteScript developer can potentially create a workflow
that starts off with either a standard or custom NetSuite record, then redirects to a Suitelet, then
redirects to either another Suitelet or standard/custom NetSuite record, all depending on the
logic of the developer's application.

Building Suitelets with UI Objects
When building Suitelets, developers can use SuiteScript UI Objects to create custom pages that
look like NetSuite pages. SuiteScript UI objects encapsulate the elements for building NetSuite-
looking portlets, forms, fields, sublists, tabs, lists, and columns.

When developing a Suitelet with UI objects, you can also add custom fields with inline HTML.

Suitelets
Building Suitelets with UI Objects

166

SuiteScript Developer & Reference Guide

Important: When adding UI elements to an existing NetSuite page, you must prefix the
object name with custpage. This minimizes the occurrence of field/object
name conflicts. For example, when adding a custom tab to an entry form,
the name should follow a convention similar to custpage customtab or
custpage mytab.

The figure below shows a custom interface that has been built with the following SuiteScript UI
objects:

• nlobjForm

• nlobjTab

• nlobjSubList

• nlobjField

Note that a custom menu link was created to access the Suitelet. In this figure, the Configure
System Suitelet can be accessed by going to Customers > Custom > Configure System. For
information on creating menu links for Suitelets, see Running a Suitelet in NetSuite.

Suitelets
Backend Suitelets

167

SuiteScript Developer & Reference Guide

Item Description

1 SuiteScript UI Object: FORM

2 SuiteScript UI Object: TAB

3 SuiteScript UI Object: SUBLIST

4 SuiteScript UI Object: FIELD

5 Custom Menu Link

Backend Suitelets
Suitelets give developers the ability to build custom NetSuite pages. However, developers can
create Suitelets that do not generate any UI elements. These kinds of Suitelets are referred to as
backend Suitelets. Their sole purpose is to execute backend logic, which can then be parsed by
other parts of a custom application.

Just like a Suitelet that builds NetSuite pages, a backend Suitelet is invoked by making HTTP
GET or POST calls to a NetSuite-generated Suitelet URL.

The following are good uses of backend Suitelets:

• Providing a service for backend logic to other SuiteScripts, or to other external hosts
outside of NetSuite

• Offloading server logic from client scripts to a backend Suitelet shipped without source
code to protect sensitive intellectual property

Important: RESTlets can provide an alternative to backend Suitelets. For general
information about this type of script, see RESTlets. For a comparison, see
RESTlets Compared to Suitelets.

A use case of a backend Suitelet is a service that provides customer information based on
a phone number. The following is the code for a Suitelet that returns customer entity IDs
(for records with matching phone numbers) separated by the | character.

/***
 This functionsearches forcustomer records thatmatch asupplied parametercustparam_phone
 and returnthe resultsin astring separated bythe |character.
 */function lookupPhoneBackendSuitelet(request, response)
{
 if (request.getMethod() == 'GET')
 {
 //null checkon therequired parameterif (request.getParameter('custparam_phone') != null)
 {
 //Setting upthe filtersand columnsvar filters = newArray ();
 var columns = newArray ();

 //Use thesupplied custparam_phonevalue asfilter
 filters[0] = new nlobjSearchFilter('phone', null, 'is', request.getParameter('custparam_p

Suitelets
Reserved Parameter Names in Suitelet URLs

168

SuiteScript Developer & Reference Guide

hone'));
 columns[0] = new nlobjSearchColumn('entityid', null, null);

 //Search forcustomer recordsthat matchthe filtersvar results = nlapiSearchRecord('custome
r', null, filters, columns);

 if (results != null)
 {
 var resultString = '' ;
 //Loop throughthe resultsfor (var i = 0; i < results.length ; i++)
 {
 //constructing theresult stringvar result = results[i];
 resultString = resultString + result.getValue('entityid');

 //adding the| seperatorif (i != parseInt (results.length - 1))
 {
 resultString = resultString + '|' ;
 }
 nlapiLogExecution('DEBUG', 'resultString', resultString);
 }
 response.write(resultString);
 }
 else
 {
 response.write('none found');
 }
 }
 }
}

Notice that this Suitelet does not use any UI Object APIs. Communication with the Suitelet is
done strictly with the request and response objects. NetSuite generates a URL to invoke this
Suitelet. To correctly invoke it, the custparam_phone value (bold) needs to be appended at the
end of the invoking URL:

https://system.netsuite.com/app/site/hosting/scriptlet.nl?script=6&deploy=1&custparam_phone=(12
3)-456-7890

The code that calls this backend Suitelet needs to do the following:

1. Use nlapiResolveURL to dynamically obtain the invoking URL

2. Supply required parameters

3. Process the returned results

Note: Backend Suitelets should not be used to get around SuiteScript usage governance.
Suitelets designed with this intention are considered abusive by NetSuite.

Reserved Parameter Names in Suitelet URLs
Certain names are reserved and should not be referenced when naming custom parameters for
Suitelet URLs.

Suitelets
SuiteScript and Externally Available Suitelets

169

SuiteScript Developer & Reference Guide

The following table contains a list of reserved parameter names:

Reserved Suitelet URL Parameter Names

e

id

cp

l

popup

s

d

_nodrop

sc

sticky

print

email

q

si

st

r

displayonly

nodisplay

deploy

script

If any of your parameters are named after any of the reserved parameter names, your Suitelet
may throw an error saying, "There are no records of this type." To avoid naming conflicts,
NetSuite recommends that all custom URL parameters are prefixed with custom. For example,
use custom_id instead of id.

SuiteScript and Externally Available Suitelets

Only a subset of the SuiteScript API is supported in externally available Suitelets (Suitelets
set to Available Without Login on the Script Deployment page). For a list of these APIs, in the
NetSuite Help Center see these topics related to online forms.

• Working with Online Forms

• Why are only certain APIs supported on online forms?

Note: The same concepts that apply to online forms also apply to externally available
Suitelets.

Note that if you want to use all available SuiteScript APIs in a Suitelet, your Suitelet will require
a valid NetSuite session. (A valid session means that users have authenticated to NetSuite by
providing their email address and password.)

On the Script Deployment page, leave the Available Without Login check box unselected if you
want to deploy a Suitelet that requires a valid session. (See also Setting Available Without Login
for more information on this runtime option.)

Suitelets
Running a Suitelet in NetSuite

170

SuiteScript Developer & Reference Guide

Important: UI Objects can be used without a valid session. Therefore, they are supported
in externally available Suitelets.

Running a Suitelet in NetSuite
To run a Suitelet in NetSuite, you must:

1. Create a JavaScript file for your Suitelet.

2. Load the file into NetSuite.

3. Create a Script record.

4. Define all runtime options on the Script Deployment page.

If you are new to SuiteScript and need information on each of these steps, see Running Scripts
in NetSuite Overview.

Note that if you want users to be able to access/launch a Suitelet from the UI, you can create a
menu item for the Suitelet.

The following figure shows the Links tab on the Script Deployment page for a Suitelet. Select
the Center where the link to the Suitelet will be accessible (for example, Customer Center,
Vendor Center, etc). Next, set the Section (top-level menu tab) in the Center, then choose a
category under the section. Finally, create a UI label for the link. Be sure to click Add when
finished.

Note: The Classic Center is a default center. It is not specific to customers, partners, or
vendors.

Suitelets
Suitelets Samples

171

SuiteScript Developer & Reference Guide

When the Script Deployment page is saved, a link to the Suitelet appears (see figure).

Suitelets Samples
The following sample Suitelets show how to return HTML and XML documents, as well as how
to create forms and lists.

• Writing Your First Suitelet

• Return a Simple XML Document

• Create a Simple Form

• Create a Simple List

• Add a Suitelet to a Tab

• Create a Suitelet Email Form

• Create a Form with a URL Field

• Using Embedded Inline HTML in a Form

Writing Your First Suitelet

This basic Hello World! sample shows how to return an HTML document in a Suitelet.

Script:

function demoHTML(request, response)
{
 var html = '<html><body><h1>Hello World</h1></body></html>';
 response.write(html);
 //prefix header with Custom-Header. See nlobjResponse.
setHeader(name, value)
 response.setHeader('Custom-Header-Demo', 'Demo');
}

Suitelets
Suitelets Samples

172

SuiteScript Developer & Reference Guide

Return a Simple XML Document

Script:

function demoXML(request, response)
{
 var xml = '<?xml version="1.0" encoding="utf-8" ?>'+
 '<message>'+'Hello World'+'</message>';
 response.write(xml);
 response.setHeader('Custom-Header-Demo', 'Demo');
}

Create a Simple Form

This form is generated using the nlobjForm UI object. Note that Suitelets built with the
SuiteScript UI Objects API can be accessed without a valid session. In other words, Suitelets

Suitelets
Suitelets Samples

173

SuiteScript Developer & Reference Guide

using UI objects can be set to Available Without Login on the Script Deployment page. (For
information on deploying scripts, see Step 5: Define Script Deployment.)

Script:

function demoSimpleForm(request, response)
{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');
 var field = form.addField('textfield','text', 'Text');
 field.setLayoutType('normal', 'startcol')
 form.addField('datefield','date', 'Date');
 form.addField('currencyfield','currency', 'Currency');
 form.addField('textareafield','textarea', 'Textarea');

 var select = form.addField('selectfield','select', 'Select');
 select.addSelectOption('','');
 select.addSelectOption('a', 'Albert');
 select.addSelectOption('b', 'Baron');
 select.addSelectOption('c', 'Chris');
 select.addSelectOption('d', 'Drake');
 select.addSelectOption('e', 'Edgar');

 var sublist = form.addSubList('sublist','inlineeditor', 'Inline Editor Sublist');
 sublist.addField('sublist1', 'date', 'Date');
 sublist.addField('sublist2', 'text', 'Text');
 sublist.addField('sublist3', 'currency', 'Currency');
 sublist.addField('sublist4', 'textarea', 'Large Text');
 sublist.addField('sublist5', 'float', 'Float');

 form.addSubmitButton('Submit');

 response.writePage(form);
 }
 else
 dumpResponse(request,response);
}

Suitelets
Suitelets Samples

174

SuiteScript Developer & Reference Guide

Create a Simple List

This list is generated using the nlobjList UI object. Note that Suitelets built with the UI Objects
API can be accessed without a valid session. In other words, Suitelets using UI objects can be
set to Available Without Login on the Script Deployment page. (For information on deploying
scripts, see Step 5: Define Script Deployment.)

Important: If your browser is inserting scroll bars in this code sample, maximize your
browser window, or expand the main frame that this sample appears in.

Script:

function demoList(request, response)
{
 var list = nlapiCreateList('Simple List');

 // You can set the style of the list to grid, report, plain, or normal, or you can get the

 // default list style that users currently have specified in their accounts.
 list.setStyle(request.getParameter('style'));

 var column = list.addColumn('number', 'text', 'Number', 'left');
 column.setURL(nlapiResolveURL('RECORD','salesorder'));
 column.addParamToURL('id','id', true);

Suitelets
Suitelets Samples

175

SuiteScript Developer & Reference Guide

 list.addColumn('trandate', 'date', 'Date', 'left');
 list.addColumn('name_display', 'text', 'Customer', 'left');
 list.addColumn('salesrep_display', 'text', 'Sales Rep', 'left');
 list.addColumn('amount', 'currency', 'Amount', 'right');

 var returncols = new Array();
 returncols[0] = new nlobjSearchColumn('trandate');
 returncols[1] = new nlobjSearchColumn('number');
 returncols[2] = new nlobjSearchColumn('name');
 returncols[3] = new nlobjSearchColumn('salesrep');
 returncols[4] = new nlobjSearchColumn('amount');

 var results = nlapiSearchRecord('estimate', null, new nlobjSearchFilter('mainline',null,'i
s','T'), returncols);
 list.addRows(results);

 list.addPageLink('crosslink', 'Create Phone Call', nlapiResolveURL('TASKLINK','EDIT_CALL')
);
 list.addPageLink('crosslink', 'Create Sales Order',
 nlapiResolveURL('TASKLINK','EDIT_TRAN_SALESORD'));

 list.addButton('custombutton', 'Simple Button', ''alert('Hello World')'');
 response.writePage(list);
}

Add a Suitelet to a Tab

The following user event script shows how to add a tab to a record, and then on the tab, add a
Suitelet. In this example a tab called Sample Tab is added to a Case record. A link is added to
the Sample Tab that, when clicked, opens a Suitelet.

Suitelets
Suitelets Samples

176

SuiteScript Developer & Reference Guide

Important: If your browser is inserting scroll bars in this code sample, maximize your
browser window, or expand the main frame that this sample appears in.

Script:

/*Create a user event beforeLoad function that takes type and form as parameters.
 *Later you will define the script execution context by providing a value for type.
 *The form argument instantiates a SuiteScript nlobjForm object, which allows you
 *to add fields and sublists later on in the script.
*/
function beforeLoadTab(type, form)
{
var currentContext = nlapiGetContext();
var currentUserID = currentContext.getUser();

/*Define the value of the type argument. If the Case record is edited or viewed,
 *a tab called Sample Tab is added. Note that the script execution context is set to
 * userinterface. This ensures that this script is ONLY invoked from a user event
 *occurring through the UI.
*/
if((currentContext.getExecutionContext() == 'userinterface') && (type == 'edit' | type == 'vie
w'))
 {
 var SampleTab = form.addTab('custpage_sample_tab', 'SampleTab');

 //On Sample Tab, create a field of type inlinehtml.
 var createNewReqLink = form.addField('custpage_new_req_link','inlinehtml', null, null,
 'custpage_sample_tab');

 //Define the parameters of the Suitelet that will be executed.
 var linkURL = nlapiResolveURL('SUITELET', 'customscript12','customdeploy1', null)
 + '&customerid=' + nlapiGetRecordId();

 //Create a link to launch the Suitelet.
 createNewReqLink.setDefaultValue('Click here to
 create a new document signature request record.');

 //Add a sublist to Sample Tab.
 var signatureRequestSublist = form.addSubList('custpage_sig_req_sublist',
 'list', 'Document Signature Requests','custpage_sample_tab');

 signatureRequestSublist.addField('custpage_req_name', 'text', 'Name');
 signatureRequestSublist.addField('custpage_req_status', 'text', 'Status');
 signatureRequestSublist.addField('custpage_req_created', 'date', 'Date
 Created');
 }
}

Suitelets
Suitelets Samples

177

SuiteScript Developer & Reference Guide

Note: This screenshot displays the NetSuite user interface that was available before
Version 2010 Release 2.

Create a Suitelet Email Form

The following sample shows how to create a Suitelet form to email the results.

Script:

/**
 * A simple Suitelet for building an email form and sending out an email
 * from the current user to the recipient email address specified on the form.
 */
function simpleEmailForm(request, response)
{

Suitelets
Suitelets Samples

178

SuiteScript Developer & Reference Guide

 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Email Form');
 var subject = form.addField('subject','text', 'Subject');
 subject.setLayoutType('normal','startcol')
 subject.setMandatory(true);
 var recipient = form.addField('recipient','email', 'Recipient email');
 recipient.setMandatory(true);
 var message = form.addField('message','textarea', 'Message');
 message.setDisplaySize(60, 10);
 form.addSubmitButton('Send Email');
 response.writePage(form);
 }
 else
 {
 var currentuser = nlapiGetUser();
 var subject = request.getParameter('subject')
 var recipient = request.getParameter('recipient')
 var message = request.getParameter('message')
 nlapiSendEmail(currentuser, recipient, subject, message);
 }
}

Create a Form with a URL Field

This example shows how to add a URL field to a basic form. In this example, when the URL is
clicked the user will be redirected to the New Employee record.

Several methods of nlobjField are used to change the displayed field to the correct parameters.
The address called is built from the system address plus the address of the tasklink (in this
case the New Employee form) which is retrieved using nlapiResolveURL(type, identifier, id,
displayMode).

Note: You need to specify ‘https://' if the destination link is accessible via an authenticated
NetSuite session.

Script:

function SimpleFormWithUrl(request, response)
{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');
 var field = form.addField('textfield','text', 'Text');
 field.setLayoutType('normal', 'startcol');
 form.addField('datefield','date', 'Date');
 form.addField('currencyfield','currency', 'Currency');
 form.addField('textareafield','textarea', 'Textarea');

 form.addField("enterempslink", "url", "", null, "enteremps").setDisplayType("inline"
).setLinkText("Click Here to Enter Employee Records").setDefaultValue("https://system.netsuit
e.com" + nlapiResolveURL('tasklink', 'EDIT_EMPLOYEE'));

 form.addSubmitButton('Submit');

Suitelets
Suitelets Samples

179

SuiteScript Developer & Reference Guide

 response.writePage(form);
 }
 else
 dumpResponse(request,response);
}

Using Embedded Inline HTML in a Form

Here is an inline HTML example where the inline HTML is embedded in a NetSuite form. To
embed inline HTML, add a field with the nlobjForm.addField method of the type ‘inlinehtml',
and usethe nlobjField.setDefaultValue method to provide the HTML code.

Script:

function SurveyInlineHTML(request,response)
{
 var form = nlapiCreateForm('Thank you for your interest in Wolfe Electronics', true);

 var htmlHeader = form.addField('custpage_header', 'inlinehtml').setLayoutType('outsideabove
', 'startrow');
 htmlHeader
 .setDefaultValue("<p style='font-size:20px'>We pride ourselves on providing the best
 services and customer satisfaction. Please take a moment to fill out our survey.</
p>

");

 var htmlInstruct = form.addField('custpage_p1', 'inlinehtml').setLayoutType('outsideabove',
 'startrow');
 htmlInstruct
 .setDefaultValue("<p style='font-size:14px'>When answering questions on a scale of 1 to

Suitelets
Suitelets Samples

180

SuiteScript Developer & Reference Guide

 10,
 1 = Greatly Unsatisfied and 10 = Greatly Satisfied.</p>

");

 form.addField('custpage_lblproductrating', 'inlinehtml')
 .setLayoutType('normal', 'startrow')
 .setDefaultValue("<p style='font-size:14px'>How would you rate your satisfaction with o
ur products?</p>");

 form.addField('custpage_rdoproductrating', 'radio', '1', 'p1').setLayoutType('startrow');
 form.addField('custpage_rdoproductrating', 'radio', '2', 'p2').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '3', 'p3').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '4', 'p4').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '5', 'p5').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '6', 'p6').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '7', 'p7').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '8', 'p8').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '9', 'p9').setLayoutType('midrow');
 form.addField('custpage_rdoproductrating', 'radio', '10', 'p10').setLayoutType('endrow');

 form.addField('custpage_lblservicerating', 'inlinehtml')
 .setLayoutType('normal', 'startrow')
 .setDefaultValue("<p style='font-size:14px'>How would you rate your satisfaction with o
ur services?</p>");
 form.addField('custpage_rdoservicerating', 'radio', '1', 'p1').setLayoutType('startrow');
 form.addField('custpage_rdoservicerating', 'radio', '2', 'p2').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '3', 'p3').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '4', 'p4').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '5', 'p5').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '6', 'p6').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '7', 'p7').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '8', 'p8').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '9', 'p9').setLayoutType('midrow');
 form.addField('custpage_rdoservicerating', 'radio', '10', 'p10').setLayoutType('endrow');

 form.addSubmitButton('Submit');
 form.addResetButton('Reset');

 response.writePage(form);
}

RESTlets 181

SuiteScript Developer & Reference Guide

Chapter 24 RESTlets
You can deploy server-side scripts that interact with NetSuite data following RESTful principles.
RESTlets extend the SuiteScript API to allow custom integrations with NetSuite. Some benefits
of using RESTlets include the ability to:

• Find opportunities to enhance usability and performance, by implementing a RESTful
integration that is more lightweight and flexible than SOAP-based web services.

• Support stateless communication between client and server.

• Control client and server implementation.

• Use built-in authentication based on token or user credentials in the HTTP header.

• Develop mobile clients on platforms such as iPhone and Android.

• Integrate external Web-based applications such as Gmail or Google Apps.

• Create backends for Suitelet-based user interfaces.

RESTlets offer ease of adoption for developers familiar with SuiteScript and support more
behaviors than NetSuite's SOAP-based web services, which are limited to those defined as
SuiteTalk operations. RESTlets are also more secure than Suitelets, which are made available
to users without login. For a more detailed comparison, see RESTlets vs. Other NetSuite
Integration Options.

For more information about the REST architectural style, a description of the constraints and
principles is available at http://en.wikipedia.org/wiki/Representational_State_Transfer.

For details about working with RESTlets, see:

• Working with RESTlets

• RESTlets vs. Other NetSuite Integration Options

• Creating a RESTlet

• Debugging a RESTlet

• Sample RESTlet Code

• Sample RESTlet Input Formats

• RESTlet Status Codes and Error Message Formats

http://en.wikipedia.org/wiki/Representational_State_Transfer

RESTlets
Working with RESTlets

182

SuiteScript Developer & Reference Guide

Important: In order to maintain the highest security standards for connectivity, NetSuite
periodically updates server certificates and the trusted certificate store we
use for https requests. We expect client applications that integrate with
NetSuite to use an up-to-date certificate store, to ensure that integrations do
not break as a result of certificates expiring or changing security standards.
This issue typically does not affect modern browsers because these clients
are maintained to use the latest certificates.

Working with RESTlets
You can invoke a RESTlet via an HTTP request to a system-generated URL. RESTlets send and
receive content in a request-response model using HTTP verbs, HTTP headers, HTTP status
codes, URLs, and standard data formats.

RESTlets support the entire SuiteScript API and general SuiteScript features such as debugging.
For general information about using SuiteScript, see SuiteScript - The Basics.

The following topics provide details specific to the RESTlet type of script:

• RESTlet Script Execution

• Authentication for RESTlets

• RESTlet URL and Domain

• Using the REST roles Service to Get User Accounts, Roles, and Domains

• Supported Input and Output Content Types for RESTlets

• Supported Functions for RESTlets

• RESTlet Governance and Session Management

• RESTlet Debugging

• RESTlet Error Handling

• RESTlet Security

RESTlet Script Execution

The following steps provide an overview of the RESTlet execution process:

1. A client initiates an HTTP request for a system-generated URL. This request can come
from an external client or from a client hosted by NetSuite.

2. The sender of the HTTP request is authenticated either through request-level credentials
passed by the NetSuite-specific method NLAuth, the NetSuite implementation of OAuth
1.0, or through a check for an existing NetSuite session.

RESTlets
Working with RESTlets

183

SuiteScript Developer & Reference Guide

• For an externally hosted client using NLAuth, request-level credentials are required.

• For an externally hosted client using OAuth 1.0, a token is required.

• For a NetSuite-hosted client, the existing NetSuite session is reused.

See Authentication for RESTlets.

3. The RESTlet script is invoked, providing access to the server SuiteScript API.

4. A string, or an object that has been deserialized according to a predefined specification,
is passed in to the RESTlet. See Supported Input and Output Content Types for
RESTlets.

5. The RESTlet interrogates the string or object, and can perform any of the full range of
SuiteScript actions.

6. The RESTlet returns results as a string or a serialized object. nlobjResponse

Important: The URL used to invoke a RESTlet varies according to whether the RESTlet
client is externally hosted or hosted by NetSuite. See RESTlet URL and
Domain.

Authentication for RESTlets

Authentication is required for RESTlets. All calls to RESTlets are processed synchronously and
RESTlets support a high number of concurrent requests, so the same credentials can be reused.

The way to provide login credentials for a RESTlet varies according to whether the RESTlet is
called from an external client or from a client hosted by NetSuite, such as a client SuiteScript.

• For a RESTlet called from an external client, you can use OAuth or the NetSuite-
specific method NLAuth in the HTTP Authorization header. OAuth uses token-based
authentication (TBA) to access resources on behalf of a user, eliminating the need to share
login credentials such as username and password. See Using OAuth in the Authorization
Header.

NLAuth passes in NetSuite login credentials such as company ID, user name, password,
and role. See Using NLAuth in the Authorization Header.

• For a RESTlet called from a client hosted by NetSuite, you do not need to pass
authentication information in the HTTP request. A check for a valid NetSuite session
(JSESSIONID) occurs, and this existing session is reused.

RESTlets
Working with RESTlets

184

SuiteScript Developer & Reference Guide

Important: RESTlet authentication can use either the HTTP Authorization header or a
JSESSIONID, but not both. Please ensure that your script uses only one form
of authentication.

Setting up Token-based Authentication for a RESTlet integration

NetSuite supports token-based authentication (TBA) a robust, industry standard-based
mechanism that increases the overall security of the system. This authentication mechanism
enables client applications to use a token to access NetSuite through APIs, eliminating the
need for RESTlets to store user credentials. A token is valid for one specific company, user
entity, and role only. For more information, see the help topic Getting Started with Token-based
Authentication.

When you use token-based authentication, password rotation policies in the account do not
apply to tokens and password management is unnecessary for your RESTlets integrations.
Token-based authentication allows integrations to comply with any authentication policy that
is deployed in a NetSuite account for UI login, such as SAML Single Sign-on, Inbound Single
Sign-on, or Two-Factor Authentication. To enable token-based authentication, see the help
topic Enabling the Token-based Authentication Feature.

You can create a token and assign it to a user by logging in to NetSuite as an administrator and
generating token credentials manually. NetSuite users can also generate token for themselves.
See the help topic Token-based Authentication Permissions.

For code snippets and examples of signature creation and token-based authentication, see
SuiteAnswer 42171 and SuiteAnswer 42019.

TBA: Calling a Token Endpoint

In addition to creating a token manually through the NetSuite UI, developers and users can also
acquire a token programmatically using a token endpoint.

• To create their own tokens, users can call a token endpoint using the system domain
(for example, system.netsuite.com/rest/issuetoken) or the RESTlet domain (for
example, https://rest.netsuite.com/rest/issuetoken). For more information about
discovering the correct URLs for external client access to NetSuite, see the help topic
getDataCenterUrls.

• When calling the token endpoint to obtain a token, use NetSuite’s NLAuth Authorization
header. The token is created under the role specified in the NLAuth Authorization header.
For more information, see Using NLAuth in the Authorization Header.

• A token endpoint consumes two GET parameters: the Consumer Key is mandatory, and
the Name (the name of the token) is optional.

For example:

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4247337262.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4247337262.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_4253254429.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_429074259.html
https://netsuite.custhelp.com/app/answers/detail/a_id/42171
/app/crm/support/ptaredirector.nl?dl=https://netsuite.custhelp.com/app/answers/detail/a_id/42019
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3494684.html

RESTlets
Working with RESTlets

185

SuiteScript Developer & Reference Guide

https://rest.netsuite.com/rest/issuetoken?
consumerKey=<CONSUMER_KEY>&name=<TOKEN_NAME>

Using OAuth in the Authorization Header

When calling a RESTlet, follow the Oauth 1.0 specification to generate a token. A description of
the Oath 1.0 protocol and signature validation is available at https://tools.ietf.org/html/rfc5849 .

Note: Supported Signature methods are HMAC-SHA1 and HMAC-SHA256.

To obtain the parameter values required for OAuth, refer to the confirmation page for your
NetSuite token-based application. See the help topic Creating Applications for Token-based
Authentication.

OAuth passes in the following parameters:

• oauth_signature (required) - Credentials to verify the authenticity of the request,
generated by calling your application. The Token Secret and Consumer Secret are
constructed as a key to sign the request, using a supported signature method (HMAC-
SHA1 or HMAC-SHA256).

• oauth_version (optional) - Must be set to “1.0”.

• oauth_nonce (required) - Passes in a unique, random string. Used to verify that a request
has never been made before.

• oauth_signature_method (required) - Must be set to HMAC-SHA1 or HMAC-SHA256.
Declares which signature method is used.

• oauth_consumer_key (required) - Consumer Key (client application ID) generated for the
token-based application in NetSuite. The unique value is matched to the token to establish
ownership of the token.

• oauth_token (required) - Token ID generated for the token-based application in NetSuite.

• oauth_timestamp (required) - Passes in a positive integer expressed as the number of
seconds since January 1, 1970 GMT.

• realm (required) - NetSuite company ID

To map error codes to a parameter issue, see Notes about RESTlet Errors.

Note: NetSuite recommends entering the key value pairs without leading or trailing
spaces (realm="000068" not realm= "000068") as shown in the following example.

Example RESTlet request using OAuth to access a protected resource

GET https://rest.na1.netsuite.com/app/site/hosting/restlet.nl?script=1&deploy=1 HTTP/1.1

https://tools.ietf.org/html/rfc5849
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_4249032125.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_4249032125.html

RESTlets
Working with RESTlets

186

SuiteScript Developer & Reference Guide

Authorization:
 OAuth oauth_signature="MgN1gZztYspNQXA576plPD14OWM%3D",
 oauth_version="1.0",
 oauth_nonce="207310548",
 oauth_signature_method="HMAC-SHA1",
 oauth_consumer_key="fvFwnmvurChjol7SZiF2pQ1oJ%2FceRV8vqA%2FrZtzLEo%3D",
 oauth_token="00076e1415667a6c555f5d43582134c87d6367ab456fd2",
 oauth_timestamp="1418647040",
 realm="000068"

HTTP/1.1 200 OK
Date: Mon, 15 Dec 2014 12:37:42 GMT
Content-Type: text/html
Content-Length: 12

Hello World!

Using NLAuth in the Authorization Header

NLAuth passes in the following login credentials:

• nlauth_account (required) - NetSuite company ID

• nlauth_email (required) - NetSuite user name

• nlauth_signature (required) - NetSuite password

• nlauth_role (optional) - internal ID of the role used to log in to NetSuite

Note: If a user has a default role defined, this role can be used for login when the role
parameter is not passed in the authorization header.

Important: NetSuite RESTlet authentication only accepts special characters that are URL
encoded. If your credentials contain special characters, replace each special
character with its appropriate URL encoding. For additional information on
URL encoding, see http://www.w3schools.com/tags/ref_urlencode.asp

NLAuth Authorization Header Formatting

For NLAuth, the Authorization header should be formatted as:

NLAuth<space><comma-separated parameters>.

Note: NetSuite recommends entering the key value pairs without leading or trailing
spaces (nlauth_account=123456, not nlauth_account= 123456 ,) as shown in the
following example.

For example:

http://www.w3schools.com/tags/ref_urlencode.asp

RESTlets
Working with RESTlets

187

SuiteScript Developer & Reference Guide

Authorization: NLAuth nlauth_account=123456, nlauth_email=jsmith@ABC.com, nlauth_signature=xxx
xxxxx, nlauth_role=41

Important: NetSuite provides a REST roles service that you can use to determine a user's
account and role. This service makes it possible to support RESTlet login
when account and role are unknown, for example, in mobile applications. See
Using the REST roles Service to Get User Accounts, Roles, and Domains.

RESTlet URL and Domain

The URL used for a RESTlet HTTP request varies according to whether the RESTlet is called
from an external client or from a client hosted by NetSuite.

• For a RESTlet called from an external client, the URL must be an absolute URL. That
is, the URL needs to include the domain, for example https://rest.netsuite.com or
https://rest.na1.netsuite.com. These domains were created to support RESTlets. You
will receive an error if you use the wrong domain.

Important: NetSuite hosts customer accounts in multiple data centers. As a result,
the domain used for external client RESTlet access to NetSuite may
vary per customer account. For example, the domain could be https://
rest.netsuite.com or https://rest.na1.netsuite.com. NetSuite provides
a service that you can use to dynamically discover the correct domain.
See Using the REST roles Service to Get User Accounts, Roles, and
Domains.

• For a RESTlet called from a client hosted by NetSuite, the URL should be a relative URL.
That is, the URL does not include the domain.

When the NetSuite account is hosted at system.netsuite.com, the RESTlet also uses
the same base URL. For example, if you use /app/site/hosting/restlet.nl (as seen in
the following screenshot) and deploy that RESTlet in accounts located in different data
centers, the application will correctly prefix /app/site/hosting/restlet.nl with the base
URL, as appropriate for the location of each account.

The following RESTlet deployment record shows examples of URLs.

• The URL field displays the relative URL, used by NetSuite-hosted clients for any references
made to objects inside NetSuite.

• The External URL field displays the absolute URL, used by externally hosted clients for
any references made to objects from outside NetSuite.

RESTlets
Working with RESTlets

188

SuiteScript Developer & Reference Guide

Note: RESTlets use the same debugging domain as other SuiteScript types, https://
debugger.netsuite.com. Whether the RESTlet client is hosted externally or by
NetSuite does not change the debugger domain used. See RESTlet Debugging.

Using the REST roles Service to Get User Accounts, Roles, and Domains

NetSuite provides a REST roles service that returns the following data when you submit a user
email address and password:

• account(s) and role(s) available to the user

• REST, web services, and general system domains to be used for external client access to
NetSuite

Note: RESTlets are part of SuiteScript and not SuiteTalk (web services). If you assign the
WEB SERVICES ONLY ROLE to a user, then only SuiteTalk calls are accepted. RESTlet
calls receive an INVALID_LOGIN_CREDENTIALS error response.

The roles service fills the following needs:

• Support for RESTlet login when the user's account and role are unknown.

• Dynamic discovery of correct URLs for external client access to each NetSuite account.
Discovery of the following domains is supported:

• restDomain - https://rest.netsuite.com or https://rest.na1.netsuite.com

• systemDomain - https://system.netsuite.com or https://system.na1.netsuite.com

• webservicesDomain - https://webservices.netsuite.com or

• https://webservices.na1.netsuite.com

This discovery is required to support the hosting of customer accounts in multiple data
centers. Each data center has a different domain, so the domain to be used for external
client access depends upon the data center hosting each NetSuite account.

RESTlets
Working with RESTlets

189

SuiteScript Developer & Reference Guide

Note: For sample web services code that calls the REST roles service, see the help topics
Java REST Example for Web Services Domain Discovery and .NET REST Example for
Web Services Domain Discovery. A web services operation also is available, in the
2012.2 and later endpoints, to support dynamic discovery of URLs for external client
access. For details, see the help topic getDataCenterUrls.

Sample REST roles Request

To get the available accounts, roles, and domains for a user, submit the user's email address and
password in the authorization header, as shown in the following example:

URL: https://rest.netsuite.com/rest/roles

Headers:
GET /rest/roles HTTP/1.1
Accept: */*
Accept-Language: en-us
Authorization: NLAuth nlauth_email=johnsmith@xxxxx.com, nlauth_signature=****

Sample REST roles Response

The roles service returns a list of account(s) available to the user, and for each account, the
associated roles and domains, as shown in the following example:

[{"account":{"internalId":"1234567","name":"Test Account1"},"role":{"internalId":3,"name":"Admi
nistrator"},"dataCenterURLs":{"restDomain":"https://rest.netsuite.com","systemDomain":"https://
system.netsuite.com","webservicesDomain":"https://webservices.netsuite.com"}},
{"account":{"internalId":"1234678","name":"Test Account2"},"role":{"internalId":3,"name":"Admin
istrator"},"dataCenterURLs":{"restDomain":"https://rest.netsuite.com","systemDomain":"https://s
ystem.netsuite.com","webservicesDomain":"https://webservices.netsuite.com"}},
{"account":{"internalId":"1234789","name":"Test Account3"},"role":{"internalId":3,"name":"Admin
istrator"},"dataCenterURLs":{"restDomain":"https://rest.netsuite.com","systemDomain":"https://s
ystem.netsuite.com","webservicesDomain":"https://webservices.netsuite.com"}}]

The role to use for login can be selected from this list. And you can use this list to determine
the domains to specify in RESTlet and web services requests.

Supported Input and Output Content Types for RESTlets

RESTlets support JSON and plain text content types for input and output. For each RESTlet,
output content type is the same as input content type.

You must set the content type in the HTTP Content-Type header. You can use the following
values to specify the input/output content type for a RESTlet:

• application/json

• text/plain

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3421788.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3421824.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3421824.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3494684.html

RESTlets
Working with RESTlets

190

SuiteScript Developer & Reference Guide

If you specify a content type other than JSON or text, a 415 error is returned with the following
message:

 Invalid content type. You can only use application/json or text/plain with RESTlets.

Using JSON Objects and Arrays

JSON is an acronym for JavaScript Object Notation, which is a subset of JavaScript. This special
object notational construct is a syntax used to pass JavaScript objects containing name/value
pairs, arrays, or other objects. The following JSON formatting is used for RESTlets:

• Each JSON object is an unordered set of name/value pairs, or members, enclosed in curly
braces.

• Each member is followed by a comma, which is called a value separator.

• Within each member, the name is separated from the value by a colon, which is called
a name separator.

• Each name and each value is enclosed in quotation marks.

• Each JSON array is an ordered sequence of values, enclosed in square braces. Array values
are separated by commas.

For examples of how to format JSON input for restlets, see Sample RESTlet Input Formats.

Supported Functions for RESTlets

RESTlets currently support a subset of HTTP methods, as shown in the following table:

HTTP Method Input Output Description

GET Parameter Object Object Requests a representation of the specified resource.

POST Object Object Submits data to be processed, for example from
an HTML form. Data is included in the body of the
request, and can result in creation of a new resource,
updates of existing resource(s), or both.

DELETE Parameter Object No Content Passes in the ID and record type of the resource to be
deleted, so that nlapiDeleteRecord or other delete-
related logic can be called.

This method does not return anything.

PUT Object Object Uploads a representation of the specified resource.

The functions that implement these methods are specified on a RESTlet's script record. Each
RESTlet must have a function for at least one of these HTTP methods. Each HTTP method can
call any SuiteScript nlapi functions. See Create the RESTlet Script Record.

RESTlets
Working with RESTlets

191

SuiteScript Developer & Reference Guide

For examples of these functions in RESTlets, see Sample RESTlet Code.

RESTlet Governance and Session Management

The SuiteScript governance model tracks usage units on two levels: API level and script level. At
the API level, RESTlets have the same usage limits as other types of SuiteScripts. At the script
level, RESTlets allow 5,000 usage units per script, a limit five times greater than Suitelets and
most other types of SuiteScripts. For more information, see SuiteScript Governance.

RESTlets can support up to 10 concurrent connections from a single user login. If more
than 10 concurrent connections are made, an HTTP error code of 500 is returned, and an
ExceededRequestLimitFault is thrown. This is the same fault that is thrown when concurrent
web services SOAP requests exceed limits.

There is a limit of 10MB per string used as RESTlet input or output.

SuiteScript currently does not support a logout operation similar to the one used to terminate a
session in SuiteTalk.

RESTlet Debugging

You can use the SuiteScript Debugger to debug RESTlet scripts, in the same manner that you
use it to debug other types of server SuiteScripts. RESTlets use the same debugging domain as
other SuiteScript types, https://debugger.netsuite.com. Both ad-hoc debugging and deployed
debugging are supported for RESTlets. For general instructions for using the Debugger, see
Working with the SuiteScript Debugger.

Important: For deployed debugging of a RESTlet, you need to set the cookie of the client
application that runs the RESTlet to the same cookie listed for the RESTlet in
the Debugger. This cookie contains the NetSuite version and the JSESSIONID.
Also, you must remove the authorization header from your RESTlet before
debugging. For more details, see Debugging a RESTlet.

RESTlet Error Handling

RESTlets return standard HTTP status codes for their contained HTTP requests. A standard
success code is returned for a successful request. Standard error codes are returned for errors
due to unparsable input, authentication failure, lack of server response, use of an unsupported
method, and use of an invalid content type or data format for input. In most cases, generic
HTTP error messages are returned. The format used for error messages is the same as the
specified format for input: JSON or plain text. For more details, see RESTlet Status Codes and
Error Message Formats.

RESTlets also support the SuiteScript nlapiCreateError function. You can include this API in
your code to abort script execution when an error occurs. For details, see Error Handling APIs.

RESTlets
RESTlets vs. Other NetSuite Integration Options

192

SuiteScript Developer & Reference Guide

RESTlet Security

The URLs for RESTlet HTTP requests can vary, but all resources are protected by TLS
encryption. NetSuite supports TLS 1.0, 1.1, and 1.2 encryption for forms.netsuite.com,
system.netsuite.com, and other NetSuite domains. Only requests sent using TLS encryption
are granted access. For more on RESTlet domains, see RESTlet URL and Domain.

RESTlets vs. Other NetSuite Integration Options
RESTlets provide one option for integration with NetSuite. Other options include SOAP-based
web services through SuiteTalk, and Suitelets.

Review the following for comparisons of these integration options:

• RESTlets Compared to SuiteTalk

• RESTlets Compared to Suitelets

RESTlets Compared to SuiteTalk

The following table compares the characteristics of RESTlets with those of SuiteTalk's SOAP-
based web services:

Attribute RESTlets SuiteTalk

Supported
Operations

get, search, add, update (heterogeneous) get, search, add, update
(homogenous)

RESTlets
RESTlets vs. Other NetSuite Integration Options

193

SuiteScript Developer & Reference Guide

Attribute RESTlets SuiteTalk

Authentication
Supported?

Yes Yes

Supported HTTP
Methods

GET, PUT, POST, DELETE POST

Passing of Login
Details

in authorization header in body (SOAP)

Passing of
Parameters

GET parameters on URL all parameters in body (SOAP)

Supported Content
Types

JSON, text/xml (explicit) text/xml (explicit)

Environment lightweight, more suitable for mobile devices,
bundleable

heavy programming and
deployment environment (C#,
Java)

URL Clarity? Yes

https://rest.netsuite.com/app/site/hosting/restlet.
nl?script=57&deploy=1&
recordtype=salesorder&id=21480

(Note that for clients hosted by NetSuite, use the
relative URL that does not include the domain.)

No

https://webservices.netsuite.
com/services/NetSuitePort_
2011_1

Note: SuiteTalk is recommended for system-to-system integrations.

RESTlets Compared to Suitelets

The following table compares the characteristics of RESTlets with those of Suitelets:

Attribute RESTlets Suitelets

Supported
Operations

get, search, add, update get, search, add, update

Authentication
Supported?

Yes No , when available without login and
executed as admin programmatically

Yes, when accessed from a browser
by a logged-in NetSuite user

Script Functions and
HTTP Methods

individual script function for each HTTP
method

one script function for all HTTP
method

Content Handling built-in handling of JSON input/output must write code to convert JSON
input/output

Governance 5,000 usage units per script 1,000 usage units per script

URL Clarity? Yes

https://rest.netsuite.com/app/site/hosting/
restlet.nl?script=57&deploy=1&

No

https://forms/netsuite.com/app/
site/hosting/scriptlet.nl?script=62&

RESTlets
Creating a RESTlet

194

SuiteScript Developer & Reference Guide

Attribute RESTlets Suitelets

recordtype=salesorder&id=21480

(Note that for clients hosted by NetSuite, use
the relative URL that does not include the
domain.)

deploy=1&compid=824056&h=
ec041b59b3075bec783d

Creating a RESTlet
To run a RESTlet in NetSuite, you must first define your client code and behavior, then define
your RESTlet and its required functions. The client will send requests to the RESTlet URL
generated by NetSuite.

To define a RESTlet:

1. Create a JavaScript file for your RESTlet code.

2. Load the file into NetSuite.

3. Create a script record where you define SuiteScript functions for one or more HTTP
methods.

4. Define all runtime options on the Script Deployment page.

See the following for instructions for these tasks:

• Create the RESTlet File and Add It to the File Cabinet

• Create the RESTlet Script Record

• Define RESTlet Deployment(s)

Create the RESTlet File and Add It to the File Cabinet

1. Create a .js file and add your code to it, in the same manner that you create other types of
SuiteScript files, as described in Step 1: Create Your Script.

This single script file should include GET, POST, DELETE, or PUT function(s) as
necessary.

2. Once you have created a .js file with your RESTlet code, you need to add this file to the
NetSuite file cabinet.

The following steps describe how to add the file manually. If you are using SuiteCloud
IDE, this process is automated. For more information, see Step 2: Add Script to NetSuite
File Cabinet.

1. Go to Documents > Files > File Cabinet, and select the folder where you want to
add the file.

RESTlets
Creating a RESTlet

195

SuiteScript Developer & Reference Guide

It is recommended that you add your file to the SuiteScripts folder, but it can be
added to any other folder of your choice.

2. Click Add File, and browse to the .js file.

Create the RESTlet Script Record
Once you have added a RESTlet file to the file cabinet, you can create a NetSuite script record.

To create a RESTlet script record:

1. Go to Setup > Customization > Scripts > New, and click RESTlet.

2. Complete fields in the script record and save.

Although you do not need to set every field on the Script record, at a minimum you must
provide a Name for the Script record, load your SuiteScript file to the record, and specify
at least one of the following executing functions on the Scripts tab: GET, POST, DELETE,
or PUT.

You can specify more than one of these functions as desired. These functions should all be
in the main script file. If these functions call functions in other script files, you need to list
those files as library script files.

RESTlets
Debugging a RESTlet

196

SuiteScript Developer & Reference Guide

For more details about creating a script record, see Steps for Creating a Script Record.

Define RESTlet Deployment(s)

Once you have created a RESTlet script record, you need to define at least one deployment. For
details about defining script deployments, see Step 5: Define Script Deployment and Steps for
Defining a Script Deployment

You can define multiple deployments per RESTlet.

To define a RESTlet script deployment.

1. Do one of the following:

• When you save your Script record, you can immediately create a Script Deployment
record by selecting Save and Deploy from the Script record Save button.

• If you clicked Save, immediately afterwards you can click Deploy Script on the script
record.

• If you want to update a deployment that already exists, go to Customization >
Scripting > Script Deployments > [deployment] > Edit.

2. Complete fields in the script deployment record and click Save.

If you want to debug the script, set the Status to Testing.

Note: Once you have saved a RESTlet deployment, the deployment record includes
the URL used to invoke the RESTlet. For a RESTlet called from an externally
hosted client, use the External URL. For a RESTlet called from a client hosted
by NetSuite, use the URL that does not include the domain. See RESTlet URL
and Domain.

Debugging a RESTlet
You can use the NetSuite Debugger to debug RESTlet code in the same manner that you debug
other types of SuiteScript code, as described in the NetSuite Help Center topic Debugging
SuiteScript.

• To debug code snippets before you have a RESTlet script record that has been deployed,
called ad-hoc debugging, follow the instructions in Ad Hoc Debugging . (Be sure not to
include the RESTlet's authorization header in the code snippets to be debugged, as this
header can prevent the debugger from working.)

• To debug an existing script that has a defined deployment, called deployed debugging,
follow the steps below.

RESTlets
Debugging a RESTlet

197

SuiteScript Developer & Reference Guide

Important: In addition to debugging RESTlet script code, it is recommended that you test
the HTTP request to be sent to the RESTlet. Free tools are available for this
purpose. See RESTlet HTTP Testing Tools.

To debug a deployed RESTlet:

1. Before you deploy a RESTlet to be debugged, ensure that the script does not include the
HTTP authorization header, as this header can prevent the debugger from working.

2. Ensure that on the script deployment record, the Status value is set to Testing.

3. Go to Customization > Scripting > Script Debugger, or log in to the debugger domain
https://debugger.netsuite.com. (See Deployed Debugging for details.)

4. Click the Debug Existing button in the main Script Debugger page.

Note: This button only appears when you have deployed scripts with the status is set
to Testing.

5. Select the RESTlet script that you want to debug in the Script Debugger popup.

Once you click the Select option button, the RESTlet's cookie displays in a banner. This
cookie includes the NetSuite version and the JSESSIONID.

6. Copy the cookie and paste it into a text file so that you have it available.

7. Click the Select and Close button in the Script Debugger popup.

The main Script Debugger page displays a message that it is waiting for user action.

8. Set the cookie in your client application to the value you copied in step 5, and send the
RESTlet request.

The main Script Debugger page displays the script execution as pending at the NetSuite
function restletwrapper(request).

9. You have the following options for debugging your script code:

• Click the Step Over button to begin stepping through each line of code.

• Add watches and evaluate expressions.

• Set break points and click the Run button to run the code. The Debugger will stop
code execution at the first break point set.

RESTlets
Debugging a RESTlet

198

SuiteScript Developer & Reference Guide

• Set no break points, click the Run button, and have the Debugger execute the entire
piece of code.

See SuiteScript Debugger Interface for information on stepping into/out of functions,
adding watches, setting and removing break points, and evaluating expressions.

Debugging Timeout Errors

If a timeout error occurs during debugging, check for the following:

• Invalid or missing NetSuite version

Ensure that you have correctly copied the cookie, as described in the steps above. This
cookie includes a valid NetSuite version.

• Invalid JSESSIONID

Ensure that you have correctly copied the cookie, as described in the steps above. This
cookie includes a valid JSESSIONID.

• Incorrect domain such as https://rest.netsuite.com

Ensure that you have logged in to https://debugger.netsuite.com.

RESTlet HTTP Testing Tools

You can use the tools of your choosing to test the HTTP request to be sent to a RESTlet.

If you have installed and set up SuiteCloud IDE, a debug client is available for your use. The
RESTlet/Suitelet Debug Client enables you to debug deployed RESTlet and Suitelet SuiteScripts
with the SuiteCloud IDE Debugger. The client is only accessible once a debug session is started.
For details about this client, see the help topic Using the RESTlet/Suitelet Debug Client. For
information about SuiteCloud IDE, see the help topic Working with SuiteCloud IDE.

In addition, the following free tools are available:

• Send HTTP Tool

This tool is a free HTTP Request builder that you can use to send an HTTP request to the
RESTlet and analyze the response.

http://soft-net.net/SendHTTPTool.aspx

• Fiddler

This tool is a free Web debugging proxy that you can use to log HTTP traffic, and inspect
the HTTP request and response for the RESTlet.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3823196997.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2915978.html
http://soft-net.net/SendHTTPTool.aspx

RESTlets
Sample RESTlet Code

199

SuiteScript Developer & Reference Guide

http://www.fiddler2.com/fiddler2/

Warning: The above information about free tools is provided as a courtesy and is not
intended as an endorsement or recommendation of these tools.

Sample RESTlet Code
The following examples provide sample RESTlet code:

• Simple Example to Get Started

• Example Code Snippets of HTTP Methods

• Example RESTlet Called from a Portlet Script

• Example RESTlet Request from Android

• Example RESTlet Request Using nlapiRequestURL

Simple Example to Get Started

Use the following example as a very basic GET method test when you are getting started with
RESTlets:

function sayhi()
{
 var o = new Object();
 o.sayhi = 'Hello World! ';
 return o;
}

Example Code Snippets of HTTP Methods

The following code snippets provide examples of RESTlet functions.

GET Method

// Get a standard NetSuite record
function getRecord(datain)
{
 return nlapiLoadRecord(datain.recordtype, datain.id); // e.g recordtype="customer", id="769
"
}

Query parameters:

 recordtype=customer&id=769

http://www.fiddler2.com/fiddler2/

RESTlets
Sample RESTlet Code

200

SuiteScript Developer & Reference Guide

POST Method

// Create a standard NetSuite record
function createRecord(datain)
{
 var err = new Object();

 // Validate if mandatory record type is set in the request
 if (!datain.recordtype)
 {
 err.status = "failed";
 err.message= "missing recordtype";
 return err;
 }

 var record = nlapiCreateRecord(datain.recordtype);

 for (var fieldname in datain)
 {
 if (datain.hasOwnProperty(fieldname))
 {
 if (fieldname != 'recordtype' && fieldname != 'id')
 {
 var value = datain[fieldname];
 if (value && typeof value != 'object') // ignore other type of parameters
 {
 record.setFieldValue(fieldname, value);
 }
 }
 }
 }
 var recordId = nlapiSubmitRecord(record);
 nlapiLogExecution('DEBUG','id='+recordId);

 var nlobj = nlapiLoadRecord(datain.recordtype,recordId);
 return nlobj;
}

Request Payload:

{"recordtype":"customer","entityid":"John Doe","companyname":"ABCTools Inc","subsidiary":"1","e
mail":"jdoe@email.com"}

DELETE Method

// Delete a standard NetSuite record
function deleteRecord(datain)
{
 nlapiDeleteRecord(datain.recordtype, datain.id); // e.g recordtype="customer", id="769"
}

Query parameters:

recordtype=customer&id=769

RESTlets
Sample RESTlet Code

201

SuiteScript Developer & Reference Guide

Example RESTlet Called from a Portlet Script

• Portlet Script Code - Calls RESTlet and Sets Search Criteria

• RESTlet Code - Gets Data based on Portlet Script Criteria

Portlet Script Code - Calls RESTlet and Sets Search Criteria

function getAccount () { return '1234567'; }

function getRESTletURL()
{
 return 'https://rest.netsuite.com/app/site/hosting/restlet.nl?script=27&deploy=1&c='+getAccoun
t(); // for phasing
}

function credentials()
{
 this.email='jsmith@abcauto.com';
 this.account=getAccount();
 this.role='3';
 this.password='mysecretpwd';
}

// Portlet function
function displayOpportunities(portlet)
{
 portlet.setTitle('Opportunities');
 var col = portlet.addColumn('id','text', 'ID', 'LEFT');
 col.setURL(nlapiResolveURL('RECORD','opportunity'));
 col.addParamToURL('id','id', true);
 portlet.addColumn('title','text', 'Opportunity', 'LEFT');
 portlet.addColumn('customer','text', 'Customer', 'LEFT');
 portlet.addColumn('salesrep','text', 'Sales Rep', 'LEFT');
 portlet.addColumn('amount','currency', 'Amount', 'RIGHT');
 portlet.addColumn('probability','currency', 'Probability', 'RIGHT');

 var opps = getOpportunites();
 if (opps != null && opps.length > 0)
 {
 for (var i=0; i < opps.length ; i++)
 {
 portlet.addRow(opps[i]);
 }
 }
}

function getOpportunites()
{
 var url = getRESTletURL() + '&daterange=daysAgo90&&probability=10';
 var cred = new credentials();

 var headers = new Array();
 headers['User-Agent-x'] = 'SuiteScript-Call';
 headers['Authorization'] = 'NLAuth nlauth_account='+cred.account+', nlauth_email='+cred.email+
', nlauth_signature='+cred.password+', nlauth_role='+cred.role;
 headers['Content-Type'] = 'application/json';

RESTlets
Sample RESTlet Code

202

SuiteScript Developer & Reference Guide

 var response = nlapiRequestURL(url, null, headers);

 var responsebody = JSON.parse(response.getBody());

 var error = responsebody['error'];
 if (error)
 {
 var code = error.code;
 var message = error.message;
 nlapiLogExecution('DEBUG','failed: code='+code+'; message='+message);
 nlapiCreateError(code, message, false);
 }

 return responsebody['nssearchresult'];
}

function opportunity(internalid, title, probability, amount, customer, salesrep)
{
 this.id = internalid;
 this.title = title;
 this.probability = probability;
 this.amount = amount;
 this.customer = customer;
 this.salesrep = salesrep;
}

RESTlet Code - Gets Data based on Portlet Script Criteria

function opportunity(internalid, title, probability, amount, customer, salesrep)
{
 this.id = internalid;
 this.title = title;
 this.probability = probability;
 this.amount = amount;
 this.customer = customer;
 this.salesrep = salesrep;
}

// RESTlet Get NetSuite record data
function getRecords(datain)
{
 var filters = new Array();
 var daterange = 'daysAgo90';
 var projectedamount = 0;
 var probability = 0;
 if (datain.daterange) {
 daterange = datain.daterange;
 }
 if (datain.projectedamount) {
 projectedamount = datain.projectedamount;
 }
 if (datain.probability) {
 probability = datain.probability;
 }

 filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', daterange); // like day
sAgo90
 filters[1] = new nlobjSearchFilter('projectedamount', null, 'greaterthanorequalto', projec
tedamount);

RESTlets
Sample RESTlet Code

203

SuiteScript Developer & Reference Guide

 filters[2] = new nlobjSearchFilter('probability', null, 'greaterthanorequalto', probabilit
y);

 // Define search columns
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('salesrep');
 columns[1] = new nlobjSearchColumn('expectedclosedate');
 columns[2] = new nlobjSearchColumn('entity');
 columns[3] = new nlobjSearchColumn('projectedamount');
 columns[4] = new nlobjSearchColumn('probability');
 columns[5] = new nlobjSearchColumn('email', 'customer');
 columns[6] = new nlobjSearchColumn('email', 'salesrep');
 columns[7] = new nlobjSearchColumn('title');

 // Execute the search and return results

 var opps = new Array();
 var searchresults = nlapiSearchRecord('opportunity', null, filters, columns);

 // Loop through all search results. When the results are returned, use methods
 // on the nlobjSearchResult object to get values for specific fields.
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var salesrep = searchresult.getValue('salesrep');
 var salesrep_display = searchresult.getText('salesrep');
 var salesrep_email = searchresult.getValue('email', 'salesrep');
 var customer = searchresult.getValue('entity');
 var customer_display = searchresult.getText('entity');
 var customer_email = searchresult.getValue('email', 'customer');
 var expectedclose = searchresult.getValue('expectedclosedate');
 var projectedamount = searchresult.getValue('projectedamount');
 var probability = searchresult.getValue('probability');
 var title = searchresult.getValue('title');

 opps[opps.length++] = new opportunity(record,
 title,
 probability,
 projectedamount,
 customer_display,
 salesrep_display);
 }

 var returnme = new Object();
 returnme.nssearchresult = opps;
 return returnme;
}

Example RESTlet Request from Android

HttpPost post = new HttpPost(URL + urlParams);

HttpParams httpParameters = new BasicHttpParams();
HttpConnectionParams.setConnectionTimeout(httpParameters, 20000);
HttpConnectionParams.setSoTimeout(httpParameters, 42000);

String authorization = "NLAuth nlauth_account=" + account + ", nlauth_email=" + email + ", nlau

RESTlets
Sample RESTlet Code

204

SuiteScript Developer & Reference Guide

th_signature="+password+", nlauth_role="+role+"";
post.setHeader("Authorization", authorization);
post.setHeader("Content-Type", "application/json");
post.setHeader("Accept", "*/*");

post.setEntity(new StringEntity("{\"name\":\"John\"}" /*input data*/));

HttpClient client = new DefaultHttpClient(httpParameters);
BufferedReader in = null;

HttpResponse response = client.execute(post);

in = new BufferedReader(new InputStreamReader(response.getEntity().getContent()));
StringBuffer sb = new StringBuffer("");
String line;
String NL = System.getProperty("line.separator");
while ((line = in.readLine()) != null)
{
 sb.append(line + NL);
}
in.close();
String result = sb.toString();

Example RESTlet Request Using nlapiRequestURL

function credentials(){
 this.email = "msmith@email.com";
 this.account = "1234567";
 this.role = "3";
 this.password = "*****";
}

function replacer(key, value){
 if (typeof value == "number" && !isFinite(value)){
 return String(value);
 }
 return value;
}

//Setting up URL
var url = "https://rest.netsuite.com/app/site/hosting/restlet.nl?script=260&deploy=1";

//Calling credential function
var cred = new credentials();

//Setting up Headers
var headers = {"User-Agent-x": "SuiteScript-Call",
 "Authorization": "NLAuth nlauth_account=" + cred.account + ", nlauth_email=" + c
red.email +
 ", nlauth_signature= " + cred.password + ", nlauth_role=" + cre
d.role,
 "Content-Type": "application/json"};

//Setting up Datainput
var jsonobj = {"recordtype": "customer",
 "entityid": "John Doe",
 "companyname": "ABC Company",
 "subsidiary": "1",

RESTlets
Sample RESTlet Input Formats

205

SuiteScript Developer & Reference Guide

 "email": "jdoe@email.com"}

//Stringifying JSON
var myJSONText = JSON.stringify(jsonobj, replacer);

var response = nlapiRequestURL(url, myJSONText, headers);

//Below is being used to put a breakpoint in the debugger
var i=0;

//**************RESTLET Code****************

// Create a standard NetSuite record
function createRecord(datain)
{
 var err = new Object();

 // Validate if mandatory record type is set in the request
 if (!datain.recordtype)
 {
 err.status = "failed";
 err.message = "missing recordtype";
 return err;
 }

 var record = nlapiCreateRecord(datain.recordtype);

 for (var fieldname in datain)
 {
 if (datain.hasOwnProperty(fieldname))
 {
 if (fieldname != 'recordtype' && fieldname != 'id')
 {
 var value = datain[fieldname];
 if (value && typeof value != 'object') // ignore other type of parameters
 {
 record.setFieldValue(fieldname, value);
 }
 }
 }
 }
 var recordId = nlapiSubmitRecord(record);
 nlapiLogExecution('DEBUG','id='+recordId);

 var nlobj = nlapiLoadRecord(datain.recordtype,recordId);
 return nlobj;
}

Sample RESTlet Input Formats
The following examples illustrate how to format input for RESTlets for the JSON content type:

• Customer Record Format

• Item Record Format

• Item Pricing Formats

RESTlets
Sample RESTlet Input Formats

206

SuiteScript Developer & Reference Guide

• Sales Order Record Format

For a general explanation of JSON, see Using JSON Objects and Arrays.

Customer Record Format

JSON

{
 "shipcomplete":false,
 "giveaccess":false,
 "globalsubscriptionstatus":"1",
 "isperson":false,
 ... more body fields...,
 "consoldepositbalance":0.00,
 "entityid":"John Doe",
 "addressbook":
 [
 {"zip":"94404","phone":"650-627-1000"},
 {"zip":"94403","phone":"650-627-1001"}
],
 "consoloverduebalance":0.00,
 "overduebalance":0.00,
 "creditholdoverride":"AUTO",
 "resubscribelink":"Send Subscription Email"
}

XML

<shipcomplete>F</shipcomplete>
<globalsubscriptionstatus>1</globalsubscriptionstatus>
<giveaccess>F</giveaccess>
<isperson>F</isperson>
<datecreated>12/19/2010 10:26 pm</datecreated>
<salesrep>-5</salesrep><currency>1</currency>
<lastmodifieddate>12/20/2010 10:14 am</lastmodifieddate>
<id>1185</id>
<emailtransactions>F</emailtransactions>
<balance>0.00</balance>
<entitystatus>13</entitystatus>
<isbudgetapproved>F</isbudgetapproved>

... more fields...

<entityid>John Doe</entityid>
<isinactive>F</isinactive>
<addressbook>
 <zip>94404</zip>
 <phone>650-627-1000</phone>
 <defaultshipping>T</defaultshipping>
 <addrtext>Netsuite100 Mission StreetFoster City CA 94404United States</addrtext>
 <state>CA</state>
 <addressee>Netsuite</addressee>
 <isresidential>F</isresidential>
 <label>Home</label>
 <city>Foster City</city>

RESTlets
Sample RESTlet Input Formats

207

SuiteScript Developer & Reference Guide

 <country>US</country>
 <displaystate>California</displaystate>
 <dropdownstate>CA</dropdownstate>
 <addr1>100 Mission Street</addr1>
 <override>F</override>
 <defaultbilling>T</defaultbilling>
</addressbook>
<addressbook>
 <zip>94403</zip>
 <phone>650-627-1001</phone>
 <defaultshipping>F</defaultshipping>
 <addrtext>Netsuite2955 Campus DriveSan Mateo CA 94403United States</addrtext>
 <state>CA</state>
 <addressee>Netsuite</addressee>
 <isresidential>F</isresidential>
 <label>Work</label>
 <city>San Mateo</city>
 <country>US</country>
 <displaystate>California</displaystate>
 <dropdownstate>CA</dropdownstate>
 <addr1>2955 Campus Drive</addr1>
 <override>F</override>
 <defaultbilling>F</defaultbilling>
</addressbook>

Item Record Format

Note: The format for item pricing varies according to the related features that are enabled
in your account. See Item Pricing Formats for examples.

JSON

{
 "salesdescription":"Cat 5 Patch Cable 10 ft",
 "vendorname":"CABL0002-64",
 "averagecost":3.50,

 ... more fields...,

“pricing”:
[
…
{
 "currency":
 {
 "name":"British pound",
 "internalid":"2"
 },
 “pricelist”:
 [
 {
 "pricelevel":
 {
 "name":"Alternate Price 1",
 "internalid":"2"
 },
 "price":

RESTlets
Sample RESTlet Input Formats

208

SuiteScript Developer & Reference Guide

 [
 {
 "price":9.03,
 "quantitylevel":"1",
 "quantity":0
 },
 {
 "price":8.55,
 "quantitylevel":"2",
 "quantity":10
 }
],
 "discount":
 {
 "name":"-5.0%",
 "value":"-5.0%"
 }
 },
 {
 "pricelevel":
 {
 "name":"Alternate Price 2",
 "internalid":"3"
 },
 "price":
 [
 {
 "price":8.55,
 "quantitylevel":"1",
 "quantity":0
 },
 {
 "price":8.10,
 "quantitylevel":"2",
 "quantity":10
 }
],
 "discount":
 {
 "name":"-10.0%",
 "value":"-10.0%"
 }
 },
 …
]
}
Repeat for other currencies
],

 "productfeed":["FROOGLE","SHOPPING","SHOPZILLA","NEXTAG","YAHOO"],
 "weight":"1",
 "itemid":"Cable - Cat 5, 10 ft",

 ... more fields...,

 "availabletopartners":false,
 "sitecategory":

RESTlets
Sample RESTlet Input Formats

209

SuiteScript Developer & Reference Guide

 [
 {"categorydescription":"Cables",
 "category":"12",
 "isdefault":false}
],
 "costingmethoddisplay":"Average",
 "offersupport":true
}

XML

<salesdescription>Cat 5 Patch Cable 10 ft</salesdescription>
<vendorname>CABL0002-64</vendorname>

... more ...

<excludefromsitemap>F</excludefromsitemap>
<isdonationitem>F</isdonationitem>
<recordtype>inventoryitem</recordtype>
<createddate>10/12/2006 8:37 pm</createddate>
<cost>3.50</cost>
<price4>
 <pricelevelname>Base Price</pricelevelname>
</price4>
<price4>
 <pricelevelname>Alternate Price 3</pricelevelname>
</price4>
<price4>
 <discountdisplay>-10.0%</discountdisplay>
 <pricelevelname>Corporate Discount Price</pricelevelname>
</price4>
<price4>
 <discountdisplay>-15.0%</discountdisplay>
 <pricelevelname>Employee Price</pricelevelname>
</price4>
<price4>
 <pricelevelname>Online Price</pricelevelname>
</price4>
<price3>
 <pricelevelname>Base Price</pricelevelname>
</price3>
<price3>
 <pricelevelname>Alternate Price 3</pricelevelname>
</price3>
<price3>
 <discountdisplay>-10.0%</discountdisplay>
 <pricelevelname>Corporate Discount Price</pricelevelname>
</price3>
<price3>
 <discountdisplay>-15.0%</discountdisplay>
 <pricelevelname>Employee Price</pricelevelname>
</price3>
<price3>
 <pricelevelname>Online Price</pricelevelname>
</price3>
<price2>
 <price[1]>5.00</price[1]>
 <pricelevelname>Base Price</pricelevelname>
 <price[2]>4.00</price[2]>

RESTlets
Sample RESTlet Input Formats

210

SuiteScript Developer & Reference Guide

</price2>
<price2>
 <pricelevelname>Alternate Price 3</pricelevelname>
</price2>
<price2>
 <discountdisplay>-10.0%</discountdisplay>
 <price[1]>4.50</price[1]>
 <pricelevelname>Corporate Discount Price</pricelevelname>
 <price[2]>3.60</price[2]>
</price2>
<price2>
 <discountdisplay>-15.0%</discountdisplay>
 <price[1]>4.25</price[1]>
 <pricelevelname>Employee Price</pricelevelname>
 <price[2]>3.40</price[2]>
</price2>
<price2>
 <pricelevelname>Online Price</pricelevelname>
</price2>
<price1>
 <price[1]>10.95</price[1]>
 <pricelevelname>Base Price</pricelevelname>
 <price[2]>10.00</price[2]>
</price1>
<price1>
 <pricelevelname>Alternate Price 3</pricelevelname>
</price1>
<price1>
 <discountdisplay>-10.0%</discountdisplay>
 <price[1]>9.86</price[1]>
 <pricelevelname>Corporate Discount Price</pricelevelname>
 <price[2]>9.00</price[2]>
</price1>
<price1>
 <discountdisplay>-15.0%</discountdisplay>
 <price[1]>9.31</price[1]>
 <pricelevelname>Employee Price</pricelevelname>
 <price[2]>8.50</price[2]>
</price1>
<price1>
 <price[1]>10.95</price[1]>
 <pricelevelname>Online Price</pricelevelname>
 <price[2]>10.00</price[2]>
</price1>
<productfeed>FROOGLE</productfeed>
<productfeed>SHOPPING</productfeed>
<productfeed>SHOPZILLA</productfeed>
<productfeed>NEXTAG</productfeed>
<productfeed>YAHOO</productfeed>
<weight>1</weight>
<itemid>Cable - Cat 5, 10 ft</itemid>

... more fields...

<sitecategory>
 <category>12</category>
 <categorydescription>Cables</categorydescription>

 <isdefault>F</isdefault>
</sitecategory>

RESTlets
Sample RESTlet Input Formats

211

SuiteScript Developer & Reference Guide

<offersupport>T</offersupport>

Item Pricing Formats
The format for item pricing varies according to which of the following features are enabled
in your account: Multiple Prices, Quantity Pricing, and Multiple Currencies. The following
examples show the JSON format for item pricing when these features are enabled.

• Single Price (no additional pricing features enabled)

• Multiple Prices Only Enabled

• Quantity Pricing Only Enabled

• Multiple Prices, Multiple Currencies Enabled

• Multiple Prices, Quantity Pricing, Multiple Currencies Enabled

Single Price (no additional pricing features enabled)

"pricing":
[
 {
 "pricelist":
 [
 {
 "price":
 [
 {"price":100.00,"quantitylevel":"1","quantity":0}
]
 }
],
 "currency":{"name":"USA","internalid":"1"}
 }
]

Multiple Prices Only Enabled

"pricing":
[
 {
 "pricelist":
 [
 {
 "pricelevel":{"name":"Base Price","internalid":"1"},
 "price":
 [
 {"price":100.00,"quantitylevel":"1","quantity":0}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 1","internalid":"2"},
 "price":
 [
 {"price":99.00,"quantitylevel":"1","quantity":0}

RESTlets
Sample RESTlet Input Formats

212

SuiteScript Developer & Reference Guide

]
 },
 {
 "pricelevel":{"name":"Alternate Price 2","internalid":"3"},
 "price":
 [
 {"price":98.00,"quantitylevel":"1","quantity":0}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 3","internalid":"4"},
 "price":
 [
 {"price":97.00,"quantitylevel":"1","quantity":0}
]
 },
 {
 "pricelevel":{"name":"Online Price","internalid":"5"},
 "price":
 [
 {"price":96.00,"quantitylevel":"1","quantity":0}
]
 }
],
 "currency":{"name":"USA","internalid":"1"}
 }
]

Quantity Pricing Only Enabled

"pricing":
[
 {
 "pricelist":
 [
 {
 "pricelevel":{"name":"Base Price","internalid":"1"},
 "price":
 [
 {"price":100.00,"quantitylevel":"1","quantity":0},
 {"price":95.00,"quantitylevel":"2","quantity":100},
 {"price":90.00,"quantitylevel":"3","quantity":150},
 {"price":85.00,"quantitylevel":"4","quantity":200},
 {"price":80.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 1","internalid":"2"},
 "price":
 [
 {"price":99.00,"quantitylevel":"1","quantity":0},
 {"price":94.00,"quantitylevel":"2","quantity":100},
 {"price":89.00,"quantitylevel":"3","quantity":150},
 {"price":84.00,"quantitylevel":"4","quantity":200},
 {"price":79.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 2","internalid":"3"},

RESTlets
Sample RESTlet Input Formats

213

SuiteScript Developer & Reference Guide

 "price":
 [
 {"price":98.00,"quantitylevel":"1","quantity":0},
 {"price":93.00,"quantitylevel":"2","quantity":100},
 {"price":88.00,"quantitylevel":"3","quantity":150},
 {"price":83.00,"quantitylevel":"4","quantity":200},
 {"price":78.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 3","internalid":"4"},
 "price":
 [
 {"price":97.00,"quantitylevel":"1","quantity":0},
 {"price":92.00,"quantitylevel":"2","quantity":100},
 {"price":87.00,"quantitylevel":"3","quantity":150},
 {"price":82.00,"quantitylevel":"4","quantity":200},
 {"price":77.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Online Price","internalid":"5"},
 "price":
 [
 {"price":96.00,"quantitylevel":"1","quantity":0},
 {"price":91.00,"quantitylevel":"2","quantity":100},
 {"price":86.00,"quantitylevel":"3","quantity":150},
 {"price":81.00,"quantitylevel":"4","quantity":200},
 {"price":76.00,"quantitylevel":"5","quantity":250}
]
 }
],
 "currency":{"name":"USA","internalid":"1"}
 }
]

Multiple Prices, Multiple Currencies Enabled

"pricing":
[
 {
 "pricelist":
 [
 {
 "pricelevel":{"name":"Base Price","internalid":"1"},
 "price":[{"price":110.00,"quantitylevel":"1","quantity":0}]
 },
 {
 "pricelevel":{"name":"Alternate Price 1","internalid":"2"},
 "price":[{"price":105.00,"quantitylevel":"1","quantity":0}]
 },
 {
 "pricelevel":{"name":"Alternate Price 2","internalid":"3"},
 "price":[{"price":100.00,"quantitylevel":"1","quantity":0}]
 },
 {
 "pricelevel":{"name":"Alternate Price 3","internalid":"4"},
 "price":[{"price":95.00,"quantitylevel":"1","quantity":0}]
 },

RESTlets
Sample RESTlet Input Formats

214

SuiteScript Developer & Reference Guide

 {
 "pricelevel":{"name":"Online Price","internalid":"5"},
 "price":[{"price":90.00,"quantitylevel":"1","quantity":0}]
 }
],
 "currency":{"name":"British pound","internalid":"2"}
 },
 {
 "pricelist":
 [
 {"pricelevel":{"name":"Base Price","internalid":"1"},"price":[{"price":100.00,"quan
titylevel":"1","quantity":0}]},
 {"pricelevel":{"name":"Alternate Price 1","internalid":"2"},"price":[{"price":99.00
,"quantitylevel":"1","quantity":0}]},
 {"pricelevel":{"name":"Alternate Price 2","internalid":"3"},"price":[{"price":98.00
,"quantitylevel":"1","quantity":0}]},
 {"pricelevel":{"name":"Alternate Price 3","internalid":"4"},"price":[{"price":97.00
,"quantitylevel":"1","quantity":0}]},
 {"pricelevel":{"name":"Online Price","internalid":"5"},"price":[{"price":96.00,"qua
ntitylevel":"1","quantity":0}]}
],
 "currency":{"name":"USA","internalid":"1"}
}

Multiple Prices, Quantity Pricing, Multiple Currencies Enabled

"pricing":
[
 {
 "pricelist":
 [
 {
 "pricelevel":{"name":"Base Price","internalid":"1"},
 "price":
 [
 {"price":110.00,"quantitylevel":"1","quantity":0},
 {"price":105.00,"quantitylevel":"2","quantity":100},
 {"price":100.00,"quantitylevel":"3","quantity":150},
 {"price":95.00,"quantitylevel":"4","quantity":200},
 {"price":90.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 1","internalid":"2"},
 "price":
 [
 {"price":105.00,"quantitylevel":"1","quantity":0},
 {"price":100.00,"quantitylevel":"2","quantity":100},
 {"price":95.00,"quantitylevel":"3","quantity":150},
 {"price":90.00,"quantitylevel":"4","quantity":200},
 {"price":85.00,"quantitylevel":"5","quantity":250}
]
 },
 {
 "pricelevel":{"name":"Alternate Price 2","internalid":"3"},
 "price":[{"price":100.00,"quantitylevel":"1","quantity":0},{"price":95.00,"quan
titylevel":"2","quantity":100},{"price":90.00,"quantitylevel":"3","quantity":150},{"price":85.0
0,"quantitylevel":"4","quantity":200},{"price":80.00,"quantitylevel":"5","quantity":250}]
 },

RESTlets
Sample RESTlet Input Formats

215

SuiteScript Developer & Reference Guide

 {
 "pricelevel":{"name":"Alternate Price 3","internalid":"4"},
 "price":[{"price":95.00,"quantitylevel":"1","quantity":0},{"price":90.00,"quant
itylevel":"2","quantity":100},{"price":85.00,"quantitylevel":"3","quantity":150},{"price":80.00
,"quantitylevel":"4","quantity":200},{"price":75.00,"quantitylevel":"5","quantity":250}]
 },
 {
 "pricelevel":{"name":"Online Price","internalid":"5"},
 "price":[{"price":90.00,"quantitylevel":"1","quantity":0},{"price":85.00,"quant
itylevel":"2","quantity":100},{"price":80.00,"quantitylevel":"3","quantity":150},{"price":75.00
,"quantitylevel":"4","quantity":200},{"price":70.00,"quantitylevel":"5","quantity":250}]
 }
],
 "currency":{"name":"British pound","internalid":"2"}
 },
 {
 "pricelist":
 [
 {
 "pricelevel":{"name":"Base Price","internalid":"1"},
 "price":[{"price":100.00,"quantitylevel":"1","quantity":0},{"price":95.00,"quan
titylevel":"2","quantity":100},{"price":90.00,"quantitylevel":"3","quantity":150},{"price":85.0
0,"quantitylevel":"4","quantity":200},{"price":80.00,"quantitylevel":"5","quantity":250}]
 },
 {
 "pricelevel":{"name":"Alternate Price 1","internalid":"2"},
 "price":[{"price":99.00,"quantitylevel":"1","quantity":0},{"price":94.00,"quant
itylevel":"2","quantity":100},{"price":89.00,"quantitylevel":"3","quantity":150},{"price":84.00
,"quantitylevel":"4","quantity":200},{"price":79.0","quantitylevel":"5","quantity":250}]
 },
 {
 "pricelevel":{"name":"Alternate Price 2","internalid":"3"},
 "price":[{"price":98.0","quantitylevel":"1","quantity":0},{"price":93.00,"quant
itylevel":"2","quantity":100},{"price":88.00,"quantitylevel":"3","quantity":150},{"price":83.00
,"quantitylevel":"4","quantity":200},{"price":78.00,"quantitylevel":"5","quantity":250}]
 },
 {
 "pricelevel":{"name":"Alternate Price 3","internalid":"4"},
 "price":[{"price":97.00,"quantitylevel":"1","quantity":0},{"price":92.00,"quant
itylevel":"2","quantity":100},{"price":87.00,"quantitylevel":"3","quantity":150},{"price":82.00
,"quantitylevel":"4","quantity":200},{"price":77.00,"quantitylevel":"5","quantity":250}]
 },
 {
 "pricelevel":{"name":"Online Price","internalid":"5"},
 "price":[{"price":96.00,"quantitylevel":"1","quantity":0},{"price":91.00,"quant
itylevel":"2","quantity":100},{"price":86.00,"quantitylevel":"3","quantity":150},{"price":81.00
,"quantitylevel":"4","quantity":200},{"price":76.00,"quantitylevel":"5","quantity":250}]
 }
],
 "currency":{"name":"USA","internalid":"1"}
 }
]

RESTlets
Sample RESTlet Input Formats

216

SuiteScript Developer & Reference Guide

Sales Order Record Format

JSON

{
 "total":64.04,
 "altshippingcost":5.67,
 "taxtotal":4.45,
 "tranid":"120",
 "orderstatus":"E",
 "shipcomplete":false,
 "discounttotal":0.00,
 "entity":"76",
 "billaddress":"Doug Fabre\r\nChess\r\nChess Art Gallery\r\n150 N Ocean Dr\r\nMonterey CA 93940
",
 "salesrep":"-5",
 "ccapproved":false,
 "linkedtrackingnumbers":["1Z6753YA0394527573","1Z6753YA0394249981"],
 "shipmethod":"92",
 "exchangerate":1.00
 "lastmodifieddate":"1/9/2011 11:34 pm",
 "taxrate":"8.25%",
 "id":"769",
 "shipaddresslist":"55",
 "istaxable":true,
 "tobefaxed":false,
 "altsalestotal":0.00,
 "getauth":false,
 "tobeprinted":false,
 "shippingcost":5.67,
 "recordtype":"salesorder",
 "trandate":"10/14/2006",
 "fax":"831-555-5230",
 "customform":"88",
 "links":
 [
 {"trandate":"10/14/2006","tranid":"8","type":"Item Fulfillment","linktype":"Receipt/Fulfillme
nt"}
],
 "taxitem":"-112",
 "custbody1":"831-555-5229",
 "custbody2":"Do not leave the item outside the house",
 "shipdate":"10/14/2006",
 "createddate":"10/14/2006 2:58 pm",
 "subtotal":53.92,
 "currencyname":"USA",
 "revenuestatus":"A",
 "saleseffectivedate":"10/14/2006",
 "email":chessart@christyscatering.com,
 "item":
 [
 {
 "isclosed":false,"fromjob":false,"amount":8.96,"rate":8.96,"price":"2",
 "istaxable":"T","description":"10 ft Serial Cable DB25M DB25F",
 "custcol6":429,"custcol7":2.5,
 "item":"46","quantity":1,"isestimate":false,"commitinventory":"1",
 "options":
 {

RESTlets
Sample RESTlet Input Formats

217

SuiteScript Developer & Reference Guide

 "CUSTCOL3":792,"CUSTCOL1":4
 }
 },
 {
 "isclosed":false,"fromjob":false,"amount":44.96,"rate":44.96,"price":"2",
 "istaxable":true,
 "item":"80","quantity":1,"isestimate":false,"commitinventory":"1"
 }
],
 "excludecommission":false,
 "shipaddress":"Chess\r\nChess Art Gallery\r\n150 N Ocean Dr\r\nMonterey CA 93940","tobeemailed
":false
}

XML

<altshippingcost>5.67</altshippingcost>
<total>64.04</total>
<taxtotal>4.45</taxtotal>
<orderstatus>E</orderstatus>
<tranid>120</tranid>
<shipcomplete>F</shipcomplete>
<discounttotal>0.00</discounttotal>
<entity>76</entity>
<billaddress>Doug FabreChessChess Art Gallery150 N Ocean DrMonterey CA 93940</billaddress>
<salesrep>-5</salesrep>
<linkedtrackingnumbers>1Z6753YA0394527573</linkedtrackingnumbers>
<linkedtrackingnumbers>1Z6753YA0394249981</linkedtrackingnumbers>
<ccapproved>F</ccapproved>
<shipmethod>92</shipmethod>
<exchangerate>1.00</exchangerate>
<lastmodifieddate>1/9/2011 11:34 pm</lastmodifieddate>
<taxrate>8.25</taxrate>
<id>769</id>
<shipaddresslist>55</shipaddresslist>
<istaxable>T</istaxable>
<tobefaxed>F</tobefaxed>
<altsalestotal>0.00</altsalestotal>
<getauth>F</getauth>
<tobeprinted>F</tobeprinted>
<shippingcost>5.67</shippingcost>
<recordtype>salesorder</recordtype>
<trandate>10/14/2006</trandate>
<fax>831-555-5230</fax>
<customform>88</customform>
<custbody1>831-555-5229</custbody1>
<custbody2>Do not leave the item outside the house</custbody2>
<shipdate>10/14/2006</shipdate>
<taxitem>-112</taxitem>
<links>
 <trandate>10/14/2006</trandate>
 <tranid>8</tranid>
 <type>Item Fulfillment</type>
 <linktype>Receipt/Fulfillment</linktype>
</links>
<createddate>10/14/2006 2:58 pm</createddate>
<subtotal>53.92</subtotal>
<currencyname>USA</currencyname>
<revenuestatus>A</revenuestatus>

RESTlets
RESTlet Status Codes and Error Message Formats

218

SuiteScript Developer & Reference Guide

<saleseffectivedate>10/14/2006</saleseffectivedate>
<email>chessart@christyscatering.com</email>
<excludecommission>F</excludecommission>
<item>
 <amount>8.96</amount>
 <fromjob>F</fromjob>
 <isclosed>F</isclosed>
 <price>2</price>
 <rate>8.96</rate>
 <description>10 ft Serial Cable DB25M DB25F</description>
 <istaxable>T</istaxable>
 <item>46</item>
 <quantity>1</quantity>
 <commitinventory>1</commitinventory>
 <custcol6>429</custcol6>
 <custcol7>2.5</custcol7>
 <isestimate>F</isestimate>
 <options>
 <CUSTCOL3>792</CUSTCOL3>
 <CUSTCOL1>4</CUSTCOL1>
 </options>
</item>
<item>
 <amount>44.96</amount>
 <fromjob>F</fromjob>
 <isclosed>F</isclosed>
 <price>2</price>
 <rate>44.96</rate>
 <istaxable>T</istaxable>
 <item>80</item>
 <quantity>1</quantity>
 <commitinventory>1</commitinventory>
 <isestimate>F</isestimate>
</item>
<shipaddress>ChessChess Art Gallery150 N Ocean DrMonterey CA 93940</shipaddress>
<tobeemailed>F</tobeemailed>

RESTlet Status Codes and Error Message Formats
For details about RESTlet errors, see:

• Success Code

• Error Codes

• Notes about RESTlet Errors

• Error Message Formatting

• Error for Incorrect URL

For information about system errors, see SuiteScript Errors.

Success Code
RESTlets support the following HTTP success code:

RESTlets
RESTlet Status Codes and Error Message Formats

219

SuiteScript Developer & Reference Guide

• 200 OK: The RESTlet request was executed successfully.

The actual response depends on the request method used. For a GET request, the response
contains an entity corresponding to the requested resource. For a POST request the
response contains an entity describing or containing the result of the action

Error Codes

RESTlets support the following HTTP error codes:

• 302 Moved Temporarily: The request was sent to a different data center than the data
center in which your company’s account resides. When you receive a 302 response, you
must recalculate the signature on the request to the correct data center, because the
signature is also computed from URL.

• 400 BAD_REQUEST: The RESTlet request failed with a user error.

• 401 UNAUTHORIZED: There is not a valid NetSuite login session for the RESTlet calls.

• 403 FORBIDDEN: RESTlet request sent to invalid domain, meaning a domain other than
https://rest.netsuite.com.

• 404 NOT_FOUND: A RESTlet script is not defined in the RESTlet request.

• 405 METHOD_NOT_ALLOWED: The RESTlet request method is not valid.

• 415 UNSUPPORTED_MEDIA_TYPE: An unsupported content type was specified.
(Only JSON and text are allowed.)

• 500 INTERNAL_SERVER_ERROR (unexpected errors): Occurs for non-user errors that
cannot be recovered by resubmitting the same request.

If this type of error occurs, contact Customer Support to file a case.

• 503 SERVICE_UNAVAILABLE: The NetSuite database is offline or a database
connection is not available.

For additional information about HTTP status codes, see http://www.w3schools.com/tags/
ref_httpmessages.asp

Notes about RESTlet Errors

• Any errors encountered at run time that are unhandled return a 400 error. If the user code
catches the error, a 200 error is returned.

• An unexpected error is returned with an error ID, for example:

Code = UNEXPECTED_ERROR

http://www.w3schools.com/tags/ref_httpmessages.asp
http://www.w3schools.com/tags/ref_httpmessages.asp

RESTlets
RESTlet Status Codes and Error Message Formats

220

SuiteScript Developer & Reference Guide

Msg = An unexpected error occurred. Error ID: fevsjhv41tji2juy3le73

• An INVALID_REQUEST error is returned due to malformed syntax in the OAuth header.
For example, when the signature method, version, or timestamp parameters are rejected.

• An INVALID_LOGIN_ATTEMPT error is returned when the nonce, consumer key,
token, or signature in the OAuth header is invalid.

• The DELETE method is not expected to return anything. In this case, the message is
returned:

 Return was ignored in DELETE operation.

• If users specify a content type other than JSON or TEXT, a 415 error is returned with the
following message:

Invalid content type. You can only use application/json, application/xml or text/plain with RES
Tlets.

• If users provide data in a format different from specified type, the following error is
returned with one of the following messages:

Error code = INVALID_RETURN_DATA_FORMAT
Error message = Invalid data format. You should return TEXT.
Error message = Invalid data format. You should return a JavaScript object.

Error Message Formatting

The following examples show RESTlet error message formatting for JSON and text content
types.

JSON

{
 "error":
 {
 "code":"SSS_INVALID_SCRIPTLET_ID",
 "message":"That Suitelet is invalid, disabled, or no longer exists."
 }
}

XML

<error>
 <code>SSS_INVALID_SCRIPTLET_ID</code>
 <message>That Suitelet is invalid, disabled, or no longer exists.</message>
</error>

RESTlets
RESTlet Status Codes and Error Message Formats

221

SuiteScript Developer & Reference Guide

Text

<error code: SSS_INVALID_SCRIPTLET_ID
error message: That Suitelet is invalid, disabled, or no longer exists.

Error for Incorrect URL

If you receive the following error, make sure that the URL is correct and that it points to the
correct RESTlet script ID.

SSS_INVALID_SCRIPTLET_ID: That Suitelet is invalid, disabled, or no longer exists.

Scheduled Scripts
Overview of Scheduled Script Topics

222

SuiteScript Developer & Reference Guide

Chapter 25 Scheduled Scripts
• Overview of Scheduled Script Topics

• What Are Scheduled Scripts?

• When Will My Scheduled Script Execute?

• Deploying a Script to the Scheduling Queue

• Creating Multiple Deployments for a Scheduled Script

• Using nlapiScheduleScript to Deploy a Script into the Scheduling Queue

• Understanding Scheduled Script Deployment Statuses

• Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus

• Executing a Scheduled Script in Certain Contexts

• Setting Recovery Points in Scheduled Scripts

• Understanding Memory Usage in Scheduled Scripts

• Monitoring a Scheduled Script's Runtime Status

• Monitoring a Scheduled Script's Governance Limits

• Scheduled Script Samples

• Scheduled Script Best Practices

Overview of Scheduled Script Topics
The following topics are covered in this section. If you are not familiar with NetSuite scheduled
scripts, you should read these topics. They do not need to be read in order. However, if you are
learning about NetSuite scheduled scripts, it is strongly recommended that you read the general
overview topics first.

General overview of scheduled scripts

• What Are Scheduled Scripts?

• When Will My Scheduled Script Execute?

Deploying scripts to NetSuite's scheduling queue

• Deploying a Script to the Scheduling Queue

Scheduled Scripts
What Are Scheduled Scripts?

223

SuiteScript Developer & Reference Guide

• Creating Multiple Deployments for a Scheduled Script

• Using nlapiScheduleScript to Deploy a Script into the Scheduling Queue

• Understanding Scheduled Script Deployment Statuses

• Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus

Scheduled script optimization, recovery points, and monitoring

• Executing a Scheduled Script in Certain Contexts

• Setting Recovery Points in Scheduled Scripts

• Understanding Memory Usage in Scheduled Scripts

• Monitoring a Scheduled Script's Runtime Status

• Monitoring a Scheduled Script's Governance Limits

Scheduled script samples and best practices

• Scheduled Script Samples

• Scheduled Script Best Practices

Important: All companies that run NetSuite are provided a single queue for running
their scheduled scripts. You can upgrade your number of scheduled script
queues from one to five by purchasing NetSuite's SuiteCloud Plus license. See
Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus for
more information.

What Are Scheduled Scripts?
Scheduled scripts run on the NetSuite server. Compared to all other NetSuite script types,
scheduled scripts are given a higher limit of usage governance (10,000 units, as opposed to
1,000 units for most other script types). Therefore, scheduled scripts are ideal for long running
tasks and batch jobs.

You can deploy scheduled scripts to the NetSuite scheduling queue on an ad-hoc (on-demand)
basis. You can also deploy scheduled scripts to the scheduling queue at a future time, or
recurring future times.

NetSuite allows you to deploy scheduled scripts to the scheduling queue using the scheduled
script Script Deployment page in the UI. You can also call nlapiScheduleScript to deploy a
script into the scheduling queue.

Scheduled Scripts
When Will My Scheduled Script Execute?

224

SuiteScript Developer & Reference Guide

To understand when your script will execute after it has been deployed to the scheduling queue,
see When Will My Scheduled Script Execute?

Note: Scheduled Scripts will not run on a Test Drive account unless the account is a
SuiteCloud Developer Network (SDN) Demo Test Drive account.

Important: Be aware that scheduled scripts that do mass modifications of data may
prompt the system to generate automatic email notifications. For example,
if the data being modified is on an Activity record that is set to automatically
send an email each time the record is updated, an email will be sent when
the scheduled script runs and data is updated.

When Will My Scheduled Script Execute?

Whether you place a scheduled script into the NetSuite scheduling queue manually (through
the Script Deployment page in the UI) or programmatically using nlapiScheduleScript, once
a script goes into the queue, it is executed serially (first in, first out) on a per-company basis.
There is a single queue used by all scheduled scripts in your company's NetSuite account. As
soon as one script completes, the next script in the queue can be executed. Although multiple
scheduled scripts can exist in the queue, only a single script can be executed at any given time.

Important: Even when there are no scripts currently in the scheduling queue, and you
then place a script into the queue, there may be a short system delay before
your script is executed.

When you use the Script Deployment page to schedule the deployment of a script, the times
you set on the Schedule subtab are the times the script is being deployed to the scheduling
queue. The times you set on the Schedule subtab are not necessarily the times the script will
execute.

Example

The figure below highlights a scheduled deployment of the Load File Sample script. Starting on
February 13, 2013 the script will be deployed to the NetSuite scheduling queue at 10:00 pm, and
then every 15 minutes after that until midnight of the same day. Script deployment does not
mean the script will actually execute precisely at 10:00 pm, 10:15 pm, 10:30 pm, and so on. It
means the script will be deployed into the queue at these times.

Again, when your script executes depends on how many scripts are ahead of it in the queue. It
also depends on how long-running each script before it might be.

http://www.netsuite.com/portal/developers/main.shtml

Scheduled Scripts
Deploying a Script to the Scheduling Queue

225

SuiteScript Developer & Reference Guide

To learn more about how to deploy a script into the scheduling queue, see Deploying a Script to
the Scheduling Queue.

Important: All companies using NetSuite are provided a single queue for running their
scheduled scripts. You can upgrade your company's number of scheduled
script queues from one to five by purchasing NetSuite's SuiteCloud Plus
license. See Deploying Scheduled Scripts to Multiple Queues Through
SuiteCloud Plus for more information.

Deploying a Script to the Scheduling Queue
You can deploy a script to the scheduling queue right away. Alternatively, you can schedule
the deployment so that the script is placed into the queue at a scheduled time in the future, or
recurring times in the future.

Important: Even if you do an ad-hoc deployment of a script and place it into the queue
right away, this does not mean the script will execute right away. Once a
script goes into the scheduling queue, there may be a short system delay
before the script is actually executed, if no scripts are before it in the queue.
If there are scripts already in the queue waiting to be executed, the script
deployed into the queue must wait to be executed until all other scripts have
completed.

See these topics for details on deploying a script to the NetSuite scheduling queue:

Scheduled Scripts
Deploying a Script to the Scheduling Queue

226

SuiteScript Developer & Reference Guide

• Initiating an Ad-hoc Deployment of a Script into the Scheduling Queue

• Initiating a Scheduled Deployment of a Script into the Scheduling Queue

Note: You can also create multiple ad-hoc or future deployments of the same script.
There are specific use cases for why you may want to create multiple deployments
for the same scheduled script. See Creating Multiple Deployments for a Scheduled
Script to learn more.

Initiating an Ad-hoc Deployment of a Script into the Scheduling Queue

Scheduled scripts can be deployed into the NetSuite scheduling queue on an ad-hoc (on-
demand) basis. To do this, you will use the Save and Execute command on the Script
Deployment page. The Status field on the Script Deployment page must be set to either Not
Scheduled or Testing.

Note: To understand why you may want to set the deployment status to either Not
Scheduled or Testing for an ad-hoc deployment, see Understanding the Difference
Between Not Scheduled and Testing Deployment Statuses.

Deployments set to Not Scheduled can also be deployed into the queue on-demand through a
call to nlapiScheduleScript. For details, see Using nlapiScheduleScript to Deploy a Script into
the Scheduling Queue.

To initiate an ad-hoc deployment of a script into the scheduling queue:

1. After creating your SuiteScript JavaScript file, create a new Script record for your script.
Go to Customization > Scripting > Scripts > New > Scheduled.

2. On the Script page, provide a Name for the Script record.

3. On the Scripts tab, select your script file from the Script File drop-down and specify the
script's executing function.

4. Next, click Save.

5. Click the Deploy Script button on the page that appears.

6. When the Script Deployment page opens (see figure), click the Deployed check box if it is
not already checked.

7. Select Not Scheduled (or Testing) from the Status field.

8. Click the Single Event radio button.

9. Next, click Save and Execute.

Scheduled Scripts
Deploying a Script to the Scheduling Queue

227

SuiteScript Developer & Reference Guide

Important: Even if you do an ad-hoc deployment of a script and place it into the queue
right away, this does not mean the script will execute right away. Once a
script goes into the scheduling queue, there may be a short system delay
before the script is actually executed, if no scripts are before it in the queue.
If there are scripts already in the queue waiting to be executed, the script
deployed into the queue must wait to be executed until all other scripts have
completed.

Understanding the Difference Between Not Scheduled and Testing
Deployment Statuses

To deploy a scheduled script on-demand, set the deployment status to either Not Scheduled or
Testing for the following reasons:

Deployment Status Use Case

Testing Set to Testing for the following reasons:

• You want to test the script by running it immediately. The script will run only in
the script owner's account. After setting the deployment status to Testing, click
Save and Execute on the Script Deployment page to run the script.

• You want to load the script into the SuiteScript Debugger. Only scheduled scripts
with the deployment status set to Testing can be loaded into the Debugger.

Not Scheduled Set to Not Scheduled after all of the scheduling options have been set (time, date,
frequency); however, the script is not yet ready to be executed.

Important: If you set your scheduling options, set the deployment status to Not
Scheduled, and click Save, the script will not run at the times you
have specified.

Scripts with a deployment status set to Not Scheduled will only run if you click Save
and Execute (or the scripts are placed into the NetSuite scheduling queue through a
call to nlapiScheduleScript.)

Notes:

Scheduled Scripts
Deploying a Script to the Scheduling Queue

228

SuiteScript Developer & Reference Guide

• If you set the deployment status to Not Scheduled, and then select either Daily Event,
Weekly Event (or any event type other than Single Event), and click Save and Execute,
the script will still only run once.

• After a Not Scheduled script completes its ad-hoc execution, NetSuite automatically re-
sets the deployment status back to Not Scheduled.

Initiating a Scheduled Deployment of a Script into the Scheduling
Queue

Scheduled scripts with a deployment status set to Scheduled can be deployed to the scheduling
queue once at a pre-defined time in the future, or their deployments can be scheduled on a
regular daily, weekly, monthly, or yearly basis.

Deployment times can be scheduled with a frequency of every 15 minutes, for example 2:00
pm, 2:15 pm, 2:30 pm, and so on.

Important: If the deployment status of a script is set to Scheduled, you cannot call
nlapiScheduleScript to put the script into the scheduling queue.

A scheduled script's deployment status should be set to Scheduled for the following reasons:

• The script was set to Testing, but is now ready for production.

• The script does not need to be executed immediately.

• The script must run at recurring times.

To initiate a scheduled deployment of a script:

1. After creating your SuiteScript JavaScript file, create a new Script record for your script.
Go to Customization > Scripting > Scripts > New > Scheduled.

2. On the Script page, provide a Name for the Script record.

3. On the Scripts tab, select your script file from the Script File drop-down, and specify the
script's function.

4. Next, click Save.

5. Click the Deploy Script button on the page that appears.

6. When the Script Deployment page opens, click the Deployed check box if it is not already
checked, and select Scheduled from the Status drop-down.

7. On the Schedule tab, set all deployment options.

8. Click Save.

Scheduled Scripts
Creating Multiple Deployments for a Scheduled Script

229

SuiteScript Developer & Reference Guide

Note: You can also create multiple ad-hoc or future deployments of the same script.
There are specific use cases for why you may want to create multiple deployments
for the same scheduled script. See Creating Multiple Deployments for a Scheduled
Script to learn more.

Creating Multiple Deployments for a Scheduled Script
On either the Script page or the Script Deployment page you can create multiple deployments
for the same script. See these sections for more information:

• Use Cases for Creating Multiple Deployments

• Steps for Creating Multiple Deployments

• Multiple Deployments and nlapiScheduleScript

Note: You can set unique deployment options for scheduled scripts on either the
scheduled script Script page or the Script Deployment page.

Use Cases for Creating Multiple Deployments

The following use cases describe possible scenarios in which script owners may want to create
multiple deployments for a single scheduled script.

• Use Case 1 - Same Script Requires Different Deployment Schedules

• Use Case 2 - Same Script Receives Multiple Requests for Execution

• Use Case 3 - Script May Exceed Unit-based Governance Limits

Use Case 1 - Same Script Requires Different Deployment Schedules

Create multiple deployments when you want the same script to execute according to different
deployment schedules.

For example, you might have a scheduled script that you want deployed and executed on the
last day of every month. This would be your first deployment. You might also want this script to
be deployed and executed every Monday morning around 2:00 am. This would be your second,
separate deployment for this script.

Use Case 2 - Same Script Receives Multiple Requests for Execution

There may be times when you have concurrent (simultaneous) requests to kick off long-
running tasks. In situations like this, you want to be able to schedule the next available
deployment for each request that comes in. For example, if you think that at peak load you
might receive five requests in a given time frame, then you would want at least that many script
deployments available to ensure that each request gets its own dedicated script deployment.

Scheduled Scripts
Creating Multiple Deployments for a Scheduled Script

230

SuiteScript Developer & Reference Guide

Note that if one of the deployments already happens to be in progress or in the queue, the best
practice is to take the number of requests you expect over some time period (for example, over
a five minute period - which is more than the average script execution time) and then multiply
by two to get the number of script deployments you would need to ensure that you can handle
the load. In this case you would want to create 10 deployments for the same script.

Use Case 3 - Script May Exceed Unit-based Governance Limits

Another reason to create multiple deployments is if you have a script you think will exceed
governance limits. After creating different deployments, you can specify a different deployment
through the deployId parameter in nlapiScheduleScript(scriptId, deployId, params).

Note: See SuiteScript Governance for information on scheduled script governance limits.

Important: All companies that run NetSuite are provided a single queue for running
their scheduled scripts. You can upgrade your number of scheduled script
queues from one to five by purchasing NetSuite's SuiteCloud Plus license. See
Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus for
more information.

Steps for Creating Multiple Deployments

To schedule multiple deployments for the same script:

1. On the Script record page > Deployments tab, set your deployment options (see first
figure).

2. Click Add after setting your deployment values.

3. Create another deployment (if necessary).

4. Optionally, create your own unique deployment ID in the ID column. If you do not add
your own custom deployment ID (see figure), an ID is automatically generated.

5. When finished creating all deployments, click Save.

Scheduled Scripts
Creating Multiple Deployments for a Scheduled Script

231

SuiteScript Developer & Reference Guide

To edit or access each deployment, go to Customization > Scripting > Script Deployments.

Creating additional deployments from the same deployment:

You can create additional script deployments from existing deployments. This is useful for
quickly adding extra deployments for scheduled scripts.

1. On the Script Deployments page, click View on an existing deployment.

2. From the More Actions dropdown click Make Copy.

3. Check the details for the deployment, correcting where necessary.

4. Click Save.

Note: Make Copy is only available for scheduled scripts.

Multiple Deployments and nlapiScheduleScript

You can create multiple on-demand deployment instances and parameterize the call to
nlapiScheduleScript. Users can queue-up multiple instances of the same Not Scheduled script.
The nlapiScheduleScript API will call the first of the script deployments that is ready and in the
queue, and continue to call this same script until each instance of the script has been deployed.
This means that users can queue as many instances of the Not Scheduled script through User
Event scripts as they have deployments.

In this scenario, it is not recommended that users set the deployId parameter in
nlapiScheduleScript since the deployments are generally “ad-hoc” and created real-time.

Scheduled Scripts
Using nlapiScheduleScript to Deploy a Script into the Scheduling Queue

232

SuiteScript Developer & Reference Guide

Note: For more information on nlapiScheduleScript, see Using nlapiScheduleScript to
Deploy a Script into the Scheduling Queue. Also see the API documentation for
nlapiScheduleScript(scriptId, deployId, params).

Using nlapiScheduleScript to Deploy a Script into the
Scheduling Queue

You can programmatically deploy a scheduled script into your company's scheduling queue
using the nlapiScheduleScript API. Be sure that the script's deployment status appears as Not
Scheduled on the Script Deployment page.

Using nlapiScheduleScript you can:

• Place a currently executing scheduled script back into the scheduling queue

• Call another scheduled script from within a scheduled script. When the new script is
called, it is then put into the scheduling queue.

• Place a scheduled script into the queue from another script such as a user event script or a
suitelet.

Note: Scheduled scripts called by nlapiScheduleScript(scriptId, deployId, params) may
show a NULL status if the script that was called has not yet been deployed or does
not exist in NetSuite.

The ability to call nlapiScheduleScript from within a scheduled script allows developers to
automatically place their currently executing script back into the scheduling queue. Otherwise,
scheduled scripts must be re-queued manually through the Script Deployment page. See
Example 2 in Scheduled Script Samples for code that shows how to programmatically re-queue
a scheduled script.

Developers should call nlapiScheduleScript in a scheduled script if they think the script is
coming close to exceeding the 10,000 unit limit allotted to scheduled scripts. The call to
nlapiScheduleScript will place the script back in the queue, and the script can then run to
completion without exceeding any governance limits.

Note that if nlapiScheduleScript is used in a scheduled script to call another scheduled
script, instruction count limits are applied to each script separately, since (technically) you
are running two different scheduled scripts. In other words, both “scheduled script A ” and
“scheduled script B,” which was called by “scheduled script A ” can each contain 10,000 units.

Note: See SuiteScript Governance for information on unit-based governance limits.

Understanding Scheduled Script Deployment Statuses
The following describes each of the deployment statuses of a scheduled script deployment.
These deployment statuses appear in the Status field of the Script Deployment page.

Scheduled Scripts
Understanding Scheduled Script Deployment Statuses

233

SuiteScript Developer & Reference Guide

• Not Scheduled: Means that the script is not currently scheduled to go into the queue.
By clicking Save and Execute on the Script Deployment page, scheduled scripts with a
Not Scheduled deployment status are placed ad-hoc (on-demand) into the scheduling
queue. Scripts with a Not Scheduled deployment status can also be placed into the queue
programmatically through a call to nlapiScheduleScript.

• Scheduled : Means that the script will be deployed into the queue at the time(s) specified
on the Schedule subtab of the Script Deployment page. If the deployment is set to happen
on a recurring basis, the script's deployment status will remain as Scheduled, even after
the script completes its execution. The script will then be re-deployed to the scheduling
queue at its specified time(s).

• Testing : Means that when the scheduled script is executed, it will run only in the script
owner's account. Note that when the deployment status is set to Testing, the only way to
place the script into the scheduling queue is by clicking Save and Execute on the Script
Deployment page. You cannot schedule testing times and then click Save.

• Also note that only scheduled scripts with a deployment status set to Testing can be
loaded into the SuiteScript Debugger.

This table summarizes what you can and cannot do with a scheduled script depending the
script's deployment status on the Script Deployment page.

The second column states whether the script can be placed into the NetSuite scheduling queue
through the UI.

The third column states whether the script can be queued using nlapiScheduleScript.

Deployment Status UI nlapiScheduleScript

Not Scheduled YES. You must click the Save and Execute
button on the Script Deployment page.

YES. See Using nlapiScheduleScript
to Deploy a Script into the
Scheduling Queue for details.

Scheduled N/A. No action is required by the user. With a
deployment status set to Scheduled, the script
will run again at the next scheduled time.

NO

Testing YES. On the Script Deployment page users
must click Save and Execute if they want to
run the script for testing purposes. You cannot
schedule testing times and then click Save.
Only Save and Execute will run a script that has
a Testing status.

Also note that only scheduled scripts with a
deployment status set to Testing can be loaded
into the SuiteScript Debugger.

Finally, scheduled scripts set to Testing will run
in the script owner's account only.

NO

Scheduled Scripts
Executing a Scheduled Script in Certain Contexts

234

SuiteScript Developer & Reference Guide

Executing a Scheduled Script in Certain Contexts
When creating a scheduled script, you can associate a type argument that is passed by the
system to the script's executing function. The type argument provides a context for when the
scheduled script is invoked.

Important: The type argument is an auto-generated argument passed by the system. You
cannot set this as a parameter for a specific deployment like other function
arguments.

Valid values for the type argument are:

• scheduled - normal execution according to the deployment options specified in the UI

• ondemand - the script is executed via a call to nlapiScheduleScript

• userinterface - the script is executed via the UI (the Save & Execute button has been
clicked)

• aborted - re-executed automatically following an aborted execution (system went down
during execution)

Scheduled Scripts
Setting Recovery Points in Scheduled Scripts

235

SuiteScript Developer & Reference Guide

• skipped - executed automatically following downtime during which the script should have
been executed

Example

function processOrdersCreatedToday(type)
{
 //only execute when run from the scheduler, based on the deployment options set in the UI
 if (type != 'scheduled' && type != 'skipped') return ;

.... //process rest of script

}

Setting Recovery Points in Scheduled Scripts
Occasionally while running a scheduled script a failure may occur. This could be due to a major
NetSuite upgrade, or an unexpected failure of the execution environment. Therefore, NetSuite
gives developers the ability to create recovery points in scheduled scripts. These recovery points
allow the state of the script at a certain point to be saved. In the event of an unexpected system
failure, the script can be restarted from the last successful recovery point.

To set a script recovery point, use nlapiSetRecoveryPoint(). When the system restarts, the script
will resume where it left off.

Developers can also use nlapiYieldScript(). In addition to setting a recovery point, this API
places the script back into the scheduled script queue. Once the script moves to the front of the
queue for processing, it begins its execution from the specified recovery point.

Possible use cases for nlapiSetRecoveryPoint()and nlapiYieldScript() include:

• If the script is unexpectedly aborted, it can be restarted from the last successful recovery
point.

• Pause (yield) the execution of a script at a specified point.

• Governance usage limits have been reached.

• Yield a script because an external resource is temporarily unavailable.

See the API documentation on nlapiSetRecoveryPoint()and nlapiYieldScript() for more details
and example usage.

Understanding Memory Usage in Scheduled Scripts
The memory limit for a scheduled script is 50 Megabytes. Therefore, if you have a long-
running scheduled script, and you are concerned the script will exceed the 50 MB memory
limit, NetSuite recommends using nlapiSetRecoveryPoint() or nlapiYieldScript() APIs to

Scheduled Scripts
Monitoring a Scheduled Script's Runtime Status

236

SuiteScript Developer & Reference Guide

track memory size. This is accomplished by examining the returned size property in the status
object returned by nlapiSetRecoveryPoint() and nlapiYieldScript(). Note, however, calling
nlapiSetRecoveryPoint() costs 100 governance units. Therefore, you will want to use the API
only at key points in your script. The alternative approach is to use nlapiYieldScript(). If the call
is successful, the script will yield and then the size property can be examined after the script
resumes.

Important: Scripts that are resumed after an nlapiYieldScript() or nlapiSetRecoveryPoint()
call will have their governance units reset. However, this does not reset
the memory footprint of the script, which will continue to change until
the script terminates. Therefore it is possible for the script to stay under
the governance limit but exceed the memory size limit, at which point an
SS_EXCESSIVE_MEMORY_FOOTPRINT error is thrown during the call to
nlapiYieldScript() or nlapiSetRecoveryPoint().

Reducing Script Memory Footprint
The table below shows an estimation of how various parts of a script can consume memory.

Empty Function 111 bytes

Each Instruction within a function 32 bytes

Each local variable reference 32 bytes

Standard mode record (customer) 40 kilobytes (depends on record type)

Dynamic mode record (customer) 460 kilobytes (depends on record type)

Number Instance 32 bytes

String Instance 32 bytes + 4 bytes per character

Empty Object 32 bytes

There are several useful techniques to reduce the memory overhead of scripts. Certain returned
objects, for example nlobjRecord and nlobjSearchResult can be quite large. In order to reduce
the memory consumed by these objects, convert them to native JavaScript objects and then
operate on those objects instead.

Monitoring a Scheduled Script's Runtime Status
The Scheduled Script Status page shows the current and past runtime statuses of all scheduled
scripts that have been executed in your account. There are three different ways you can access
the Scheduled Script Status page. How you access the page determines the view that the page
opens with.

Use the Setup Menu

Access the Scheduled Script Status page using the Setup menu option. Go to Customization >
Scripting > Script Deployments > Status.

Scheduled Scripts
Monitoring a Scheduled Script's Runtime Status

237

SuiteScript Developer & Reference Guide

This view will show all scheduled scripts in your accounts and each deployment of the script.
You can use filtering options at the bottom of the page to see the runtime status of specific
scripts and deployments.

Important: Script execution details are purged after 30 days. Also note that the statuses
listed on the Scheduled Script Status page are not related to the statues that
appear on a Script Deployment page. The statues on Script Deployment
pages (Not Scheduled, Scheduled, Testing) indicate the type of deployment.
The statuses on the Scheduled Script Status page indicate where the
scheduled script is in terms of its execution.

Use the Status Page or Status Links

You can also access the Scheduled Script Status page by clicking the Status Page link (associated
with the See Instances field). This link appears on the Script Deployment page. See figure
below.

Scheduled Scripts
Monitoring a Scheduled Script's Governance Limits

238

SuiteScript Developer & Reference Guide

In both cases, when the Scheduled Script Status page opens, it shows the runtime statuses of all
deployed instances of a particular script.

If you want to see the runtime statuses of other deployments of a particular script, use the
Deployment ID filter to choose another deployment of this script. You can also choose ALL to
see the runtime statuses of every scheduled script deployment of this script.

If you want to see the runtime statuses of other scripts, use the Script filter to choose another
script. Then use the Deployment ID filter to specify which deployments of the script you want
to see the runtime status for.

Monitoring a Scheduled Script's Governance Limits

The following APIs are helpful when working with and monitoring scheduled scripts:

• nlapiLogExecution(type, title, details)

• nlobjContext methods:

• setPercentComplete(pct)

• getPercentComplete()

• getRemainingUsage()

• getScriptId()

• getDeploymentId()

Scheduled Scripts
Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus

239

SuiteScript Developer & Reference Guide

Deploying Scheduled Scripts to Multiple Queues
Through SuiteCloud Plus

All companies that run NetSuite are provided a single queue for running their scheduled
scripts. Companies can upgrade their number of scheduled script queues from one to five
with the purchase of a SuiteCloud Plus license. The purchase of two SuiteCloud Plus licenses
provides 10 queues and the purchase of three licenses provides 15 queues. SuiteCloud Plus
allows larger accounts to divide their scheduled script work into categories such as script type,
script length, department, and so on.

For a summary of SuiteCloud Plus capabilities, see the help topic Using SuiteCloud Plus.

When you upgrade your account to include multiple script queues, the scripts in each
queue will execute serially. For example, if there are two scripts in Queue 1, the first script
must complete before the second script begins. Across all queues, the scripts will execute
concurrently. For example, if you have one script in each of five queues, all scripts will run at
the same time.

After purchasing one or more SuiteCloud Plus licenses, you will notice that a Queue dropdown
field is added to the Script Deployment record for scheduled scripts (see figure). The script
author or administrator can use this field to set the target queue of a script. Note that to process
the same script concurrently, scriptors can create multiple deployments for the same script, and
then set each deployment to a different queue.

Additionally, a Queue column will appear on the Script Deployment Status page to indicate
which queue a script has been deployed to. Users can set the Queue filter on the bottom of this
page to sort scripts based on queue number.

Should you choose to purchase SuiteCloud Plus, be aware that all of your existing scripts will,
by default, initially be put into Queue 1. You will need to go the Script Deployment pages of
each schedule script to reassign the script to another queue. Also note that if you do not assign
a queue number to a new script, the script will automatically be assigned to Queue 1.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N259503.html

Scheduled Scripts
Scheduled Script Samples

240

SuiteScript Developer & Reference Guide

To learn more about SuiteCloud Plus, or to purchase it contact your NetSuite account manager.

Determining Which Queue Your Scheduled Script Is In

After you have purchased one or more SuiteCloud Plus licenses, you can use a queue argument
to obtain the queue number assigned to a scheduled script. The queue argument is the second
argument passed to the launch or executing function of a scheduled script. (The first argument
is the type argument, which you can use regardless of whether you have a SuiteCloud Plus
license. For details on the type argument, Executing a Scheduled Script in Certain Contexts.)

The queue argument provides the id of the queue you selected in the Queue field of the
scheduled script's Script Deployment page.

Important: The queue argument is an auto-generated argument passed by the system.
You cannot set this as a parameter for a specific deployment like other
function arguments.

If you have purchased a single SuiteCloud Plus license, valid values for the queue argument are:
1, 2, 3, 4, 5. If you have purchased two licenses, 6,7,8,9,10 are also valid. If you have purchased
three licenses, 11, 12, 13, 14, 15 are also valid.

Example

function processOrdersCreatedToday(type, queue)
{
 //only execute when run from the scheduler and the script is in queue 5,
// based on the deployment options set in the UI
 if (type != 'scheduled' && type != 'skipped' && queue == 5) return ;

.... //process rest of script

}

Scheduled Script Samples

The following scheduled script code samples are provided in this section:

• Example 1 - Fulfill and Bill Sales Orders on a Daily Basis

• Example 2 - Reschedule a Script Depending on Units Remaining

• Example 3 - Create a Drip Marketing Campaign

• Example 4 - Automatically Send ‘Thank You' Emails to Valued Customers

Scheduled Scripts
Scheduled Script Samples

241

SuiteScript Developer & Reference Guide

• Example 5 - Passing Script Parameters in a Scheduled Script

Example 1 - Fulfill and Bill Sales Orders on a Daily Basis

This script fulfills and bills all sales orders created today. This is a batch operation that
would normally take a long time to execute, making it an ideal candidate for a scheduled
script.

function processOrdersCreatedToday(type)
{
 //only execute when run from the scheduler
 if (type != 'scheduled' && type != 'skipped') return;

 var filters = new Array();
 filters[0] = new nlobjSearchFilter('mainline', null, 'is', 'T');
 filters[1] = new nlobjSearchFilter('trandate', null, 'equalTo', 'today');

 var searchresults = nlapiSearchRecord('salesorder', null, filters, null, new nlobjSearchCol
umn('terms'));
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var id = searchresults[i].getId();
 var fulfillRecord = nlapiTransformRecord('salesorder', id, 'itemfulfillment');
 nlapiSubmitRecord(fulfillRecord);

 var billType = searchresults[i].getValue('paymentmethod') == null ? 'invoice' : 'cashsale
';
 var billRecord = nlapiTransformRecord('salesorder', id, billType);
 nlapiSubmitRecord(billRecord);
 }
}

Example 2 - Reschedule a Script Depending on Units Remaining

Use nlapiScheduleScript, nlobjContext.getScriptId(), and nlobjContext.getDeploymentId() to
reschedule the currently executing scheduled script if there are more sales orders to update
when the unit usage limit is reached.

function updateSalesOrders()
{
 var context = nlapiGetContext();
 var searchresults = nlapiSearchRecord('salesorder', 'customscript_orders_to_update')
 if (searchresults == null)
 return;
 for (var i = 0; i < searchresults.length; i++)
 {
 nlapiSubmitField('salesorder', searchresults[i].getId(), 'custbody_approved', 'T')
 if (context.getRemainingUsage() <= 0 && (i+1) < searchresults.length)
 {
 var status = nlapiScheduleScript(context.getScriptId(), context.getDeploymentId())
 if (status == 'QUEUED')
 break;
 }
 }
}

Scheduled Scripts
Scheduled Script Samples

242

SuiteScript Developer & Reference Guide

Example 3 - Create a Drip Marketing Campaign

This example illustrates a daily scheduled script for processing a drip marketing campaign with
two touch points and one branch point. The basic workflow involves:

• Schedule Campaign for new leads (clone and schedule an existing campaign)

• Schedule follow-up Campaign for leads that are seven days old but whose statuses have
not changed

• Schedule follow-up phone calls for sales reps assigned to these leads

• Schedule Campaign for leads that are seven days old whose statuses have since been
upgraded

Parameters & Setup

• custscript_newleads campaign list parameter containing base campaign used for emailing
new leads

• custscript_weekold campaign list parameter containing base campaign used for emailing
week old unchanged leads

• custscript_converted campaign list parameter containing base campaign used for emailing
week old upgraded leads

• custscript_leadstatus entitystatus list parameter containing the status used to define what a
"new" lead is.

function processDripMarketing(type)
{
 if (type != 'scheduled') return; /* script should only execute during scheduled calls. */

 /* process new leads */
 scheduleCampaign(custscript_newleads);
 /* process one-week old unchanged leads */
 scheduleCampaign(custscript_weekold);
 /* process follow-up for one-week old unchanged leads */
 scheduleFollowUpPhoneCall();
 /* process follow-up email for one-week old converted leads. */
 scheduleCampaign(custscript_converted);
}

function scheduleCampaign(base_campaign)
{
 var today = nlapiDateToString(new Date());
 var campaign = nlapiCopyRecord('campaign', base_campaign);
 campaign.setFieldValue('startdate', today);
 campaign.setFieldValue('title',campaign.getFieldValue('title') + ' (' + today + ')');

 campaign.setLineItemValue('campaignemail','status',1,'EXECUTE');
 campaign.setLineItemValue('campaignemail','datescheduled',1,today);
 nlapiSubmitRecord(campaign);
}

function scheduleFollowUpPhoneCall()

Scheduled Scripts
Scheduled Script Samples

243

SuiteScript Developer & Reference Guide

{
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('datecreated',null,'on','daysago7');
 filters[1] = new nlobjSearchFilter('status',null,'equalto', custscript_leadstatus);

 var columns = new Array();
 columns[0] = new nlobjSearchColumn('salesrep');
 columns[1] = new nlobjSearchColumn('phone');
 columns[2] = new nlobjSearchColumn('entityid');

 var today = nlapiDateToString(new Date());
 var leads = nlapiSearchRecord('customer',null,filters,columns);
 for (var i = 0; leads != null && i < leads.length; i++)
 {
 var leadId = leads[i].getId();
 var salesrep = leads[i].getValue('salesrep');
 var phonenumber = leads[i].getValue('phone');
 var leadName = leads[i].getValue('entityid');
 /* Schedule Phone Call only if the lead is assigned and has a number. */
 if (salesrep != null && phonenumber != null)
 {
 var call = nlapiCreateRecord('phonecall');
 call.setFieldValue('title','Follow up Call for '+leadName);
 call.setFieldValue('startdate', today);
 call.setFieldValue('assigned', salesrep);
 call.setFieldValue('phone', phonenumber);
 call.setFieldValue('company', leadId);
 call.setFieldValue('status','SCHEDULED');
 nlapiSubmitRecord(call);
 }
 }

}

Example 4 - Automatically Send ‘Thank You' Emails to Valued Customers

This sample shows how to create a scheduled script to send thank you notes to valued,
repeated customers. A scheduled script may be executed to perform daily searches for
sales orders that are placed today and within the last 30 days from the same customer.
After retrieving the results, the scheduled script then sends these customers an email on
behalf of the sales rep to thank them for their repeated business.

Notice there are a number of nlobjContext.getRemainingUsage() API calls in the sample.
This API provides the remaining SuiteScript usage to help scripts monitor how close they
are to running into SuiteScript usage governance.

/**
 * This scheduled script looks for customers that
 * have placed multiple orders in the last 30 days.
 * It will send a thank you email to these customers
 * on behalf of their sales reps.
 */
function findHotCustomerScheduled(type)
{
 //Invoke only when it is scheduled

Scheduled Scripts
Scheduled Script Samples

244

SuiteScript Developer & Reference Guide

 if(type == 'scheduled')
 {
 //Obtaining the context object and logging the remaining usage available
 var context = nlapiGetContext();
 nlapiLogExecution('DEBUG', 'Remaining usage at script beginning', context.getRemainingUsage
());

 //Setting up filters to search for sales orders
 //with trandate of today.
 var todaySOFilters = new Array();
 todaySOFilters[0] = new nlobjSearchFilter('trandate', null, 'on', 'today');

 //Setting up the columns. Note the join entity.salesrep column.
 var todaySOColumns = new Array();
 todaySOColumns[0] = new nlobjSearchColumn('tranid', null, null);
 todaySOColumns[1] = new nlobjSearchColumn('entity', null, null);
 todaySOColumns[2] = new nlobjSearchColumn('salesrep', 'entity', null);

 //Search for the sales orders with trandate of today
 var todaySO = nlapiSearchRecord('salesorder', null, todaySOFilters, todaySOColumns);
 nlapiLogExecution('DEBUG', 'Remaining usage after searching sales orders from today', conte
xt.getRemainingUsage());

 //Looping through each result found
 for(var i = 0; todaySO != null && i < todaySO.length; i++)
 {
 //obtain a result
 var so = todaySO[i];

 //Setting up the filters for another sales order search
 //that are of the same customer and have trandate within
 //the last 30 days
 var oldSOFilters = new Array();
 var thirtyDaysAgo = nlapiAddDays(new Date(), -30);
 oldSOFilters[0] = new nlobjSearchFilter('trandate', null, 'onorafter', thirtyDaysAgo);
 oldSOFilters[1] = new nlobjSearchFilter('entity', null, 'is', so.getValue('entity'));
 oldSOFilters[2] = new nlobjSearchFilter('tranid', null, 'isnot', so.getValue('tranid'));

 //Search for for the repeated sales in the last 30 days
 var oldSO = nlapiSearchRecord('salesorder', null, oldSOFilters, null);
 nlapiLogExecution('DEBUG', 'Remaining usage after in for loop, i=' + i, context.getRemain
ingUsage());

 //If results are found, send a thank you email
 if(oldSO != null)
 {
 //Setting up the subject and body of the email
 var subject = 'Thank you!';
 var body = 'Dear ' + so.getText('entity') + ', thank you for your repeated business in
the last 30 days.';

 //Sending the thank you email to the customer on behalf of the sales rep
 //Note the code to obtain the join column entity.salesrep
 nlapiSendEmail(so.getValue('salesrep', 'entity'), so.getValue('entity'), subject, body)
;
 nlapiLogExecution('DEBUG', 'Remaining usage after sending thank you email', context.get
RemainingUsage());
 }
 }
 }

Scheduled Scripts
Scheduled Script Samples

245

SuiteScript Developer & Reference Guide

}

Example 5 - Passing Script Parameters in a Scheduled Script

The following sample shows how to retrieve passed parameters (by calling the
getSetting(...) method on the nlobjContext object) within a scheduled script. It also shows
how to execute a scheduled script by passing the custom ID (scriptId) of the Script record
and the custom deployment ID (deployId) of the Script Deployment record. For details
on working with script parameters, see Creating Script Parameters Overview.

//retrieve parameters inside a scheduled script
function scheduled_main()
{
//get script parameter values
var context = nlapiGetContext();
var strStartDate = context.getSetting('SCRIPT', 'custscriptstartdate');

var subsidiary = context.getSetting('SCRIPT', 'custscriptsubsidiary');
var startDate = new Date(strStartDate);

//schedule the script execution and define script parameter values
var startDate = new Date();
var params = {
 custscriptstartdate: startDate.toUTCString(),
 custscriptsubsidiary: 42
}

//so that the scheduled script API knows which script to run, set the custom ID
//specified on the Script record. Then set the custom ID on the Script Deployment
nlapiScheduleScript('customscript_audit_report', 'customdeploy_audit_report_dp', params);
}

Note: Since scheduled scripts also trigger user event scripts, developers may need to
revisit the design of their user event scripts to ensure they will be invoked by the
correct execution contexts.

Portlet Scripts
What Are Portlet Scripts?

246

SuiteScript Developer & Reference Guide

Chapter 26 Portlet Scripts
The following topics are covered in this section:

• What Are Portlet Scripts?

• Portlet Script Execution

• Assigning the Portlet Preference to a Script Parameter

• Running a Portlet Script in NetSuite

• Displaying Portlet Scripts on the Dashboard

• Portlet Scripts Samples

What Are Portlet Scripts?

Portlet scripts can be used to define and publish custom dashboard content. The following
portlet types can be created:

• LIST - A standard list of user-defined column headers and rows (for example a Search
Results portlets). See List Portlet for an example of a list portlet.

• FORM - A basic data entry form with up to one submit button embedded into a portlet
(for example a Quickadd portlet). This type of portlet supports APIs to refresh and resize
the portlet, as well as the use of record-level client-side script to implement validation. See
Form-level and Record-level Client Scripts for details about this type of script. See Form
Portlet for an example of a form portlet.

• HTML - An HTML-based portlet, the most flexible presentation format used to display
free-form HTML (images, Flash, custom HTML). See HTML Portlet for an example of an
HTML portlet.

• LINKS - This default portlet consists of rows of formatted content (for example an RSS
portlet). See Links Portlet for an example of a links portlet.

Be aware that the portlet type (LIST, FORM, HTML, LINKS) is not actually passed as a value in
the portlet script itself, rather it is defined on the portlet Script record page (see figure below).
Once you create your portlet .js file, you will load your .js file into the file cabinet, create a new
script record for your file (Setup > Customization > Scripts > New > Portlet), and then select
the portlet type from the Portlet Type drop-down menu.

Portlet Scripts
Portlet Script Execution

247

SuiteScript Developer & Reference Guide

Portlet Script Execution
Portlet scripts run on the server and are rendered in the NetSuite dashboard. A user-defined
portlet function is executed whenever a SuiteScript-generated portlet is opened or refreshed by
the user.

When writing portlet scripts, NetSuite automatically passes two arguments to your user-defined
function. These arguments are:

• portlet - References a nlobjPortlet object

• column - Column index for this portlet on the dashboard (valid values are: 1 = left column,
2 = middle column, 3 = right column)

For custom portlets on Customer Dashboards, NetSuite can pass the following additional
argument:

• entityid - References the customer ID for the selected customer.

Example

function mySamplePortlet(portlet, column)
{
remainder of portlet script...
}

Note that column is an optional argument. If you choose not to pass a column value in your
script, you can write:

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N592097.html

Portlet Scripts
Assigning the Portlet Preference to a Script Parameter

248

SuiteScript Developer & Reference Guide

function mySamplePortlet(portlet)
{
remainder of portlet script...
}

Portlet scripts can only run after users have added the scripts to their dashboards. Once the
scripts have been added, users must then open their dashboards for a portlet script to execute.

Note: To add portlet scripts to the dashboard, see Displaying Portlet Scripts on the
Dashboard.

Assigning the Portlet Preference to a Script Parameter
Portlet script parameters (custom fields) can be configured to be customizable as portlet
settings. This allows users to modify their script parameters for each portlet. For information
on setting the portlet preference on script parameters, see Setting Script Parameter Preferences.
If you are not familiar with the concept of script parameters, see Creating Script Parameters
Overview.

Running a Portlet Script in NetSuite
To run a portlet script in NetSuite, you must:

1. Create a JavaScript file for your portlet script.

2. Load the file into NetSuite.

3. Create a Script record.

4. Define all runtime options on the Script Deployment page.

If you are new to SuiteScript and need information on each of these steps, see Running Scripts
in NetSuite Overview.

Important: Portlets scripts require that you reference the script from a custom portlet.
See Displaying Portlet Scripts on the Dashboard for details.

Displaying Portlet Scripts on the Dashboard
If you have created a portlet using SuiteScript, use these steps to display the custom portlet
on your dashboard. Note that the following steps are to be completed only after you have
performed all steps in the section Running a Portlet Script in NetSuite.

Portlet Scripts
Portlet Scripts Samples

249

SuiteScript Developer & Reference Guide

To display portlet scripts on the dashboard:

1. Go to your dashboard and click the Personalize Dashboard link.

2. Click one of the Custom Portlet links under the Standard Content folder.

An empty Custom Content portlet appears on your dashboard.

3. Hover over the Portlet Setup arrow and click Set Up.

4. In the Set Up Scripted Content popup, select the desired portlet script from the Source
drop-down list, and then click Save.

The portlet will populate with data as defined in your portlet script.

Portlet Scripts Samples

The following sample portlets are provided:

• List Portlet

• Form Portlet

• HTML Portlet

• Links Portlet

The following image shows how the portlet samples appear in NetSuite:

Portlet Scripts
Portlet Scripts Samples

250

SuiteScript Developer & Reference Guide

Item Description

1 Sample list portlet

2 Sample form portlet

3 Sample HTML portlet

List Portlet

This script searches for a list of estimates and displays the results in a list format. See
nlobjPortlet for a list of portlet object methods.

Script:

function demoListPortlet(portlet, column)
{
 portlet.setTitle(column != 2 ? "Estimates List" : "Estimates List Detail")
 var col = portlet.addColumn('tranid','text', 'Number', 'LEFT');
 col.setURL(nlapiResolveURL('RECORD','estimate'));
 col.addParamToURL('id','id', true);
 portlet.addColumn('trandate','date', 'Date', 'LEFT');
 portlet.addColumn('entity_display','text', 'Customer', 'LEFT');
 if (column == 2)
 {
 portlet.addColumn('salesrep_display','text', 'Sales Rep', 'LEFT');
 portlet.addColumn('amount','currency', 'Amount', 'RIGHT');
 }
 var returncols = new Array();
 returncols[0] = new nlobjSearchColumn('trandate');

Portlet Scripts
Portlet Scripts Samples

251

SuiteScript Developer & Reference Guide

 returncols[1] = new nlobjSearchColumn('tranid');
 returncols[2] = new nlobjSearchColumn('entity');
 returncols[3] = new nlobjSearchColumn('salesrep');
 returncols[4] = new nlobjSearchColumn('amount');
 var results = nlapiSearchRecord('estimate', null, new
 nlobjSearchFilter('mainline',null,'is','T'), returncols);
 for (var i = 0; i < Math.min((column != 2 ? 5 : 15),results.length); i++)
 portlet.addRow(results[i])
}

Form Portlet

This script builds a very simple form in a portlet that POSTs data to a servlet. This form
includes one embedded Submit button.

See nlobjPortlet for a list of portlet object methods.

Script:

function demoSimpleFormPortlet(portlet, column)
{
 portlet.setTitle('Simple Form Portlet')
 var fld = portlet.addField('text','text','Text');
 fld.setLayoutType('normal','startcol');
 portlet.addField('integer','integer','Integer');
 portlet.addField('date','date','Date');
 var select = portlet.addField('fruit','select','Select');
 select.addSelectOption('a','Oranges');
 select.addSelectOption('b','Apples');
 select.addSelectOption('c','Bananas');
 portlet.addField('textarea','textarea','Textarea');
 portlet.setSubmitButton(nlapiResolveURL('SUITELET','customscript_simpleformbackend', 'custo
mdeploy_simpleform'),'Submit');
}

HTML Portlet

This portlet script generates the HTML required to download and display a FLASH animation
in an HTML portlet. See nlobjPortlet for a list of portlet object methods.

Script:

function demoRichClientPortlet(portlet, column)
{
 portlet.setTitle('Flash Portlet')
 var content = "<table align=center border=0 cellpadding=3 cellspacing=0
 width=100%><tr><td>"+
 "<OBJECT CLASSID='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'>"+
 "<PARAM NAME='MOVIE' VALUE='/images/flash/tomato.swf'>"+
 "<embed src='/images/flash/tomato.swf'></embed></OBJECT></td>
 </tr></table>";
 content = '<td>'+ content + '</td>'
 portlet.setHtml(content);

Portlet Scripts
Portlet Scripts Samples

252

SuiteScript Developer & Reference Guide

}

Note: To use the HTML from a text file uploaded to the file cabinet, substitute the HTML
string assigned to var content with nlapiLoadFile(id).getValue().

Links Portlet

This script makes an external request to slashdot.org in order to retrieve and display an RSS
feed in a LINKS portlet. The APIs used are nlapiRequestURL(url, postdata, headers, callback,
httpMethod) to fetch the RSS feed, nlapiStringToXML(text) to convert the feed into an XML
document, and nlapiSelectNodes(node, xpath) / nlapiSelectValue(node, xpath) to query the
XML document for the RSS data.

See nlobjPortlet for a list of portlet object methods.

Script:

function demoRssPortlet(portlet)
{
 portlet.setTitle('Custom RSS Feed');
 var feeds = getRssFeed();
 if (feeds != null && feeds.length > 0)
 {
 for (var i=0; i < feeds.length ; i++)
 {
 portlet.addLine('#'+(i+1)+': '+feeds[i].title, feeds[i].url, 0);
 portlet.addLine(feeds[i].description, null, 1);
 }
 }
}
function getRssFeed()
{
 var url = 'http://rss.slashdot.org/Slashdot/slashdot';
 var response = nlapiRequestURL(url, null, null);
 var responseXML = nlapiStringToXML(response.getBody());
 var rawfeeds = nlapiSelectNodes(responseXML, "//item");
 var feeds = new Array();
 for (var i = 0; i < rawfeeds.length && i < 5 ; i++)
 {
 feeds[feeds.length++] = new rssfeed(nlapiSelectValue(rawfeeds[i], "title"),
 nlapiSelectValue(rawfeeds[i], "link"),
 nlapiSelectValue(rawfeeds[i], "description"));
 }
 return feeds;
}

function rssfeed(title, url, description)
{
 this.title = title;
 this.url = url;
 this.description = description;
}

Mass Update Scripts
What Are Mass Update Scripts?

253

SuiteScript Developer & Reference Guide

Chapter 27 Mass Update Scripts
The following topics are covered in this section:

• What Are Mass Update Scripts?

• Mass Update Script Execution

• Running a Mass Update Script in NetSuite

• Mass Update Scripts Samples

What Are Mass Update Scripts?
Mass update scripts allow you to programmatically perform custom mass updates to update
fields that are not available through general mass updates. You can also use mass update scripts
to run complex calculations, as defined in your script, across many records.

Note: If you are not familiar with mass update functionality in NetSuite, see the help topic
Making Mass Changes or Updates in the NetSuite Help Center.

When a custom mass update is performed, the record type being updated is passed to a
system-defined rec_type parameter in the mass update script. Additionally, the internal ID of
each record in the custom mass update is passed to a system-defined rec_id parameter.

Whether you are using a custom mass update to update fields that are (or are not) available
through inline editing, or you are updating fields based on the value of a SuiteScript script
parameter, the executing function in your script will include the rec_type and rec_id
parameters. For example:

function updateMemo(rec_type, rec_id)
{
nlapiSubmitField(rec_type, rec_id, 'memo', 'Premiere Customer', true);
}

Note: See Mass Update Scripts Samples for more details on working with mass update
scripts.

Like all other script types, you must create a Script record and a Script Deployment record
for mass update scripts. Once you define the deployment for a mass update script and specify
which record types the script will run against, the record type(s) will appear under the Custom
Updates dropdown, accessed by going to Lists > Mass Update > Mass Updates > Custom
Updates (see figure).

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N666653.html

Mass Update Scripts
What Are Mass Update Scripts?

254

SuiteScript Developer & Reference Guide

Mass Update Script Metering and Governance

The SuiteScript governance limit is 1000 units per record /invocation of a mass update script.

Also note that if multiple rows are returned for the same transaction, the custom mass update
will still run only once per transaction.

Creating Script Parameters for Mass Update Scripts

The mass update script type allows you to create script parameters on the Script record page.
Script parameters will then appear as fields in the header portion of the custom Mass Update
page of the specified record type (see figure). Users executing custom mass updates can set the
value(s) of one or more script parameters on the Mass Update page before running the update.

Mass Update Scripts
Mass Update Script Execution

255

SuiteScript Developer & Reference Guide

Note that your SuiteScript code must use the nlobjContext.getSetting(type, name) method to
get the user-defined value of the script parameter. See Mass Update Scripts Samples for more
details on working with script parameters within action scripts.

When you first create your script parameter you can set a parameter value as a user or
company preference. The parameter will default to this value, but users may edit it as they run
the mass update.

When you preview a custom mass update, the selected parameters will be shown for reference
in the footer of the search results page.

Note: If you are not familiar with script parameters in SuiteScript, see Creating Script
Parameters Overview in the NetSuite Help Center.

Mass Update Script Execution
Mass Update scripts execute on the server. They are not considered to be client scripts that run
in the browser.

Mass Update scripts are executed when users click the Perform Update button on the Mass
Update Preview Results page.

Important: Mass update scripts can only be invoked from the Mass Update page. They
cannot be invoked from another script type. For example, you cannot invoke
a mass update script by passing the script's scriptId and deployId to the
nlapiScheduleScript(scriptId, deployId, params) function.

You have a choice of running mass update scripts as admin or as the logged-in user. As a script
owner, you must have the Mass Update permission to test and work with mass update scripts.
Users must have the Client SuiteScript and Server SuiteScript features enabled in their accounts

Mass Update Scripts
Running a Mass Update Script in NetSuite

256

SuiteScript Developer & Reference Guide

for the scripts to run. Also be aware that users who perform the custom mass update need the
appropriate permission (Edit or Full) for the record types they are updating.

If a mass update script encounters an error, the script execution will abort. Only the updates
that are completed prior to the error will be committed to the database.

Also note that the execution context for a mass update script is custommassupdate.
This is important if you are trying to determine the execution context of a script using
nlobjContext.getExecutionContext().

Finally, be aware that updates made to records during a custom mass update can trigger user
event scripts if there are user event scripts associated with the records being updated.

Running a Mass Update Script in NetSuite
To run a mass update script in NetSuite, you must:

1. Create a JavaScript file for your action script.

2. Load the file into NetSuite.

3. Create a Script record.

4. Define all runtime options on the Script Deployment page.

5. Once you define the deployment for a mass update script and specify which record types
the script will run against, the record type(s) will appear under the Custom Updates
dropdown, accessed by going to Lists > Mass Update > Mass Updates > Custom Updates.

If you are new to SuiteScript and need information on steps 1–4, see Running Scripts in
NetSuite Overview.

Important: When running mass update scripts in NetSuite, be aware of the following:

• Mass update script deployments and mass updates can both be assigned an audience.
It is the script owner's responsibility to ensure the two audiences are in sync. If the two
audiences do not match, the mass update script will not run when users click the Perform
Update button on the Mass Update page.

• When users run custom mass updates, they must have the appropriate permission (Edit/
Full) for the record type(s) they are updating.

• Users must also have SuiteScript enabled in their accounts. (Administrators can go to
Setup > Company > Enabled Features > SuiteFlex tab > and click the Server SuiteScript
check box and the Client SuiteScript check box.)

Mass Update Scripts Samples
The following mass update script samples are provided in this section:

Mass Update Scripts
Mass Update Scripts Samples

257

SuiteScript Developer & Reference Guide

• Updating a field that is available through inline edit

• Updating a field that is not available through inline edit

• Updating a field based on a script parameter value

Updating a field that is available through inline edit

The following sample mass update script shows that the Memo field on every record of a
certain type will be updated in a custom mass update. The record type that this script will run
against (Sales Order, for example) is defined on the action Script Deployment page. When the
custom mass update is executed by a user, the individual record IDs for each record of that type
is passed to the mass update script's rec_id parameter.

Note that in the UI, the Memo field can be inline editing. In SuiteScript, fields that are inline
editable are updated using the nlapiSubmitField(type, id, fields, values, doSourcing) function.

function updateMemo(rec_type, rec_id)
{
 nlapiSubmitField(rec_type, rec_id, 'memo', 'Premiere Customer', true);
}

In the sample above, when the user clicks the Perform Update button on the Mass Update
Preview Results page, the Memo field on all specified sales orders will be updated to the text
value Premiere Customer.

Important: Be aware that if the Memo field were not inline editable, you would
have to load and submit each record in the custom mass update. The
nlapiSubmitField function is used only on fields that can be inline edited
through the UI. For example mass update scripts that update fields that are
not available through inline edit, see Updating a field that is not available
through inline edit.

Updating a field that is not available through inline edit

The second example updates the Probability field on the Opportunity record type. The record
type is specified on the Script Deployment page for the action script.

Once all custom mass update search criteria are defined on the Mass Update page for the
Opportunity record type, this script will run on all Opportunity records that match the criteria.
The Probability field will then be updated to the new value.

function updProbability(rec_type, rec_id)
{
var recOpportunity = nlapiLoadRecord(rec_type, rec_id);
recOpportunity.setFieldValue('probability', 61);
nlapiSubmitRecord(recOpportunity);
}

Mass Update Scripts
Mass Update Scripts Samples

258

SuiteScript Developer & Reference Guide

Note that in this sample, you are required to load and submit the entire record to change
the value of the Probability field. You must do this when the field you want to change in the
custom mass update cannot be inline edited. In other words, you cannot update the field using
nlapiSubmitField(type, id, fields, values, doSourcing) without first loading the entire record
object.

Updating a field based on a script parameter value

This sample mass update script updates the Department field on the Sales Order and Estimate
record types. The update is based on the value of a script parameter called New Department
(custscript_dept_update). Note that because the Department field is not accessible through
inline editing, the only way to change the value of the Department field is to load and submit
each record that the custom mass update is running against.

To perform a custom mass update that references a script parameter:

1. Create an action script (see below for an example). The script below will update the
Department field on the record types specified in the action script's deployment. The
update of the Department field will be based on the user-defined value specified in Step .

Notice that the script's executing function takes the rec_type and rec_id parameters. When
the custom mass update is performed, the record type defined on the deployment and the
internal ID of each record will get passed to the executing function.

function updateDepartment(rec_type, rec_id)
{
 var transaction = nlapiLoadRecord(rec_type, rec_id);
 transaction.setFieldValue('department', nlapiGetContext().getSetting('SCRIPT',
 'custscript_dept_update'));
 nlapiSubmitRecord(transaction, false, true);
 }

2. Create a mass update Script record and define the new script parameter (see figure).

Mass Update Scripts
Mass Update Scripts Samples

259

SuiteScript Developer & Reference Guide

3. Create a script deployment (see figure below). In this example, the Update Department
script will be deployed to Sales Order records.

4. After deploying the mass update script, go to Lists > Mass Update > Mass Updates. All
custom mass updates referencing a mass update script will appear under the Custom
Updates dropdown. The following figure shows that the Update Department script has
been deployed to the Estimate and Sales Order record types (see figure).

Mass Update Scripts
Mass Update Scripts Samples

260

SuiteScript Developer & Reference Guide

5. Click the custom mass update you want to execute. In this example, the Update
Department link under the Sales Order deployment is selected.

6. On the Mass Update page for the record type, specify the value of the script parameter. In
this example, the value of the New Department script parameter is set to Services (see
figure).

Mass Update Scripts
Mass Update Scripts Samples

261

SuiteScript Developer & Reference Guide

7. Next, as with any mass update, use tabs on the Mass Update page to:

1. Define which records the custom mass update will apply to (Criteria tab).

2. Define which records you want to see when you preview the custom mass update
(Results tab).

3. Define the Audience that the custom mass update will apply to (Audience tab).

Important: Be sure that the audience you define on the Mass Update page
matches the audience defined on the Script Deployment page.

4. Set the frequency with which you want the custom mass update to run (Schedule
tab).

8. Click Preview to verify which records the custom mass update will apply to.

9. Click Perform Update to run the custom mass update.

Bundle Installation Scripts
What are Bundle Installation Scripts?

262

SuiteScript Developer & Reference Guide

Chapter 28 Bundle Installation Scripts
The following topics are covered in this section:

• What are Bundle Installation Scripts?

• Setting Up a Bundle Installation Script

• Sample Bundle Installation Script

What are Bundle Installation Scripts?
Bundle installation scripts are specialized server SuiteScripts that perform processing in target
accounts as part of bundle installation, update, or uninstall. This processing can include setup,
configuration, and data management tasks that would otherwise have to be completed by
account administrators. These scripts enhance solution providers' ability to manage the bundle
deployment process.

Every bundle can include a bundle installation script that is automatically run when the bundle
is installed, upgraded, or uninstalled. Each bundle installation script can contain triggers to
be executed before install, after install, before update, after update, and after uninstall. All
triggers should be included in a single script file. This trigger code can ensure that bundles are
implemented correctly, and can prevent bundle installation, update, or uninstall if proper setup
has not occurred.

Bundle installation scripts have no audience because they are always executed using the
administrator role, in the context of bundle installation, update, or uninstall. Bundle
installation scripts do not have event types.

A bundle installation script can be associated with multiple bundles. Before a script can be
associated with a bundle, it must have a script record and at least one deployment. A bundle
creator associates a bundle installation script with a bundle by selecting one of its deployments
in the Bundle Builder. The script .js file and script record are automatically included in the
bundle when it is added to target accounts. Script file contents can be hidden from target
accounts based on an option set for the .js file in the file cabinet record.

Bundle Installation Script Functions

Triggered Functions

A bundle installation script's functions are executed automatically during bundle installation,
update, or uninstall, based on one or more of the following triggers:

• Before Install - Executed before a bundle is installed for the first time in a target account.

Bundle Installation Scripts
What are Bundle Installation Scripts?

263

SuiteScript Developer & Reference Guide

• After Install - Executed after a bundle is installed for the first time in a target account.

• Before Update - Executed before a bundle in a target account is updated.

• After Update - Executed after a bundle in a target account is updated.

• Before Uninstall - Executed before a bundle is uninstalled from a target account.

A bundle installation script file should include a function for at least one of these triggers. If
you are using more than one of these, they should all be in the same script file.

The following are example uses for bundle installation script triggered functions:

• Before Install: Check the existing configuration and setup in the target account prior to
bundle installation, and halt the installation with an error message if the target account
does not meet minimum requirements to run the solution.

• After Install: Automate the setup and configuration of the bundled application after it has
been installed in the target account, eliminating manual tasks.

• After Install or After Update: Connect to an external system to fetch some data and
complete the setup of the bundled application.

• Before Update: Manage required data changes in the target account prior to executing an
upgrade.

• Before Uninstall: Reset configuration settings or remove data associated with the bundle
being uninstalled.

Function Parameters

Two specialized parameters are available to functions in bundle installation scripts, to return
the version of bundles, as specified on the Bundle Basics page of the Bundle Builder.

• The toversion parameter returns the version of the bundle that will be installed in the
target account. This parameter is available to Before Install, After Install, Before Update,
and After Update functions.

• The fromversion parameter returns the version of the bundle that is currently installed
in the target account. This parameter is available to Before Update and After Update
functions.

Getting Bundle Context

Calls to Functions in Other Script Files

A bundle installation script file can include calls to functions in other script files, as long as
these files are added as library script files on the script record. Any .js files for library script files
are automatically included in the bundle when it is added to target accounts.

Bundle Installation Scripts
Setting Up a Bundle Installation Script

264

SuiteScript Developer & Reference Guide

Bundle installation scripts can call scheduled scripts, but only in the After Install and After
Update functions. Calls to scheduled scripts are not supported in the Before Install, Before
Update, and Before Uninstall functions.

Bundle Installation Script Governance

Bundle installation scripts are governed by a maximum of 10,000 units per execution.

Defining Deployments for Bundle Installation Scripts

You can create multiple deployments for each bundle installation script, with different
parameters for each, but only one deployment can be associated with each bundle. When you
associate a bundle installation script with a bundle, you select a specific script deployment.

Bundle installation scripts need to be executed with administrator privileges, so the Execute as
Role field should always be set to Administrator on the script deployment record.

Bundle installation scripts can only be run in target accounts if the Status is set to Released. The
Status should be set to Testing if you want to debug the script.

Bundle Installation Script Error Handling

Any bundle installation script failure terminates bundle installation, update, or uninstall.

Bundle installation scripts can include their own error handling, in addition to errors thrown
by SuiteBundler and the SuiteScript engine. An error thrown by a bundle installation script
returns an error code of “Installation Error”, followed by the text defined by the script author.

Setting Up a Bundle Installation Script
Complete the following tasks to set up a bundle installation script:

• Create the Bundle Installation Script File

• Add the Bundle Installation Script File to the File Cabinet

• Create the Bundle Installation Script Record

• Define Bundle Installation Script Deployment

• Associate the Script with a Bundle

A bundle installation script is a specialized server SuiteScript that is executed automatically in
target accounts when a bundle is installed, updated, or uninstalled. For details about how to
create a bundle, see the help topics Using the Bundle Builder and Creating a Bundle with the
Bundle Builder.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3372263.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374254.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374254.html

Bundle Installation Scripts
Setting Up a Bundle Installation Script

265

SuiteScript Developer & Reference Guide

Create the Bundle Installation Script File

You can create a bundle installation script file in the same manner that you create other types of
SuiteScript files, as described in Step 1: Create Your Script.

Bundle installation scripts support the entire SuiteScript API, including error handling and
the debugger. For details specific to bundle installation scripts, see Bundle Installation Script
Functions.

To create a bundle installation script file:

• Create a .js script file and add code.

This single script file should include Before Install, After Install, Before Update, After
Update, and Before Uninstall functions as necessary. It can include calls to functions in
other files, but you will need to list these files as library script files on the NetSuite script
record.

Add the Bundle Installation Script File to the File Cabinet

Once you have created a .js file with your bundle installation script code, you need to add this
file to the NetSuite file cabinet.

The following steps describe how to add the file manually. If you are using the SuiteCloud
IDE, this process is automated. For more information, see Step 2: Add Script to NetSuite File
Cabinet.

To add a bundle installation script file to the file cabinet:

1. Go to Documents > Files > File Cabinet, and select the folder where you want to add the
file.

It is recommended that you add your file to the SuiteScripts folder, but it can be added to
any other folder of your choice.

2. Click Add File, and browse to the .js file.

3. In the file cabinet folder where you added the bundle installation script file, click the Edit
link next to file.

4. Check the Available for SuiteBundles box.

5. Optionally, you can check the Hide in SuiteBundle box.

Because this script file will be included in the bundle, by default its contents will be
accessible to users of target accounts where the bundle is installed. If you do not want
these users to see this file, you can set this option to hide it.

Bundle Installation Scripts
Setting Up a Bundle Installation Script

266

SuiteScript Developer & Reference Guide

6. Click Save.

Create the Bundle Installation Script Record
Once you have added a bundle installation script file to the file cabinet, you can create a
NetSuite script record.

To create a bundle installation script record:

1. Go to Setup > Customization > Scripts > New, and click Bundle Installation.

2. Complete fields in the script record and save.

Although you do not need to set every field on the Script record, at a minimum you must
provide a Name for the Script record, load your SuiteScript file to the record, and specify
at least one of the executing functions on the Scripts tab.

These functions should all be in the main script file. If these functions call functions in
other script files, you need to list those files as library script files.

For more details about creating a script record, see Steps for Creating a Script Record.

Define Bundle Installation Script Deployment
Once you have created a bundle installation script record, you need to define at least
one deployment. For details about defining script deployments, see Step 5: Define Script
Deployment and Steps for Defining a Script Deployment

Bundle Installation Scripts
Setting Up a Bundle Installation Script

267

SuiteScript Developer & Reference Guide

You can define multiple deployments per bundle installation script . When you associate the
script with a bundle, you actually choose a specific deployment.

To define a bundle installation script deployment.

1. Do one of the following:

• When you save your Script record, you can immediately create a Script Deployment
record by selecting Save and Deploy from the Script record Save button.

• If you clicked Save, immediately afterwards you can click Deploy Script on the script
record.

• If you want to update a deployment that already exists, go to Customization >
Scripting > Script Deployments. Click Edit next to the deployment record you want
to edit.

2. Complete fields in the script deployment record and click Save.

Be sure to check the Execute as Admin box.

If you want to debug the script, set the Status to Testing. To enable the script to be run in a
target account, you must set the Status to Released.

Associate the Script with a Bundle

Once a bundle installation script has been created and at least one deployment has been
defined for it, you can associate the script with bundles as desired.

Note: The SuiteBundler feature must be enabled in your account for you to have access to
the Bundle Builder where this task is completed.

When you associate a script with a bundle, you select a specific script deployment.

To associate a script with a bundle:

1. Start the Bundle Builder.

• If you are creating a new bundle, go to Setup > Customization > Create Bundle.

• If you are editing an existing bundle, go to Customization > SuiteBundler > Create
Bundle > List , and select Edit from the Action menu for the desired bundle.

• For details about using the Bundle Builder, see the help topic Using the Bundle
Builder.

2. On the Bundle Basics page, select a bundle installation script deployment from the
Installation Script dropdown.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3372263.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3372263.html

Bundle Installation Scripts
Sample Bundle Installation Script

268

SuiteScript Developer & Reference Guide

3. Proceed through the remaining Bundle Builder steps, making definitions as necessary, and
click Save. Note the following:

• On the Select Objects page of the Bundle Builder, you do not have to explicitly add
the bundle installation script. This script record and the related .js file are included
automatically in the bundle, as are any other .js files that are listed as library script
files on the script record.

• For detailed instructions to complete all Bundle Builder steps, see the help topic Steps
for Creating a Bundle.

Once the bundle has been saved, this script record and related file(s) are listed as Bundle
Components on the Bundle Details page.

Sample Bundle Installation Script
This sample includes a bundle installation script file and a library script file. For details, see the
following:

• Summary of Sample Script Files

• Sample Bundle Installation Script File Code

• Sample Library Script File Code

Summary of Sample Script Files

The bundle installation script file includes the following:

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374842.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3374842.html

Bundle Installation Scripts
Sample Bundle Installation Script

269

SuiteScript Developer & Reference Guide

• Function that executes before bundle installation, ensuring that the Work Orders feature
is enabled in the target NetSuite account, and if the bundle that is being installed is version
2.0, also ensuring that the Multiple Currencies feature is enabled

• Function that executes after bundle installation, creating an account record in the target
account (note that accounts are not available to be included in bundles)

• Function that executes before bundle update, ensuring that the Work Orders feature is
enabled in the target NetSuite account, and if the target account bundle is being updated
to version 2.0, also ensuring that the Multiple Currencies feature is enabled

• Function that executes after bundle update, creating an account record in the target
account if the update changed the bundle version number

The library script file includes a function that is called by the bundle installation script
functions executed before installation and before update.

• This function checks whether a specified feature is enabled in the target account and
returns an error if the feature is not enabled.

• When an error is returned, bundle installation or update terminates.

Sample Bundle Installation Script File Code

The bundle installation script file SampBundInst.js contains the following code.

function beforeInstall(toversion)
{
 // Always check that Workorders is enabled
 checkFeatureEnabled('WORKORDERS');

 // Check that Multi Currency is enabled if version 2.0 is being installed
 if (toversion.toString() == "2.0")
 checkFeatureEnabled('MULTICURRENCY');
}

function afterInstall(toversion)
{
 // Create an account record
 var randomnumber=Math.floor(Math.random()*10000);
 var objRecord = nlapiCreateRecord('account');
 objRecord.setFieldValue('accttype','Bank');
 objRecord.setFieldValue('acctnumber',randomnumber);
 objRecord.setFieldValue('acctname','Acct '+toversion);
 nlapiSubmitRecord(objRecord, true);
}

function beforeUpdate(fromversion, toversion)
{
 // Always check that Workorders is enabled
 checkFeatureEnabled('WORKORDERS');
 // Check that Multi Currency is enabled if version 2.0 is being installed
 if (toversion.toString() == "2.0")
 checkFeatureEnabled('MULTICURRENCY');

Bundle Installation Scripts
Sample Bundle Installation Script

270

SuiteScript Developer & Reference Guide

}

function afterUpdate(fromversion, toversion)

{
 // Do not create an account if updating with the same version as the one installed
 if (fromversion.toString() != toversion.toString())
 {
 // Create an account record
 var randomnumber=Math.floor(Math.random()*10000);
 var objRecord = nlapiCreateRecord('account');
 objRecord.setFieldValue('accttype','Bank');
 objRecord.setFieldValue('acctnumber',randomnumber);
 objRecord.setFieldValue('acctname','Acct '+toversion);
 nlapiSubmitRecord(objRecord, true);
 }

}

Sample Library Script File Code

The library script file CheckFeat.js contains the following code.

function checkFeatureEnabled(featureId)
{
 nlapiLogExecution('DEBUG','Checking Feature',featureId);
 var objContext = nlapiGetContext();
 var feature = objContext.getFeature(featureId);

 if (feature)
 {
 nlapiLogExecution('DEBUG','Feature',featureId+' enabled');
 }

 else
 {
 throw new nlobjError('INSTALLATION_ERROR','Feature '+featureId+' must be ena
bled. Please enable the feature and re-try.');
 }

}

Setting Runtime Options Overview 271

SuiteScript Developer & Reference Guide

Chapter 29 Setting Runtime Options Overview
If you have not already created a Script Deployment record for your SuiteScript file, please see
Step 5: Define Script Deployment. This is the last step that is required for you to run your script
in NetSuite.

If you have created a deployment for your script and would now like to set additional
deployment options, see the following topics. These topics do not need to be read in order.

• Setting Script Execution Event Type from the UI

• Setting Script Execution Log Levels

• Executing Scripts Using a Specific Role

• Setting Available Without Login

• Setting Script Deployment Status

• Defining Script Audience

• Creating Script Parameters Overview

Also see these topics for information related to script deployments, but not necessarily specific
to any deployment/runtime options.

• Creating a Custom Script Deployment ID

• Viewing Script Deployments

• Creating Script Execution Logs

Setting Script Execution Event Type from the UI 272

SuiteScript Developer & Reference Guide

Chapter 30 Setting Script Execution Event
Type from the UI

In the Event Type field on the Script Deployment page, you can specify the event type that you
want to trigger the execution of the script (see figure). If Event Type is left blank, the script will
execute only on the events specified in the actual .js script file.

Note: The Event Type field appears on Suitelet, user event, and record-level client Script
Deployment pages only.

The Event Type field is useful if you want to specify a script execution context right at the time
of script deployment – without having to modify your .js file. Once you specify an event type
and click Save, the deployed script will execute only on that event, regardless of the event types
specified in the script file.

Be aware that event types specified in the UI take precedence over the types specified in the
script file. For example, if the create event type is specified in the script, selecting edit from the
Event Type field will restrict the script from running on any event other than edit.

The following snippet is from a user event script. Notice that the event type specified in the
code is create. If the edit event type is specified in the UI, this script will execute only when the
specified record is edited, not created:

function followUpCallAfterSubmit(type)
{
 // execute the logic in this script if a new customer is created
 if (type == ' create ')
 {
 // obtain a handle to the newly created customer record
 var custRec = nlapiGetNewRecord();

 // remainder of script......

Setting Script Execution Event Type from the UI 273

SuiteScript Developer & Reference Guide

 }
}

Setting Script Execution Log Levels 274

SuiteScript Developer & Reference Guide

Chapter 31 Setting Script Execution Log Levels
In the Log Level field on the Script Deployment page, specify which log entries you want to
appear on the Execution Log tab (see figure).

See Creating Script Execution Logs for details on how to further customize your view of all log
entries.

The Log Level field is essentially used as a basic filtering mechanism. Each log entry written
with nlapiLogExecution(type, title, details) specifies a log level in the type argument. When
logging details are displayed on the Execution Log tab of the Script Deployment record, you
can specify that all messages will display (by selecting Debug from the Log Level field) or a
specific type of message.

Important: Be aware that NetSuite governs the amount of logging that can be done by
a company in any given 60 minute time period. For complete details, see
Governance on Script Logging.

Use the Log Level field to filter which messages will appear on the Execution Log tab of the
Script Deployment page. Set filtering by selecting any of the following log levels from the Log
Level Field:

• Debug : For scripts in testing mode. A log level set to Debug shows all Audit, Error, and
Emergency information on the Execution Log tab.

• Audit : For scripts going into production. A log level set to Audit provides a record of
events that have occurred during the processing of the script (for example, “A request was
made to an external site.”).

• Error : For scripts going into production. A log level set to Error shows only unexpected
script errors.

• Emergency : For scripts going into production. A log level set to Emergency shows only
the most critical errors in the script log.

Setting Script Execution Log Levels 275

SuiteScript Developer & Reference Guide

Note: The log level you specify in the UI is independent of any error handling within your
script.

Executing Scripts Using a Specific Role 276

SuiteScript Developer & Reference Guide

Chapter 32 Executing Scripts Using a Specific
Role

In the Execute as Role field on the Script Deployment page, select the role you want the script
to run as. The Execute as Role field provides role-based granularity in terms of the permissions
and restrictions of the executing script. In the figure below, the script will always execute based
on the permissions and restrictions assigned to the Sales Person role, even if the role of the
logged in user is different.

Note that even if the logged in user's role is Admin, when the script executes in this user's
account, it will execute based on the record-level permissions assigned to the Sales Person role.

SuiteScript developers can also select from custom roles that they have created with
permissions that are specific for a given script deployment.

Also note that the value of Current Role in the Execute as Role field means that the script will
execute using the permissions of the currently logged-in user (the user whose account the script
is running in).

Note: Be aware that when a script triggers other scripts, the cascading scripts will run as
the role of the initial triggering script's role, not the role specified on the cascaded
script's role.

The Execute as Role field appears on the Script Deployment pages for these script types:

• Suitelet

• User Event

• Portlet

• Mass Update

• Workflow Action

Executing Scripts Using a Specific Role 277

SuiteScript Developer & Reference Guide

Note: For information about role restrictions in client SuiteScript, see Role Restrictions in
Client SuiteScript.

Note: Also, only users with the administrator role have access to the Execute as Role field.
This field is disabled for all others users who may be working with SuiteScript. Even
if you have been granted “Full” access to SuiteScript (on the permissions tab of your
NetSuite account), unless your role is also an administrator, you will be unable to
change the setting of the Execute As Role field. This is also true for the Execute as
Admin check box that appears on the summary page in SuiteFlow.

Version 2013 Release 1 Behavior Change for Scripts Run as
Administrator

In Version 2013 Release 1, the Execute as Role field replaced the Execute as Admin check box.
Prior to this release, NetSuite administrators and SuiteScript developers had to use the Execute
as Admin check box to ensure that their scripts executed as intended, without the user who was
executing the script receiving permission errors.

As part of this change, this release implemented a change in behavior for scripts run as
administrator. Prior to Version 2013 Release 1, scripts with the Execute as Admin option
enabled ran with administrator permissions, but with some exceptions. For example, these
scripts did not have the Override Period Restrictions or Allow Non G-L Changes permissions.
Now, if you select Administrator in the Execute as Role field for a script, the script runs with
ALL permissions. So, a script that did not post transactions in a locked period when executed
as admin before this change, now will post transactions in a locked period if Administrator is
selected for Execute as Role.

To adapt to this behavior change, you may need to select roles other than administrator for
some scripts that previously had the Execute as Admin option enabled. If no current roles have
the range of permissions needed, you can create new roles as needed and select them in the
Execute as Role field.

Testing a Script Using Different Roles

NetSuite allows you to switch the deployment status to Testing when you are setting the script
to execute as a different role. In this scenario, the script will be triggered only by you, but when
it executes, it will execute as the role you selected.

Setting Your Script to Run With Administrative Privileges

If you want the script to execute using administrative privileges, regardless of the permissions
of the currently logged-in user, select Administrator in the Execute as Role field.

Executing Scripts Using a Specific Role 278

SuiteScript Developer & Reference Guide

Sometimes there are scripts which may require that they run with administrative privilege. For
example, if you have a script that creates follow-up tasks once a sales order has been saved, and
the script needs to read data from employee records, the script will not complete execution
if a user's role does not have permission to access employee records. In this case, it may be
appropriate to have the script set to Administrator in the Execute as Role field.

Note: All bundle installation scripts need to execute as Administrator, so this option
should always be enabled for this type of script deployment.

However, setting a script to execute as Administrator should be considered carefully, as this
option allows scripts to execute with privileges that the logged in user does not have. This may
be appropriate for certain scripts, but there are other cases where the script performs actions
that are only appropriate for certain roles.

Note: Often when scripts execute without logins or in the Web store, they tend to be
implemented as an Administrator whenever any meaningful interaction with the
system is required.

Setting Available Without Login 279

SuiteScript Developer & Reference Guide

Chapter 33 Setting Available Without Login
In the Available Without Login check box on the Script Deployment page, select the check box
to allow users without an active NetSuite session to have access to the Suitelet.

Note: The Available Without Login check box appears on the Script Deployment page for
Suitelets only.

When you select Available Without Login and then save the Script Deployment record, an
External URL appears on the Script Deployment page (see figure above). Use this URL for
Suitelets you want to make available to users who do not have an active NetSuite session.

The following are a few uses cases that address when you might want to make a Suitelet
externally available:

• hosting one-off online forms (capturing test drive sign-up requests or partner conference
registrations, for example)

• inbound partner communication (such as - listening for payment notification responses
from PayPal or Google checkout, or for generating the unsubscribe from email campaigns
page, which requires access to account information but should not require a login or
hosted website)

• for Facebook/Google/Yahoo mashups in which the Suitelet lives in those web sites but
needs to communicate to NetSuite via POST requests

Note: Because there are no login requirements for Suitelets that are available without
login, be aware that the data contained within the Suitelet will be less secure.

Errors Related to the Available Without Login URL

Based on the use case for your Suitelet, you will use either the internal URL or the external URL
as the launching point for the Suitelet.

Some of the factors determining whether the Suitelet will deploy sucessfully are the
dependencies between the type of URL you are referencing (internal or external), the Suitelet

Setting Available Without Login 280

SuiteScript Developer & Reference Guide

deployment status (Testing or Released), and whether the Select All check box has been
selected on the Audience tab of the Script Deployment page. The following table summarizes
these dependencies.

Suitelet URL Type Deployment Status Select All check
box

Result

internal Testing not checked Suitelet deploys successfully

internal Testing checked Suitelet deploys successfully

internal Released not checked Error message: You do not have
previleges to view this page.

internal Released checked Suitelet deploys successfully

external Testing not checked Error message: You are not allowed
to navigate directly to this page.

external Testing checked Error message: You are not allowed
to navigate directly to this page.

external Released checked Suitelet deploys successfully

external Released not checked Error message: You do not have
previleges to view this page.

Setting Script Deployment Status 281

SuiteScript Developer & Reference Guide

Chapter 34 Setting Script Deployment Status
In the Status field on the Script Deployment page, set the deployment status of the script to
either Testing or Released.

Note: The Testing and Released statuses do not apply to scheduled scripts. To learn
about scheduled script deployment statuses, see Understanding Scheduled Script
Deployment Statuses or Executing a Scheduled Script in Certain Contexts.

Status Set to Testing

When a script's deployment status is set to Testing, the script will execute for the script
owner only. Even if you have defined an audience on the Audience tab and saved the Script
Deployment record, the script will still only run for the script owner so long as it is in testing
mode.

Note that script owners can use the Audience tab, along with the Testing status, to test scripts
for various audience types. For information, see Using the Audience Tab to Test Scripts.

Also note that when using the SuiteScript Debugger to test scripts, the script's deployment
status must be set to Testing. You cannot debug a Deployed script if the status has been set to
Released. (See Deployed Debugging for more information on using the SuiteScript Debugger to
test existing scripts.)

Setting Script Deployment Status 282

SuiteScript Developer & Reference Guide

If you are working with Suitelet Script Deployment records, also see Errors Related to the
Available Without Login URL. This section discusses the relevance of the Testing status as it
pertains to internally and externally available Suitelets.

Note: A bundle installation script cannot execute in target accounts if its deployment
status is set to Testing.

Status Set to Released

A script deployment status set to Released means that the script will run in the accounts of
all specified audience members. (See Defining Script Audience for information on defining
script audiences.) When the deployment status is set to Released, the script is considered to be
“production ready.”

Be aware that if you do not specify any values on the Audience tab, the script will execute for no
one other than the script author/owner, even if the script deployment status is set to Released.

Note: Bundle installation scripts do not have an Audience. If the deployment status is set
to Released for this type of script, it executes automatically in target accounts when
the associated bundle is installed or updated.

If you are working with Suitelet Script Deployment records, also see Errors Related to the
Available Without Login URL. This section discusses the relevance of the Released status as it
pertains to internally and externally available Suitelets.

Defining Script Audience 283

SuiteScript Developer & Reference Guide

Chapter 35 Defining Script Audience
On the Audience tab on the Script Deployment page, define the audience access levels for the
script. When the script is deployed, it will run in the accounts of only the specified audiences.

Note: The Audience tab appears on the Script Deployment page for these script types:
Suitelet, portlet, user event, global client, action. You cannot specify an audience for
scheduled scripts or bundle installation scripts.

If you do not specify any values on the Audience tab, the script will execute for no one other
than the script author/owner, even if the script deployment status is set to Released. (For
information on the differences between the Released and Testing deployment statuses, see
Setting Script Deployment Status.)

If you choose both role and department options, a user must belong to one of the selected roles
AND one of the selected departments to access the search. If you choose options for any other
combinations of types, a user need only belong to a selected option of one type OR of another.

If you want the script to run in the accounts of all NetSuite users, select the Select All check
box next to Roles. If you want the script to run in the accounts of only specific users, select the
appropriate roles, departments, groups, employees, or partners.

Be sure to save the Script Deployment record once all audience members are defined.

Important Things to Note:

• If you are working with Suitelet Script Deployment records, also see Errors Related to the
Available Without Login URL. This section discusses the relevance of the Select All check
box as it pertains to internally and externally available Suitelets.

• Mass update script script deployments and mass updates can both be assigned an
audience. It is the users responsibility to make sure the two audiences are in sync. For
information about working with the mass update script type, see Mass Update Scripts.

Defining Script Audience 284

SuiteScript Developer & Reference Guide

Using the Audience Tab to Test Scripts

If the Status field on the Script Deployment record is set to Testing, you can test scripts
assigned to specific audiences as long as you are a member of that audience type. (For
information on the Testing deployment status, see Setting Script Deployment Status.)

For example, if you have written a script that you want to run for everyone in the Support
Management role, you can log into NetSuite and then switch to the Support Management role
to test the script. As long as the deployment status for this script is set to Testing, the script will
run for no one other than you (as the script owner). Once you determine that the script runs
as expected for the Support Management role, you can change the script's deployment status
to Released. Once the deployment is set to Released, it will run in the account for all those
assigned to the Support Management role.

This is a good approach for script owners to verify that their script will run in the accounts for
specified roles, departments, groups, employees, or partners.

Using the Audience Tab in OneWorld Accounts

Script authors/owners who are developing scripts for NetSuite OneWorld accounts can specify
script audience based on subsidiary. In OneWorld accounts, the Audience tab includes a
Subsidiaries multiselect field. After choosing subsidiaries, be sure to click Save on the Script
Deployment page.

Script owners working in a OneWorld account that has multiple subsidiaries can select the
subsidiaries they want their script to run in, and then log into an account of one of the specified
subsidiaries. As long as the script deployment status is set to Testing, the script will not run
for any of the subsidiary employees other than the script owner. This is a good way for script
owners to verify that the script will run in accounts for specified subsidiaries.

Creating Script Parameters Overview 285

SuiteScript Developer & Reference Guide

Chapter 36 Creating Script Parameters
Overview

In the context of SuiteScript, script parameters are essentially custom fields. Script parameters
are not considered to be parameters that are passed between JavaScript functions.

A script parameter can have any of the characteristics of a custom field created through point-
and-click customization. They are configurable by administrators and end users and are
accessible programmatically through SuiteScript.

Script parameters are defined on the Parameters tab of the Script record page.

The following topics are covered in this section. They do not need to be read in order, although
it is recommended if you are not familiar with script parameters.

• Why Create Script Parameters?

• Creating Script Parameters

• Referencing Script Parameters

• Setting Script Parameter Preferences

Note: If you do not have experience with NetSuite custom fields, it is recommended that
you review Creating a Custom Field in the NetSuite Help Center.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html

Why Create Script Parameters? 286

SuiteScript Developer & Reference Guide

Chapter 37 Why Create Script Parameters?
You should create script parameters if you want one or more parts of your program to be
configurable, either through script deployment or by the end user. Script paramters should be
created whenever you need to parameterize a script that was deployed multiple times. This
makes it easy to customize the behavior of the program for each deployment.

Note: You can also configure scheduled scripts by specifying the configuration
parameters as arguments to nlapiScheduleScript(scriptId, deployId, params).

Deployment-specific parameters allows you to configure program behavior without having to
write code. This is particularly useful when admins deploy scripts that were installed as part of
a bundle. This allows them to control/modify the program without having to know anything
about the code. In other words, this is like the properties/config file that most applications have
which allow you to modify the runtime behavior.

Having script parameters also allows you to modify program behavior for troubleshooting
purposes without having to change code, which is often expensive and infeasible (for example,
when the script writer is unavailable). Finally, script parameters they give you the flexibility of
being able to handle a wide range of inputs depending on the context (for example, one script
deployed to 50 different records, each requiring a slightly different behavior). The alternative
would be to hard-code and deploy 50 different scripts. The downside to the latter is additional
maintenance (the code is not configurable, potential code duplication, changes in business
reqirements require code changes).

Note: You do not need to create script parameters if your program is not meant to be
configurable, in other words, everything is hard-coded.

Creating Script Parameters 287

SuiteScript Developer & Reference Guide

Chapter 38 Creating Script Parameters
Use the following steps to create script parameters. If you are unsure how to create a Script
record, see Step 4: Create Script Record.

1. On the Script record, click the Parameters tab.

Note: If you want to add a parameter to a Script record that already exists, go to
Customization > Scripts > [script], where [script] is the desired script record.
Open the Script record in Edit mode. Click the Parameters tab and then click
the New Parameter button that appears on the tab.

2. In the Label field, type the name of the parameter (custom field) as it will appear in the
UI once the script is deployed. The figure below shows that the field label on the UI will
appear as Check Box Required.

3. In the ID field, create a custom ID for the script parameter. You can also leave the ID
field blank and accept a system-generated ID. (It is a best practice to create your own
ID for the script parameter. Doing so will help avoid naming conflicts should you later
decide to bundle your script.)

Note: Script parameter IDs must be in lowercase and contain no spaces. Also note
that parameter IDs cannot exceed 30 characters.

4. From the Type drop-down list, select the parameter's field type (for example, Hyperlink,
Date, Free-Form Text, or in this case, Check Box). For more information on field types,
see the help topic Table of Custom Field Type Descriptions in the NetSuite Help Center.

Note: If the parameter's type is List/Record, specify the list or record using the List/
Record drop-down list (see figure below).

Also note that if you define a saved search as a List/Record script parameter, only saved
searches that are public will appear in the List/Record parameter dropdown field. For

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2842731.html

Creating Script Parameters 288

SuiteScript Developer & Reference Guide

more information on working with searches using SuiteScript, see Searching Overview
in the NetSuite Help Center.

5. From the Preference dropdown, set the script parameter preference to Company, User,
or Portlet (if creating a portlet script). Based on the preference, the parameter will
default to the values set on either the General Preferences page, the Set Preferences page,
or the portlet setup page. If no preference is specified, the script parameter is considered
to be a “deployment script parameter,” and its value is defined on the Script Deployment
record.

For more information setting parameter preferences, see Setting Script Parameter
Preferences.

6. Once you have defined script parameter properties, click Add.

7. If you have finished defining the parameter, save the Script record and set the script's
deployment values on the Script Deployment page.

In this example, when the “Simple Form” Suitelet is deployed, the check box script
parameter appears on the form.

8. To define additional properties for the script parameter, such as display size, validation,
or sourcing values, save the Script record and then re-open the Script record.

9. On the Script record page, click the Parameters tab, and then click the link to the script
parameter you originally created.

After clicking the parameter link, the Script Field page opens. Use this page to define
additional values for the script parameter. For information on setting display, validation,
and sourcing values, see these sections in the NetSuite Help Center:

• Setting Display Options for Custom Fields

• Setting Validation and Defaulting Properties

• Setting Sourcing Criteria

• Setting Filtering Criteria

10. Click Save on the Script Field page after defining all values.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2830238.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2830711.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2839623.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2840153.html

Referencing Script Parameters 289

SuiteScript Developer & Reference Guide

Chapter 39 Referencing Script Parameters
In your SuiteScript code you must use the nlobContext.getSetting(type, name) method to
reference script parameters. For example, to obtain the value of a script parameter called
custscript_checkboxtest2, you must use the following code:

//Add to the Suitelet a check box script parameter called Check Box Required
var field = form.addField('custscript_checkboxtest2', 'checkbox', 'Check Box Required');

//Get the parameter context and return a checked check box if value
//is set to T. Note that check box values are set to T or F, not true or false

if (nlapiGetContext().getSetting('SCRIPT', 'custscript_checkboxtest2') == 'T' {
 field.setDefaultValue('T')
}

...remainder of Suitelet code

Be aware that you cannot write to a script parameter using SuiteScript. Although you can read
from these fields, you cannot write to them. The only time you can pass a value to a script
parameter outside of the UI is when you call nlapiScheduleScript(scriptId, deployId, params).
In the API documentation for this function, see Example 5 - Passing Script Parameters in a
Scheduled Script.

Setting Script Parameter Preferences 290

SuiteScript Developer & Reference Guide

Chapter 40 Setting Script Parameter
Preferences

As a script author, NetSuite gives you the ability to specify the preference type for each script
parameter (see figure). Available preference types are:

• Company: If the parameter preference is set to Company, the script parameter's value
is read from the value specified in Setup > Company > General Preferences > Custom
Preferences tab. See the Example later in this section.

• User: If the preference is set to User, the parameter's value is read from the value set in
Home > Set Preference > Custom Preferences tab.

Here, end users can override the default (company) script behavior and insert their own
default value. End users do not have to manipulate a script or its deployments to change or
customize the parameter.

• <blank>: If you do not set a preference, the script parameter is considered a “deployment”
script parameter by default. In this case, you will define the value of the script parameter
on the Parameters tab of the Script Deployment record .

Note: See Creating Script Parameters for steps on creating a script parameter.
Also see Referencing Script Parameters for information on accessing script
parameter values.

At the time these three script parameters were created, no preferences were set. In this case,
parameter values are defined on the Parameters tab of the Script Deployment record.

Setting Script Parameter Preferences 291

SuiteScript Developer & Reference Guide

Note that users who install a bundled script that uses preferences can override the default
behavior of the script and customize the script to their specific business needs. Setting
preferences eliminates having to manipulate the script code or the script deployment. (For
information on bundling scripts, see the SuiteBundler Overview topic in the NetSuite Help
Center.)

Example

In this example, the parameter called Check Box Required (with the internal ID
custscript_checkboxtest2) is set to the Company preference.

By going to Setup > Company > General Preferences > Custom Preferences tab (see below),
administrators can set the default value of this parameter for the entire company. In this
example the value of the Check Box Required script parameter is set to T (the check box is
checked).

Setting Script Parameter Preferences 292

SuiteScript Developer & Reference Guide

When the Suitelet that contains this check box is deployed, the Check Box Required script
parameter will appear checked.

If the Check Box Required parameter had been set to F (the check box contained no check
mark), the check box would have appeared empty on the form when the Suitelet was deployed.

Script Parameter Preferences and Bundles

Bundled script parameters that have a user or company preference set are not updated in target
accounts when the bundle is updated. However, script parameters that do not have a preference
specified are considered part of the script deployment, and whether they are updated in target
accounts when the bundle is updated depends on the setting of the related bundle object
preference:

• If the preference for the bundled script is set to Update Deployments, script deployment
parameters are updated in target accounts to match those in the source account.

• If the preference for the bundled script is set to Do Not Update Deployments, script
deployment parameters are not updated in target accounts.

If bundle authors expect target account users to want to change parameter values for a bundled
script, on the script record they should set the Preference for these parameters to be either
Company or User. Target account users can then change parameter values as needed, and these
values are not affected on bundle update, even if the related bundle object preference is set to
Update Deployments.

To prevent changes to target account script deployment parameters that do not have a
preference set, set the related bundle object preference to Do Not Update Deployments.

Setting Script Parameter Preferences 293

SuiteScript Developer & Reference Guide

For more information about bundle object preferences, see the help topic Setting Bundle Object
Preferences.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3376108.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3376108.html

Searching Overview 294

SuiteScript Developer & Reference Guide

Chapter 41 Searching Overview
Similar to much of the searching functionality available through the NetSuite UI, SuiteScript
Search APIs allow you to retrieve real-time data from your account. You can search for a single
record by keywords, create saved searches, search for duplicate records, or return a set of
records that match filters you define.

The following sections provide details on searching with SuiteScript. If you are new to
SuiteScript searches, it is recommended that you read these topics in order.

• Understanding SuiteScript Search Objects

• Search Samples

• Search APIs

• Supported Search Operators, Summary Types, and Date Filters

Understanding SuiteScript Search Objects 295

SuiteScript Developer & Reference Guide

Chapter 42 Understanding SuiteScript Search
Objects

The basis of most SuiteScript searches use the following objects:

1. nlobjSearchFilter - used to define filtering criteria for the search

2. nlobjSearchColumn(name, join, summary) - used to define search return columns for
the search

3. nlobjSearchResult - used to get the values of specific search results

Once all filters and search columns are defined, the search is executed using the
nlapiSearchRecord(type, id, filters, columns) function.

Important: If you are performing a global search or a duplicate record search, you will
not use the objects listed above or the nlapiSearchRecord(...) function. For
details on these types of searches, see Searching for Duplicate Records and
Performing Global Searches.

Defining Search Filters

The following figure shows the UI equivalent of using the nlobjSearchFilter object to define
search filters. In the UI, users define search filters by clicking the Criteria tab on the search
record (in this case the Customer Search record).

In SuiteScript, the same filter value is specified through the nlobjSearchFilter object:

var filters = new Array();
filters[0] = new nlobjSearchFilter ('companyname', null, 'startswith', 'A');

Understanding SuiteScript Search Objects 296

SuiteScript Developer & Reference Guide

How do I know which search filters I can use in my code?

To figure out which search filters are available for a specific record type:

1. See the section SuiteScript Supported Records in the NetSuite Help Center.

2. Click on the record you are running your script against.

3. In the documentation for that record, see the Search Filters table. All available search
filters for that record type will be listed in the table.

Defining Search Columns

The following figure shows the UI equivalent of using the nlobjSearchColumn(name, join,
summary) object to define search return columns. In the UI, users define search columns by
clicking the Results tab on the search record (in this case the Customer Search record).

In SuiteScript, the same column values are specified using:

var columns = new Array();
columns[0] = new nlobjSearchColumn('entity');
columns[1] = new nlobjSearchColumn('phone');
columns[2] = new nlobjSearchColumn('companyname');

How do I know which search columns I can use in my code?

To figure out which search columns are available for a specific record type:

1. See the section SuiteScript Supported Records in the NetSuite Help Center.

2. Click on the record you are running your script against.

Understanding SuiteScript Search Objects 297

SuiteScript Developer & Reference Guide

3. In the documentation for that record, see the Search Columns table. All available search
columns for that record type will be listed in the table.

Executing the Search

In the UI, users click the Submit button to execute a search. In SuiteScript, the equivalent of
clicking the Submit button is calling the nlapiSearchRecord(type, id, filters, columns) function:

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter ('companyname', null, 'startswith', 'A');

// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('entity');
columns[1] = new nlobjSearchColumn('phone');
columns[2] = new nlobjSearchColumn('companyname');
// Execute the Customer search. You must specify the internal ID of
// the record type you are searching against. Also, you will pass the values
// defined in the filters and columns arrays.
var searchResults = nlapiSearchRecord('customer', null, filters, columns);

Getting Search Return Values

If you want to get specific values returned by the search, you will use the nlobjSearchResult
object to specify the values.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter ('companyname', null, 'startswith', 'A');
// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('entity');
columns[1] = new nlobjSearchColumn('phone');
columns[2] = new nlobjSearchColumn('companyname');
// Execute the search
var searchResults = nlapiSearchRecord('customer', null, filters, columns);
// Get the value of the Company Name column
var values = searchResults[0].getValue(columns[2]);

Search Samples
Creating Saved Searches

298

SuiteScript Developer & Reference Guide

Chapter 43 Search Samples
The following are samples of SuiteScript searches.

• Creating Saved Searches

• Using Existing Saved Searches

• Filtering a Search

• Returning Specific Fields in a Search

• Searching on Custom Records

• Searching Custom Lists

• Executing Joined Searches

• Searching for an Item ID

• Searching for Duplicate Records

• Performing Global Searches

• Searching CSV Saved Imports

• Using Formulas, Special Functions, and Sorting in Search

• Using Summary Filters in Search

For more general information that describes search objects, see Understanding SuiteScript
Search Objects.

Creating Saved Searches
The nlobjSearch object is the primary object used to encapsulate a NetSuite saved search. Note,
however, you are not required to save the search results returned in this object.

To create a saved search, you will first define all search criteria and then execute the search
using nlapiCreateSearch(type, filters, columns). The search will not be saved until you call the
nlobjSearch.saveSearch method.

By default, searches returned by nlapiCreateSearch(...) will be private, which follows
the saved search model in the UI. To make a saved search public, you must set the
nlobjSearch.setIsPublic(type) method to true.

Creating a Saved Search Using Search Filter List

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);

Search Samples
Using Existing Saved Searches

299

SuiteScript Developer & Reference Guide

filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);

// Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');

// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Creating a Saved Search Using Search Filter Expression

//Define search filter expression
var filterExpression = [['trandate', 'onOrAfter', 'daysAgo90'],
 'or',
 ['projectedamount', 'between', 1000, 100000],
 'or',
 'not', ['customer.salesrep', 'anyOf', -5]];

//Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');

//Create the saved search
var search = nlapiCreateSearch('opportunity', filterExpression, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Using Existing Saved Searches
NetSuite saved searches allow you to create reusable search definitions with many advanced
search filters/results display options. Although saved searches must be created in the UI, you
can pass the internal ID of the saved search to SuiteScript and re-execute the search on a
regular basis. This allows you to keep the searches up-to-date for all who might need to access
the results.

To re-execute an existing saved search, you will use nlapiSearchRecord(type, id, filters,
columns). The filters and columns parameters represent the criteria and results columns that
you want to be included when the search is re-executed.

Note: For general information on NetSuite saved searches, see the help topic Using Saved
Searches in the NetSuite Help Center.

When using the nlapiSearchRecord function to execute an existing saved search, note the
following:

• Only saved searches on record types currently supported by SuiteScript can be executed.
For a list of records that support SuiteScript, see SuiteScript Supported Records in the
NetSuite Help Center.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N675442.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N675442.html

Search Samples
Using Existing Saved Searches

300

SuiteScript Developer & Reference Guide

• Saved searches acted on by SuiteScript should be protected. If a saved search is edited after
script deployment is complete, the execution of the script could fail. You can add security
to a saved search by defining access permissions in the search definition.

Note: You may want to include the script administrator in an email notification for
any time a saved search included in the script is updated. Email notifications
can be defined on the Alerts tab of the saved search definition.

• On a Script record page, if you define a saved search as a List/Record script parameter,
only saved searches that are public will appear in the List/Record parameter dropdown
field. For information on script parameters, see Creating Script Parameters Overview in
the NetSuite Help Center.

• In nlapiSearchRecord(type, id, filters, columns), the value of id can be the ID that appears
in the Internal ID column on the Saved Searches list page (see figure below). Or it can be
the value that appears in the ID column.

If you have created a custom scriptId for your saved search, this will appear in the ID
column (see figure). Note: To access the Saved Searches list page, go to Lists > Search >
Saved Searches.

In the following code, a Customer saved search is executed. The ID customsearch57
references a specific saved search.

Note: The second parameter in nlapiSearchRecord(...) is treated as a variable instead
of the custom Saved Search ID if it is not within quotes. Also note, if the Internal
Id of the saved search is used instead of the Saved Search ID, the Internal Id
does not need single quotes since it is evaluated as an integer.

function getEmail(firstname, lastname) {
 // Specify the record type and the saved search ID
 var searchresults = nlapiSearchRecord('customer', 'customsearch57', null, null);

 for (var i = 0; searchresults != null && i < searchresults.length; i++) {
 var customerrecord = searchresults[i];

Search Samples
Filtering a Search

301

SuiteScript Developer & Reference Guide

 if (customerrecord.getValue('firstname') == firstname && customerrecord.getValue('las
tname') == lastname) {
 return customerrecord.getValue('email');
 }
 }
 return "Customer not found.";
}

Filtering a Search
The following samples provide examples for how to set various kinds of filtering criteria in a
search. Also provided are samples that show how to filter the results.

Executing an Opportunity Search and Setting Search Filters

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', -5, null);

// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
columns[3] = new nlobjSearchColumn('projectedamount');
columns[4] = new nlobjSearchColumn('probability');
columns[5] = new nlobjSearchColumn('email', 'customer');
columns[6] = new nlobjSearchColumn('email', 'salesrep');

// Execute the search. You must specify the internal ID of the record type.
var searchresults = nlapiSearchRecord('opportunity', null, filters, columns);

// Loop through all search results. When the results are returned, use methods
// on the nlobjSearchResult object to get values for specific fields.
for (var i = 0; searchresults != null && i < searchresults.length; i++)
{
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();
 var salesrep = searchresult.getValue('salesrep');
 var salesrep_display = searchresult.getText('salesrep');
 var salesrep_email = searchresult.getValue('email', 'salesrep');
 var customer = searchresult.getValue('entity');
 var customer_email = searchresult.getValue('email', 'customer');
 var expectedclose = searchresult.getValue('expectedclosedate');
 var projectedamount = searchresult.getValue('projectedamount');
 var probablity = searchresult.getValue('probability');
}

Executing an Opportunity Search and Setting Search Filter Expression

//Define search filter expression

Search Samples
Filtering a Search

302

SuiteScript Developer & Reference Guide

var filterExpression = [['trandate', 'onOrAfter', 'daysAgo90'],
 'or',
 ['projectedamount', 'between', 1000, 100000],
 'or',
 'not', ['customer.salesrep', 'anyOf', -5]] ;

//Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
columns[3] = new nlobjSearchColumn('projectedamount');
columns[4] = new nlobjSearchColumn('probability');
columns[5] = new nlobjSearchColumn('email', 'customer');
columns[6] = new nlobjSearchColumn('email', 'salesrep');

//Execute the search. You must specify the internal ID of the record type.
var searchresults = nlapiSearchRecord('opportunity', null, filterExpression, columns);

//Loop through all search results. When the results are returned, use methods
//on the nlobjSearchResult object to get values for specific fields.
for (var i = 0; searchresults != null && i < searchresults.length; i++)
{
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();
 var salesrep = searchresult.getValue('salesrep');
 var salesrep_display = searchresult.getText('salesrep');
 var salesrep_email = searchresult.getValue('email', 'salesrep');
 var customer = searchresult.getValue('entity');
 var customer_email = searchresult.getValue('email', 'customer');
var expectedclose = searchresult.getValue('expectedclosedate');
var projectedamount = searchresult.getValue('projectedamount');
var probability = searchresult.getValue('probability');
}

Filtering Based on Check Box Fields

When filtering search results for check box fields, use the is operator with T or F as the filter
values. For example, in the following portlet script, all memorized Cash Sale transactions are
returned.

function testPortlet(portlet) {
portlet.setTitle('Memorized Cash Sales');

var filters = new Array();
filters[0] = new nlobjSearchFilter('name', null, 'equalTo', '87', null);
filters[1] = new nlobjSearchFilter('memorized', null, 'is', 'T', null);

var columns = new Array();
columns[0] = new nlobjSearchColumn('internalid');
columns[1] = new nlobjSearchColumn('memorized');

var searchresults = nlapiSearchRecord('cashsale', null, filters, columns);
for (var i = 0; searchresults != null && i < searchresults.length; i++)
{
var searchResult = searchresults[i];
portlet.addLine(i+": "+searchResult.getValue('internalid')+",

Search Samples
Returning Specific Fields in a Search

303

SuiteScript Developer & Reference Guide

"+searchResult.getValue('memorized'),null,0);
}
}

Executing a Customer Search and Filtering the Results

In the following sample, a search for all customer records (leads, prospects, customers) in the
system is executed with the maximum limit of 10 results set. Note that in this sample, if you
specify customer as the record type, customers, leads, and prospects are returned in the results.

function executeSearch()
{
var searchresults = nlapiSearchRecord('customer', null, null, null);
 for (var i = 0; i < Math.min(10, searchresults.length); i++)
 {
 var record = nlapiLoadRecord(searchresults[i].getRecordType(), searchresults[i].getId());
 }
}

Filtering Based on None of Null Value

To search for a “none of null” value, meaning do not show results without a value for the
specified field, use the @NONE@ filter. For example,

searchFilters[0] = new nlobjSearchFilter('class', null, 'noneof', '@NONE@');

In the following example, only customer records that match the entityid of test1 are returned.

function filterCustomers()
{
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('entityid', null, 'contains', 'test1', null);
 var searchresults = nlapiSearchRecord('customer', 11, filters, null);
 var emailAddress = '';
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];
 }
}

Note: If it is unclear which values you can filter by for a given filter variable, try performing
a search that returns the value of a field as a result to see possible options.

Returning Specific Fields in a Search
You can use the nlobjSearchResult.getValue method to return the values of specific record
fields. In the following example, the email fields for records returned from a saved customer
search are returned.

Search Samples
Searching on Custom Records

304

SuiteScript Developer & Reference Guide

function findCustomerEmails()
{
 var searchresults = nlapiSearchRecord('customer', customsearch8, null,null);
 var emailAddress = '';
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];
 emailAddress += searchresult.getValue('email');
 }
}

For another example that shows how to return specific values in a search, see the sample for
Searching on Custom Records.

Note: In order to increase performance, if you only need to access a specific subset of
fields, you should limit the returned objects to include only that subset. This can
be accomplished using the nlobjSearchFilter and nlobjSearchColumn(name, join,
summary) objects.

Searching on Custom Records
Searching on custom records is the same as searching on standard (built-in) records. The
following sample shows how to execute a search on a Warranty custom record type. (The
internal ID for this record type is customrecord_warranty).

This sample shows how to define search filters and search columns, and then execute the search
as you would for any other record type. This sample also shows how to use methods on the
nlobjSearchResult object to get the values for the search results.

function searchWarranties()
{
// define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('created', null, 'onOrAfter', 'daysAgo15');

// return opportunity sales rep, customer custom field, and customer ID
var columns = new Array();
columns[0] = new nlobjSearchColumn('name');
columns[1] = new nlobjSearchColumn('owner');
columns[2] = new nlobjSearchColumn('custrecord_customer');
columns[3] = new nlobjSearchColumn('custrecord_resolutiontime');

// execute the Warrenty search, passing all filters and return columns
var searchresults = nlapiSearchRecord('customrecord_warranty', null, filters, columns);

// loop through the results
for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 // get result values
 var searchresult = searchresults[i];
 var record = searchresult.getId();

Search Samples
Searching Custom Lists

305

SuiteScript Developer & Reference Guide

 var rectype = searchresult.getRecordType();
 var name = searchresult.getValue('name');
 var resolution = searchresult.getValue('custrecord_resolutiontime');
 var customer = searchresult.getValue('custrecord_customer');
 var customer_name = searchresult.getText('custrecord_customer');
 }
}

This sample shows how you can do a search on custom records using a search filter expression.

function searchWarranties()
{
 //Define search filter expression
 var filterExpression = ['created', 'onOrAfter', 'daysAgo15'];

 //Define search columns
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('name');
 columns[1] = new nlobjSearchColumn('owner');
 columns[2] = new nlobjSearchColumn('custrecord_customer');
 columns[3] = new nlobjSearchColumn('custrecord_resolutiontime');

 //Execute the Warranty search, passing search filter expression and columns
 var searchresults = nlapiSearchRecord('customrecord_warranty', null, filterExpression, columns
);

 //Loop through the results
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 //Get result values
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();
 var name = searchresult.getValue('name');
 var resolution = searchresult.getValue('custrecord_resolutiontime');
 var customer = searchresult.getValue('custrecord_customer');
 var customer_name = searchresult.getText('custrecord_customer');
 }
}

Searching Custom Lists
The following sample shows how to search a custom list.

var col = new Array();
col[0] = new nlobjSearchColumn('name');
col[1] = new nlobjSearchColumn('internalId');
var results = nlapiSearchRecord('customlist25', null, null, col);
 for (var i = 0; results != null && i < result.length; i++)
 {
 var res = results[i];
 var listValue = (res.getValue('name'));
 var listID = (res.getValue('internalId'));
 nlapiLogExecution('DEBUG', (listValue + ", " + listID));
 }

Search Samples
Executing Joined Searches

306

SuiteScript Developer & Reference Guide

Executing Joined Searches
This example shows how to set values for a joined search. In this case you are executing an Item
search that uses Customer and Currency (as specified on the Pricing record) as your filtering
criteria.

You will define the join to the Pricing record in the nlobjSearchFilter object. You will define
search return column values (also joins to the Pricing record) in the nlobjSearchColumn(name,
join, summary) object. You will execute the Item search using nlapiSearchRecord(type, id,
filters, columns).

// Create a filters array and define search filters for an Item search
var filters = new Array();

// filter by a specific customer (121) on the Pricing record
filters[0] = new nlobjSearchFilter('customer', 'pricing', 'is', '121');

// filter by a currency type (USA) on the Pricing record
filters[1] = new nlobjSearchFilter('currency', 'pricing', 'is', '1');

// set search return columns for Pricing search
var columns = new Array();

// return data from pricelevel and unitprice fields on the Pricing record
columns[0] = new nlobjSearchColumn('pricelevel', 'pricing');
columns[1] = new nlobjSearchColumn('unitprice', 'pricing');

// specify name as a search return column. There is no join set in this field.
// This is the Name field as it appears on Item records.
columns[2] = new nlobjSearchColumn('name');

// execute the Item search, which uses data on the Pricing record as search filters
var searchresults = nlapiSearchRecord('item', null, filters, columns);

The following figures show the UI equivalent of executing an Item search that uses filtering
criteria pulled from the Pricing record. Note that on the Criteria tab, all available search joins
for an Item search will appear at the bottom of the Filter drop-down list. Available join records
are marked with the ellipsis (...) after the record name.

Note: Not all joins that appear in the UI are supported in SuiteScript. To see which joins
are supported for a particular search, start by going to SuiteScript Supported
Records. Click the record type that you want to execute the search on. Based on the
example described below, you will click Item Search record. Then look to see which
joins are supported for the record type.

The figures below show only how to set the filter values for a joined search. All of the same
concepts apply when specifying search return column values.

The first figure shows the Item Search record (Lists > Accounting > Items > Search).

Search Samples
Executing Joined Searches

307

SuiteScript Developer & Reference Guide

When Pricing Fields... is selected, a popup appears with all search fields that are available on
the Pricing record (see figure below).

When you select the Customer field, another popup opens allowing you to select one or more
customers. In the code sample, customer 121 is specified. In the UI, this customer appears as
Abe Simpson (see below).

Search Samples
Executing Joined Searches

308

SuiteScript Developer & Reference Guide

This figure shows how Item search / pricing join filtering criteria appear in the UI.

In SuiteScript, this looks like:

var filters = new Array();
filters[0] = new nlobjSearchFilter('customer', 'pricing', 'is', '121');
filters[1] = new nlobjSearchFilter('currency', 'pricing', 'is', '1');

This example shows how you can execute joined searches using a search filter expression.

//Define search filter expression
var filterExpression = [['pricing.customer', 'is', 121],
 'and',
 ['pricing.currency', 'is', 1]];

//Define search columns
var columns = new Array();
//Return data from pricelevel and unitprice fields on the Pricing record
columns[0] = new nlobjSearchColumn('pricelevel', 'pricing');
columns[1] = new nlobjSearchColumn('unitprice', 'pricing');
//Specify name as a search return column. There is no join set in this field.
//This is the Name field as it appears on Item records.
columns[2] = new nlobjSearchColumn('name');

Search Samples
Executing Joined Searches

309

SuiteScript Developer & Reference Guide

//Execute the Item search, which uses data on the Pricing record as search filter expression
var searchresults = nlapiSearchRecord('item', null , filterExpression, columns);

The following figures show the UI equivalent of executing the preceding example. These figures
show only how to set the filter expression for a joined search. All of the same concepts apply
when specifying search return column values.

The first figure shows the Item Search record (Lists > Accounting > Items > Search).

When Pricing Fields… is selected, a popup appears with all search fields that are available on
the Pricing record. (See figure below.)

Search Samples
Searching for an Item ID

310

SuiteScript Developer & Reference Guide

When you select the Customer field, another popup opens allowing you to select one or more
customers. In the code sample, customer 121 is specified. In the UI, this customer appears as
Abe Simpson. (See figure below.)

The following figure shows how Item search / pricing join filtering criteria appear in the UI.

Searching for an Item ID
The following search sample returns an array of item search results matched by the "Item ID"
keyword. You can then iterate through each result and call nlobjSearchResult.getId() to get the
internal item ID.

var x = nlapiSearchRecord('item', null, new nlobjSearchFilter('itemid', null, 'haskeywords', it
emidvalue));

Searching for Duplicate Records
In the course of doing business, it is common to have more than one record created for the
same contact, customer, vendor, or partner. In both the UI and in SuiteScript you can find

Search Samples
Performing Global Searches

311

SuiteScript Developer & Reference Guide

all duplicate records once your NetSuite administrator has enabled the Duplicate Detection
& Merge feature (Setup > Company > Enable Features, on the Company subtab, Data
Management section).

In SuiteScript, a search for duplicate records is executed using the nlapiSearchDuplicate(type,
fields, id) function. For the definition of this API, as well as a code sample, see
nlapiSearchDuplicate(type, fields, id).

Note: For general information on searching for duplicate records in NetSuite, see the help
topic Duplicate Record Detection in the NetSuite Help Center.

Performing Global Searches
NetSuite's global search allows you to find records from anywhere in your account data. In the
UI, you enter your search keywords in the Search field in the upper right corner of any page.

In SuiteScript, global searches are executed using the nlapiSearchGlobal(keywords) function.
For the definition of this API, as well as a code sample, see nlapiSearchGlobal(keywords).

Note: For general information on global searching in NetSuite, see the help topic Global
Search in the NetSuite Help Center.

Searching CSV Saved Imports
You can use SuiteScript to search the CSV saved imports in an account. Executing this kind of
search may be useful if you need to access import information for CSV saved imports that were
bundled and installed in a new account.

For the type argument in nlapiSearchRecord(type, id, filters, columns), you will set
savedcsvimport. For example:

var search = nlapiSearchRecord('savedcsvimport', null, null, null);

Note that savedcsvimport is not a true record type in NetSuite, as it cannot be manipulated
in SuiteScript or in web services. The savedcsvimport type can be used only in search. The
available filter and return values for savedcsvimport are:

• internalid

• name

• description

Using Formulas, Special Functions, and Sorting in Search

function searchRecords()

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N490932.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N636548.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N636548.html

Search Samples
Using Summary Filters in Search

312

SuiteScript Developer & Reference Guide

{
 //specify a formula column that displays the name as: Last Name, First Name (Middle Name)
 var name = new nlobjSearchColumn('formulatext');
 name.setFormula("{lastname}||', '||{firstname}||case when LENGTH({middlename})=0 then '' els
e ' ('||{middlename}||')' end");

 //now specify a numeric formula field
 var number = new nlobjSearchColumn('formulanumeric').setFormula("1234.5678");

 //now specify a numeric formula field and format the output using a special function
 var roundednumber = new nlobjSearchColumn('formulanumeric').setFormula("1234.5678").setFunct
ion("round");

 //now specify a sort column (sort by internal ID ascending)
 var internalid = new nlobjSearchColumn('internalid').setSort(false /* bsortdescending */);

 var columns = [name, number, roundednumber, internalid];
 var filterHasMiddleName = new nlobjSearchFilter('middlename', null, 'isNotEmpty');

 var searchresults = nlapiSearchRecord('contact', null, filterHasMiddleName, columns);
 for (var i = 0; i < searchresults.length; i++)
 {
 //access the value using the column objects
 var contactname = searchresults[i].getValue(name);
 var value = searchresults[i].getValue(number);
 var valuerounded = searchresults[i].getValue(roundednumber);
 }
}

Using Summary Filters in Search

function searchRecords()
{
 //perform a summary search: return all sales orders total amounts by customer for those with
 total sales > 1000
 var filter = new nlobjSearchFilter('amount', null, 'greaterThan', 1000).setSummaryType('sum'
);
 var entity = new nlobjSearchColumn('entity', null, 'group');
 var amount = new nlobjSearchColumn('amount', null, 'sum');

 var searchresults = nlapiSearchRecord('salesorder', null, filter, [entity, amount]);
 for (var i = 0; i < searchresults.length; i++)
 {
 //access the values this time using the name and summary type
 var entity = searchresults[i].getValue('entity', null, 'group');
 var entityName = searchresults[i].getText('entity', null, 'group');
 var amount = searchresults[i].getValue('amount', null, 'sum');
 }
}

Supported Search Operators, Summary Types, and Date Filters
Search Operators

313

SuiteScript Developer & Reference Guide

Chapter 44 Supported Search Operators,
Summary Types, and Date Filters

This section lists all NetSuite field types that support SuiteScript search, as well as the operators
that can be used on each type. Also listed are supported search summary types and search date
filters.

See the following sections for detailed reference information:

• Search Operators

• Search Summary Types

• Search Date Filters

Search Operators
The following table lists each field type and its supported search operator.

Search Operator List/Record Currency,
Decimal
Number,
Time of Day

Date Check
Box

Document,
Image

Email
Address, Free-
Form Text,
Long Text,
Password,
Percent,
Phone
Number, Rich
Text, Text
Area,

Multi
Select

after X

allof X

any X X

anyof X X X

before X

between X

contains X

doesnotcontain X

doesnotstartwith X

equalto X

greaterthan X

greaterthanorequalto X

haskeywords X

is X X

isempty X X X

Supported Search Operators, Summary Types, and Date Filters
Search Summary Types

314

SuiteScript Developer & Reference Guide

Search Operator List/Record Currency,
Decimal
Number,
Time of Day

Date Check
Box

Document,
Image

Email
Address, Free-
Form Text,
Long Text,
Password,
Percent,
Phone
Number, Rich
Text, Text
Area,

Multi
Select

isnot X

isnotempty X X X

lessthan X

lessthanorequalto X

noneof X X X

notafter X

notallof X

notbefore X

notbetween X

notequalto X

notgreaterthan X

notgreaterthanorequa
lto

 X

notlessthan X

notlessthanorequalto X

noton X

notonorafter X

notonorbefore X

notwithin X

on X

onorafter X

onorbefore X

startswith X

within X

Search Summary Types
The following table lists the summary types that can be applied to organize your search results.
Note that these summary types are available on the Results tab in the UI.

Summary Type Type Internal ID Purpose Example

Group group Rolls up search results
under the column to which
you apply this type.

In a search for sales transactions, you
can group the transactions found by
customer name.

Supported Search Operators, Summary Types, and Date Filters
Search Date Filters

315

SuiteScript Developer & Reference Guide

Summary Type Type Internal ID Purpose Example

Count count Counts the number of
results found that apply to
this column.

In a search of items purchased by
customers, you can view a count of the
number of items purchased by each
customer.

Sum sum Sums search results. In a search of purchases this period,
you can total the Amount column on
your results.

Minimum min Shows the minimum
amount found in search
results.

In a search of sales transactions by
sales rep, you can show the minimum
amount sold in the transaction.

Maximum max Shows the maximum
amount found in search
results.

In a customer search by partner, you
can show the maximum amount of
sales by each partner.

Average avg Calculates the average
amount found in your
search results.

In an employee search, you can
average the amounts of your
employees' company contributions.

Search Date Filters
The following table lists all supported search date filters. Values are not case sentative

Note: These values correspond to selectors used in SuiteAnalytics. For additional
information on these values, see the help topics Period Selectors, Date Range
Selectors, and Date As Of Selectors.

fiscalHalfBeforeLast

fiscalHalfBeforeLastToD
ate

fiscalQuarterBeforeLast

fiscalQuarterBeforeLast
ToDate

fiscalYearBeforeLast

fiscalYearBeforeLastTo
Date

fiveDaysAgo

fiveDaysFromNow

fourDaysAgo

fourDaysFromNow

nextBusinessWeek

nextFiscalHalf

nextFiscalQuarter

nextFiscalYear

nextFourWeeks

nextMonth

nextOneHalf

nextOneMonth

nextOneQuarter

nextOneWeek

nextOneYear

nextWeek

ninetyDaysAgo

sameFiscalHalfLastFisc
alYear

sameFiscalHalfLastFisca
lYearToDate

sameFiscalQuarterFisca
lYearBeforeLast

sameFiscalQuarterLastF
iscalYear

sameFiscalQuarterLastF
iscalYearToDate

sameMonthFiscalQuart
erBeforeLast

sameMonthFiscalYearB
eforeLast

sameMonthLastFiscalQ
uarterToDate

startOfThisBusinessWe
ek

startOfThisFiscalHalf

startOfThisFiscalQuart
er

startOfThisFiscalYear

startOfThisMonth

startOfThisWeek

startOfThisYear

startOfWeekBeforeLast

tenDaysAgo

tenDaysFromNow

thirtyDaysAgo

thirtyDaysFromNow

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4084585701.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4083697063.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4083697063.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4125897839.html

Supported Search Operators, Summary Types, and Date Filters
Search Date Filters

316

SuiteScript Developer & Reference Guide

fourWeeksStartingThis
Week

lastBusinessWeek

lastFiscalHalf

lastFiscalHalfOneFiscal
YearAgo

lastFiscalHalfToDate

lastFiscalQuarter

lastFiscalQuarterOneFis
calYearAgo

lastFiscalQuarterToDate

lastFiscalQuarterTwoFis
calYearsAgo

lastFiscalYear

lastFiscalYearToDate

lastMonth

lastMonthOneFiscalQu
arterAgo

lastMonthToDate

lastMonthTwoFiscalQu
artersAgo

lastMonthTwoFiscalYea
rsAgo

lastRollingHalf

lastRollingQuarter

lastRollingYear

lastWeek

lastWeekToDate

monthAfterNext

monthAfterNextToDate

monthBeforeLast

monthBeforeLastToDa
te

ninetyDaysFromNow

oneYearBeforeLast

previousFiscalQuartersL
astFiscalYear

previousFiscalQuarters
ThisFiscalYear

previousMonthsLastFis
calHalf

previousMonthsLastFis
calQuarter

previousMonthsLastFis
calYear

previousMonthsSameFi
scalHalfLastFiscalYear

previousMonthsSameF
iscalQuarterLastFiscalY
ear

previousMonthsThisFis
calHalf

previousMonthsThisFis
calQuarter

previousMonthsThisFis
calYear

previousOneDay

previousOneHalf

previousOneMonth

previousOneQuarter

previousOneWeek

previousOneYear

previousRollingHalf

previousRollingQuarter

previousRollingYear

sameDayFiscalQuarterB
eforeLast

sameMonthLastFiscalY
ear

sameMonthLastFiscalY
earToDate

sameWeekFiscalYearBe
foreLast

sameWeekLastFiscalYe
ar

sixtyDaysAgo

sixtyDaysFromNow

startOfFiscalHalfBefore
Last

startOfFiscalQuarterBef
oreLast

startOfFiscalYearBefore
Last

startOfLastBusinessWe
ek

startOfLastFiscalHalf

startOfLastFiscalHalfOn
eFiscalYearAgo

startOfLastFiscalQuart
er

startOfLastFiscalQuarte
rOneFiscalYearAgo

startOfLastFiscalYear

startOfLastMonth

startOfLastMonthOneFi
scalQuarterAgo

startOfLastMonthOneF
iscalYearAgo

startOfLastRollingHalf

startOfLastRollingQuar
ter

startOfLastRollingYear

thisBusinessWeek

thisFiscalHalf

thisFiscalHalfToDate

thisFiscalQuarter

thisFiscalQuarterToDat
e

thisFiscalYear

thisFiscalYearToDate

thisMonth

thisMonthToDate

thisRollingHalf

thisRollingQuarter

thisRollingYear

thisWeek

thisWeekToDate

thisYear

threeDaysAgo

threeDaysFromNow

threeFiscalQuartersAgo

threeFiscalQuartersAgo
ToDate

threeFiscalYearsAgo

threeFiscalYearsAgoTo
Date

threeMonthsAgo

threeMonthsAgoToDa
te

today

tomorrow

twoDaysAgo

Supported Search Operators, Summary Types, and Date Filters
Search Date Filters

317

SuiteScript Developer & Reference Guide

sameDayFiscalYearBefo
reLast

sameDayLastFiscalQua
rter

sameDayLastFiscalYear

sameDayLastMonth

sameDayLastWeek

sameDayMonthBefore
Last

sameDayWeekBeforeL
ast

startOfLastWeek

startOfMonthBeforeLa
st

startOfNextBusinessW
eek

startOfNextFiscalHalf

startOfNextFiscalQuart
er

startOfNextFiscalYear

startOfNextMonth

startOfNextWeek

startOfPreviousRolling
Half

startOfPreviousRolling
Quarter

startOfPreviousRolling
Year

startOfSameFiscalHalfL
astFiscalYear

startOfSameFiscalQuart
erLastFiscalYear

startOfSameMonthLast
FiscalQuarter

startOfSameMonthLast
FiscalYear

twoDaysFromNow

weekAfterNext

weekAfterNextToDate

weekBeforeLast

weekBeforeLastToDate

yesterday

Deprecated Search Date Filters

Important: The following search date filters are deprecated as of Version 2015 Release 1.
These values are still supported in existing scripts. For new scripts, please use
the arguments listed in the above table.

lastFiscalHalfOneYearAgo

lastFiscalQuarterOneYearAgo

lastMonthOneQuarterAgo

lastMonthOneYearAgo

lastMonthTwoQuartersAgo

startOfSameHalfLastFiscalYear

startOfSameQuarterLastFiscalYear

startOfTheHalfBeforeLast

startOfTheMonthBeforeLast

startOfTheQuarterBeforeLast

Supported Search Operators, Summary Types, and Date Filters
Search Date Filters

318

SuiteScript Developer & Reference Guide

lastMonthTwoYearsAgo

lastQuarterTwoYearsAgo

previousMonthsSameFiscalHalfLastYear

previousMonthsSameFiscalQuartherLastFiscalYear

previousQuartersLastFiscalYear

previousQuartersThisFiscalYear

sameHalfLastFiscalYear

sameHalfLastFiscalYearToDate

sameQuarterLastFiscalYear

sameQuarterLastFiscalYearToDate

startOfLastHalfOneYearAgo

startOfLastMonthOneQuarterAgo

startOfLastMonthOneYearAgo

startOfLastQuarterOneYearAgo

startOfNextYear

startOfTheWeekBeforeLast

startOfTheYearBeforeLast

threeQuartersAgo

threeQuartersAgoToDate

threeYearsAgo

threeYearsAgoToDate

daysagoxx

weeksagoxx

monthsagoxx

quartersagoxx

yearsagoxx

daysfromnowxx

weeksfromnowxx

monthsfromnowxx

quartersfromnowxx

yearsfromnowxx

UI Objects Overview 319

SuiteScript Developer & Reference Guide

Chapter 45 UI Objects Overview
SuiteScript UI Objects are a collection of objects that can be used as a UI toolkit for server
scripts such as Suitelets and User Event Scripts. SuiteScript UI objects are generated on the
server as HTML. They are then displayed in the browser and are accessible through client
scripts.

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

The following figure is an email form Suitelet built with UI objects. The form itself is
represented by the nlobjForm UI object. The Subject, Recipient email, and Message fields
are represented by the nlobjField UI object, and the Send Email button is represented by the
nlobjButton UI object.

To learn more about working with UI objects, see these topics:

• Creating Custom NetSuite Pages with UI Objects

• InlineHTML UI Objects

• Building a NetSuite Assistant with UI Objects

Email Form Code

/**
 * Build an email form Suitelet with UI objects. The Suitelet sends out an email
 * from the current user to the recipient email address specified on the form.
 */
function simpleEmailForm(request, response)

UI Objects Overview 320

SuiteScript Developer & Reference Guide

{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Email Form');
 var subject = form.addField('subject','text', 'Subject');
 subject.setLayoutType('normal','startcol');
 subject.setMandatory(true);
 var recipient = form.addField('recipient','email', 'Recipient email');
 recipient.setMandatory(true);
 var message = form.addField('message','textarea', 'Message');
 message.setDisplaySize(60, 10);
 form.addSubmitButton('Send Email');

 response.writePage(form);
 }
 else
 {
 var currentuser = nlapiGetUser();
 var subject = request.getParameter('subject')
 var recipient = request.getParameter('recipient')
 var message = request.getParameter('message')
 nlapiSendEmail(currentuser, recipient, subject, message);
 }
}

Creating Custom NetSuite Pages with UI Objects 321

SuiteScript Developer & Reference Guide

Chapter 46 Creating Custom NetSuite Pages
with UI Objects

SuiteScript UI Objects encapsulate the UI elements necessary for building NetSuite-looking
portlets, forms, fields, sublists, tabs, lists, columns, and assistant. Note that when developing a
Suitelet with UI objects, you can also add custom fields with inline HTML.

Depending on the design and purpose of the custom UI, you can use either the nlobjFormUI
object or nlobjList UI object as the basis. These objects encapsulate a scriptable NetSuite
form and NetSuite list, respectively. You can then add a variety of scriptable UI elements to
these objects to adopt the NetSuite look-and-feel. These elements can include fields (through
nlobjField), buttons (through nlobjButton), tabs (through nlobjTab), and sublists (through
nlobjSubList).

Important: When adding UI elements to an existing page, you must prefix the element
name with custpage. This minimizes the occurrence of field/object name
conflicts. For example, when adding a custom tab to a NetSuite entry form in
a user event script, the name should follow a convention similar to custpage
customtab or custpage mytab.

UI Objects and Suitelets

In Suitelet development, UI objects allow you to programmatically build custom NetSuite-
looking pages. A blank nlobjForm object is created with nlapiCreateForm(title, hideNavbar).
If you are building a custom assistant, a blank nlobjAssistant object is created with
nlapiCreateAssistant(title, hideHeader). On the server, the Suitelet code adds fields, steps, tabs,
buttons and sublists to the form and assistant objects.

The server defines the client script (if applicable) and sends the page to the browser. When the
page is submitted, the values in these UI objects become part of the request and available to aid
logic branching in the code.

For a basic example of a Suitelet built entirely of UI objects, see What Are Suitelets?. This
section also provides the code used to create the Suitelet. To see examples of an assistant or
“wizard” Suitelet built with UI objects, see Using UI Objects to Build an Assistant.

UI Objects and User Event Scripts

On entry forms and transaction forms, the nlobjForm object is accessed in user events scripts
on which new fields are added on the server before the pages are sent to the browser. With the
NetSuite nlobjForm object exposed, you can design user event scripts that manipulate most
built-in NetSuite UI components (for example, fields, tabs, sublists).

Creating Custom NetSuite Pages with UI Objects 322

SuiteScript Developer & Reference Guide

Note: If you are not familiar with concept of NetSuite entry or transaction forms, see the
help topic Custom Forms in the NetSuite Help Center.

The key to using user event scripts to customize a form during runtime is a second argument
named form in the before load event. This optional argument is the reference to the entry/
transaction form. You can use this to dynamically change existing form elements, or add new
ones (see Enhancing NetSuite Forms with User Event Scripts).

Note: Sometimes the best solution for a customized workflow with multiple pages is
a hybrid UI design, which encompasses both customized entry forms as well as
Suitelets built with UI objects.

UI Object Descriptions and Examples

For details aboutt he UI objects supported by NetSuite, as well as code samples, see UI Objects.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2852749.html

InlineHTML UI Objects 323

SuiteScript Developer & Reference Guide

Chapter 47 InlineHTML UI Objects
SuiteScript UI objects make most of the NetSuite UI elements scriptable. However, they still
may not lend themselves well to certain use cases. In these circumstances, developers can create
custom UI elements by providing HTML that SuiteScript can render on a NetSuite page. These
UI elements are known as “InlineHTML”.

InlineHTML can be implemented in two ways:

1. Pure custom HTML with no SuiteScript UI objects

2. Hybrid of custom HTML and SuiteScript UI objects

The first approach, shown on the left side, requires you to provide all the HTML code you want
to appear on the page, as if performing web designing on a blank canvas. The second approach,
shown on the right, allows custom HTML to be embedded in a NetSuite page. Example code is
available in the help section for Suitelets Samples.

A blog hosted within NetSuite can be created with a hybrid of inlineHTML and UI objects.
A blog page can display blog entries in descending chronological order with “Read More”
hyperlinks. Pagination should be used to handle the potentially large number of entries.
Readers should also be able to read and leave comments. These requirements cannot be
satisfied by standard NetSuite UI elements in a reader-friendly manner. However, rendering
the blog entries' data (stored as custom records) in HTML and displaying it in SuiteScript UI
objects as inlineHTML would satisfy this use case.

Building a NetSuite Assistant with UI Objects
NetSuite UI Object Assistant Overview

324

SuiteScript Developer & Reference Guide

Chapter 48 Building a NetSuite Assistant with
UI Objects

• NetSuite UI Object Assistant Overview

• Understanding NetSuite Assistants

• Using UI Objects to Build an Assistant

NetSuite UI Object Assistant Overview
You can use UI objects to build an assistant or “wizard” within NetSuite that has the same look-
and-feel as other built-in NetSuite assistants. To build your own assistant, you will use objects
such as nlobjAssistant, nlobjAssistantStep, nlobjFieldGroup, and nlobjField.

For examples that show some of the built-in assistants that come with NetSuite, see
Understanding NetSuite Assistants.

To learn to how programmatically construct your own assistant, see Using UI Objects to Build
an Assistant.

Understanding NetSuite Assistants
In NetSuite, assistants contain a series of steps that users must complete to accomplish a larger
task. In some assistants, users must complete the steps sequentially. In others, steps are non-
sequential, and they do not all have to be completed. In these assistants, steps are provided only
as guidelines for actions users might want to take to complete a larger task.

The UI objects you use to construct your own assistant will encapsulate the look-and-feel of
assistants already built in to NetSuite. For examples of these assistants, see these topics:

• Web Site Assistant

• SuiteBundler Assistant

• Import Assistant

Web Site Assistant

The Web Site Assistant is a built-in NetSuite assistant. This assistant guides users through a set
steps that are ordered sequentially. The ultimate goal of the assistant is to help users build their
own web sites.

Building a NetSuite Assistant with UI Objects
Understanding NetSuite Assistants

325

SuiteScript Developer & Reference Guide

Note: To access the Web Site Assistant, go to Setup > Site Builder > Web Site Assistant.

This figure shows Step 1 (page 1) of the Web Site Assistant. Steps are ordered sequentially and
positioned vertically in the left panel. The current step is highlighted in gray.

All components called out in this figure can be built in a custom assistant.

SuiteBundler Assistant

The SuiteBundler Assistant is another built-in NetSuite assistant. This assistant guides users
through a set of steps in custom NetSuite solutions are “bundled,” later to be deployed into
other NetSuite accounts.

Note: To access the SuiteBundler Assistant, go to Customization > SuiteBundler > Create
Bundle.

This figure shows Step 1 (page 1) of the SuiteBundler Assistant. Steps are ordered sequentially
and appear horizontally, directly below the title of the assistant.

All components called out in this figure can be built in a custom assistant.

Building a NetSuite Assistant with UI Objects
Understanding NetSuite Assistants

326

SuiteScript Developer & Reference Guide

Import Assistant

The Import Assistant guides users through a set steps that allow them to import data into
NetSuite.

Note: To access the Import Assistant, go to Setup > Import/Export > Import CSV Records.

This figure shows what an error message looks like in an assistant. Users cannot proceed to the
next step until the error is resolved. When building custom assistants, you can also throw errors
that prevent users from moving to the next step.

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

327

SuiteScript Developer & Reference Guide

Using UI Objects to Build an Assistant

From a UI perspective, the building blocks of most assistants you build are going to include a
combination of the following: Steps, Field Groups, Fields, Buttons, Sublists.

To create this look, you will use objects such as nlobjAssistant, nlobjAssistantStep,
nlobjFieldGroup, and nlobjField. The API documentation for each object and all object
methods provides examples for building instances of each objects.

Also see these topics for additional information:

• Understanding the Assistant Workflow

• Using Redirection in an Assistant Workflow

• Assistant Components and Concepts

• UI Object Assistant Code Sample

Note that since your assistant is a Suitelet, once you have finished building the assistant, you
can initiate the assistant by creating a custom menu link that contains the Suitelet URL. (See
Running a Suitelet in NetSuite for details on creating custom menu links for Suitelets.)

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

328

SuiteScript Developer & Reference Guide

Understanding the Assistant Workflow

If you have not done so already, please see Using UI Objects to Build an Assistant for
information on the UI objects that are used to create an assistant.

In your SuiteScript code, there is an order in which many components of an assistant must be
added. At a minimum you will:

1. Create a new assistant

a. Call nlapiCreateAssistant(title, hideHeader).

b. Add steps to the assistant. Use nlobjAssistant.addStep(name, label).

c. Define whether the steps must be completed sequentially or whether they can be
completed in random order. Use nlobjAssistant.setOrdered(ordered).

2. Build assistant pages

Add fields, field groups, and sublists to build assistant pages for each step.

Note: In the context of an assistant, each step is considered a page.

In the assistant workflow diagram (below), see Build Page for a list of methods that can
be used to build a page.

3. Process assistant pages

In your Suitelet, construct pages in response to a user's navigation of the assistant. At a
minimum you will render a specific assistant step/page using a GET request. Then you
will process that page in the POST request, before then redirecting the user to another
step in the assistant.

For example, this is where you would update a user's account based on data the user has
entered in the assistant.

The following flowchart provides an overview of a suggested assistant design.

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

329

SuiteScript Developer & Reference Guide

Using Redirection in an Assistant Workflow

From within a custom assistant you can redirect users to:

• a new record/page within NetSuite (for example, to a new Employee or Contact page in
NetSuite)

• the start page of a built-in NetSuite assistant (for example, the Import Assistant or the Web
Site Assistant)

• another custom assistant

To link users to another NetSuite page, built-in assistant, or custom assistant, and then
return them back to the originating assistant, you must set the value of the customwhence
parameter in the redirect URL to originating assistant. The value of customwhence will
consist of the scriptId and deploymentId of the originating custom assistant Suitelet.

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

330

SuiteScript Developer & Reference Guide

Example

The following sample shows a helper function that appears at the end of the Assistant code
sample (see UI Object Assistant Code Sample). Notice that in this function, the value of
the customwhence parameter in the URL is the scriptId and deplomentId of the custom
assistant that you originally started with. To link users out of the originating assistant, and
then return them back to this assistant once they have completed other tasks, you must
append the customwhence parameter to the URL you are redirecting to.

function getLinkoutURL(redirect, type)
{
 var url = redirect;
 if (type == "record")
 url = nlapiResolveURL('record', redirect);
 url += url.indexOf('?') == -1 ? '?' : '&';
 var context = nlapiGetContext();
 url += 'customwhence='+ escape(nlapiResolveURL('suitelet',context.getScriptId(),
 context.getDeploymentId()))
 return url;
}

Note: If you redirect users to a built-in assistant or to another custom assistant, be aware
that they will not see the “Finish” page on the assistant they have been linked
out to. Once they complete the assistant they have been linked to, they will be
redirected back to the page where they left off in the original assistant.

Assistant Components and Concepts

The following information pertains to the UI components used to build an assistant. Also
described are the concepts associated with state management and error handling.

• Steps

• Field Groups

• Fields

• Sublists

• Buttons

• State Management

• Error Handling

Steps

Create a step by calling nlobjAssistant.addStep(name, label), which returns a reference to
the nlobjAssistantStep object.

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

331

SuiteScript Developer & Reference Guide

At a minimum, every assistant will include steps, since steps are what define each
page of the assistant. Whether the steps must be completed sequentially or in a more
random order is up to you. Enforced sequencing of steps be will defined by the
nlobjAssistant.setOrdered(ordered) method.

The placement of your steps (vertically along the left panel, or horizontally across the top
of the assistant) will also be determined by you. Also note that you can add helper text for
each step using the nlobjAssistantStep.setHelpText(help) method.

Note: Currently there is no support for sub-steps.

Field Groups

Create a field group by calling nlobjAssistant.addFieldGroup(name, label), which returns a
reference to the nlobjFieldGroup object.

In the UI, field group are collapsible groups of fields that can be displayed in a
one-column or two-column format. The following snippet shows how to use the
nlobjField.setLayoutType(type, breaktype) method to start a second column in a field
group.

assistant.addFieldGroup("companyinfo", "Company Information");
assistant.addField("companyname", "text", "Company Name", null, "companyinfo")
assistant.addField("legalname", "text", "Legal Name", null, "companyinfo")
assistant.addField("shiptoattention", "text", "Ship To Attention", null, "companyinfo")
assistant.addField("address1", "text", "Address 1", null, "companyinfo").
setLayoutType("normal", "startcol");
assistant.addField("address2", "text", "Address 2", null, "companyinfo");
assistant.addField("city", "text", "City", null, "companyinfo");

Note that field groups do not have to be collapsible. They can appear as a static grouping
of fields. See nlobjFieldGroup.setCollapsible(collapsible, hidden) for more information
about setting collapsibility.

Fields

Create a field by calling nlobjAssistant.addField(name, type, label, source, group), which
returns a reference to the nlobjField object.

Fields are added to the current step on a per-request basis. For example, as the
sample below shows, in a GET request, if the user's current step is a step called
"companyinformation", (meaning the user has navigated to a step/page with the internal
ID "companyinformation"), the page that renders will include a field group and six fields
within the group.

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

332

SuiteScript Developer & Reference Guide

var step = assistant.getCurrentStep();
if (step.getName() == "companyinformation")
{
assistant.addFieldGroup("companyinfo", "Company Information");
assistant.addField("companyname", "text", "Company Name", null, "companyinfo")
assistant.addField("legalname", "text", "Legal Name", null, "companyinfo")
assistant.addField("shiptoattention", "text", "Ship To Attention", null, "companyinfo")
assistant.addField("address1", "text", "Address 1", null, "companyinfo").setLayoutType("normal"
, "startcol");
assistant.addField("address2", "text", "Address 2", null, "companyinfo");
assistant.addField("city", "text", "City", null, "companyinfo");
}

Note that all nlobjField APIs can be used with the fields returned from the addField(...)
method. Also, fields marked as 'mandatory' are respected by the assistant. Users cannot click
through to the next page if mandatory fields on the current page do not contain a value.

Important: The nlobjField.setLayoutType(type, break) method can be used to place a
column break in an assistant. Be aware that only the first column break that is
encountered will be honored. Currently assistants support only single or two
column layouts. You cannot set more than one column break.

Sublists

Create a sublist by calling nlobjAssistant.addSubList(name, type, label), which returns a
reference to the nlobjSubList object.

If you want to add a sublist to an assistant, be aware that only sublists of type inlineeditor are
supported. Also note that sublists on an assistant are always placed below all other elements on
the page.

Buttons

You do not need to programmatically add button objects to an assistant. Buttons are
automatically generated through the nlobjAssistant object.

Depending on which page you are on, the following buttons appear: Next, Back, Cancel,
Finish. When users reach the final step in an assistant, the Next button no longer displays,
and the Finish button appears. Button actions need to be communicated via the request using
nlobjAssistant.getLastAction().

Important: The addition of custom buttons are not currently supported on assistants.

State Management

Assistants support data and state tracking across pages within the same session until the
assistant is completed by the user (at which point the assistant is reset when the “Finished” page
displays).

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

333

SuiteScript Developer & Reference Guide

Field data tracking is automatically saved in assistants. For example, if a user revisits a page
using the Back button, the previously entered data will be automatically displayed.

Every time a page is submitted, all the fields will be automatically tracked and when the page is
displayed. If the user did not explicitly set a value for a field or on a sublist, then the field(s) and
sublist(s) will be populated from data entered by the user the last time they submitted that page.

Note: If state/data tracking needs to be preserved across sessions, you should use custom
records or tables to record this information.

Note that an SSS_NOT_YET_SUPPORTED_ERROR is thrown if the assistant is used on
an “Available Without Login” (external) Suitelet. (See Setting Available Without Login for
information on this Suitelet deployment option.) Session-based state tracking used in custom
assistants requires a session to exist across requests.

Finally, multiple Suitelet deployments should not be used to manage the pages within an
assistant, since data/state tracking is tied to the Suitelet instance. Developers should create one
Suitelet deployment per assistant.

Error Handling

If an error occurs on a step, the assistant displays two error indicators. The first indicator is
a red bar that appears directly below the step. The second indicator is the html you pass to
nlobjAssistant.setError(html).

UI Object Assistant Code Sample

The following is an implementation of a setup assistant with a few basic steps. State is managed
throughout the life of the user's session. In summary, this script shows you how to:

1. Create the assistant.

2. Create steps.

3. Set the user's first step.

4. Build pages for each step.

5. Process data entered by the user.

Note that this sample can be run in a NetSuite account. To do so, you must create a .js
file for the sample code below. Then you must create a new Suitelet script record and
a script deployment. Do not select the Available Without Login deployment option on
the Script Deployment page, otherwise the Suitelet will not run. (For general details on
creating a Script record, setting values on the Script Deployment page, and creating a
custom menu link for a Suitelet, see Running a Suitelet in NetSuite.)

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

334

SuiteScript Developer & Reference Guide

Once the script is deployed, you can launch the assistant Suitelet by clicking the Suitelet
URL on the Script Deployment page. You can also create a tasklink for the Suitelet and
launch the Suitelet as a custom menu item.

Also notice that this sample has all three types of “link outs,” as defined in Using
Redirection in an Assistant Workflow: one link out to add employees, one to the
Import Assistant, and one to another custom assistant. Notice how the customwhence
parameter is constructed and appended to the target URL that you are linking out
to. Also notice how nlobjAssistant.sendRedirect(response) is used to ensure that
customwhence is respected.

Important: If your browser is inserting scroll bars in this code sample, maximize
your browser window, or expand the main frame that this sample
appears is.

/**
* Implementation of a simple setup assistant with support for multiple setup steps and sequenti
al or ad-hoc step traversal.
* State is managed throughout the life of the user's session but is not persisted across sessio
ns. Doing so would
* require writing this information to a custom record.
*
* @param request request object
* @param response response object
*/
function showAssistant(request, response)
{
 /* first create assistant object and define its steps. */
 var assistant = nlapiCreateAssistant("Small Business Setup Assistant", true);
 assistant.setOrdered(true);
 nlapiLogExecution('DEBUG', "Create Assistant ", "Assistant Created");

 assistant.addStep('companyinformation', 'Setup Company Information').setHelpText("Setup your
 important company information in the fields below.");
 assistant.addStep('companypreferences', 'Setup Company Preferences').setHelpText("Setup your
 important company preferences in the fields below.");
 assistant.addStep('enterlocations', 'Enter Locations').setHelpText("Add Locations to your acco
unt.
 You can create a location record for each of your company's locations. Then you can track e
mployees
 and transactions by location..");
 assistant.addStep('enteremployees', 'Enter Company Employees').setHelpText("Enter your
 company employees.");
 assistant.addStep('importrecords', 'Import Records').setHelpText("Import your initial company
data.");
 assistant.addStep('configurepricing', 'Configure Pricing').setHelpText("Configure your item p
ricing.");
 assistant.addStep('summary', 'Summary Information').setHelpText("Summary of your Assistant
 Work.
 You have made the following choices to configure your NetSuite account.");

 /* handle page load (GET) requests. */
 if (request.getMethod() == 'GET')
 {

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

335

SuiteScript Developer & Reference Guide

 /*.Check whether the assistant is finished */
 if (!assistant.isFinished())
 {
 // If initial step, set the Splash page and set the intial step
 if (assistant.getCurrentStep() == null)
 {
 assistant.setCurrentStep(assistant.getStep("companyinformation"));

 assistant.setSplash("Welcome to the Small Business Setup Assistant!", "What
 you'll be doing
The Small Business Setup Assistant will walk you
 through the process of configuring your NetSuite account for your initial use..",
 "When you finish
your account will be ready for you to use to
 run your business.");
 }
 var step = assistant.getCurrentStep();

 // Build the page for a step by adding fields, field groups, and sublists to the assistant
 if (step.getName() == "companyinformation")
 {
 assistant.addField('orgtypelabel','label','What type of organization are
 you?').setLayoutType('startrow');
 assistant.addField('orgtype', 'radio','Business To Consumer',
 'b2c').setLayoutType('midrow');
 assistant.addField('orgtype', 'radio','Business To Business','b2b').setLayoutType('midrow')
;
 assistant.addField('orgtype', 'radio','Non-Profit','nonprofit').setLayoutType('endrow');
 assistant.getField('orgtype', 'b2b').setDefaultValue('b2b');

 assistant.addField('companysizelabel','label','How big is your organization?');
 assistant.addField('companysize', 'radio','Small (0-99 employees)', 's');
 assistant.addField('companysize', 'radio','Medium (100-999 employees)','m');
 assistant.addField('companysize', 'radio','Large (1000+ employees)','l');

 assistant.addFieldGroup("companyinfo", "Company Information");
 assistant.addField("companyname", "text", "Company Name", null,
 "companyinfo").setMandatory(true);
 assistant.addField("legalname", "text", "Legal Name", null, "companyinfo").setMandatory
 (true);
 assistant.addField("shiptoattention", "text", "Ship To Attention", null,
 "companyinfo").setMandatory(true);
 assistant.addField("address1", "text", "Address 1", null,
 "companyinfo").setLayoutType("normal", "startcol");
 assistant.addField("address2", "text", "Address 2", null, "companyinfo");
 assistant.addField("city", "text", "City", null, "companyinfo");
 assistant.getField("legalname").setHelpText("Enter a Legal Name if it differs from
 your company name");
 assistant.getField("shiptoattention").setHelpText("Enter the name of someone
 who can sign for packages or important documents. This is important
 because otherwise many package carriers will not deliver to your corporate address");
 assistant.addFieldGroup("taxinfo", "Tax Information").setCollapsible(true /* collapsable */
,
 true /* collapsed by default */);
 assistant.addField("employeeidnumber", "text", "Employee Identification Number (EIN)",
 null, "taxinfo").setHelpText("Enter the EID provided to you by the state or
 federal government");
 assistant.addField("taxidnumber", "text", "Tax ID Number", null,
 "taxinfo").setHelpText("Enter the Tax ID number used when you file your payroll
 and sales taxes");
 assistant.addField("returnmailaddress", "textarea", "Return Mail Address", null,
 "taxinfo").setHelpText("In the rare event someone returns your products, enter

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

336

SuiteScript Developer & Reference Guide

 the mailing address.");

 }

 if (step.getName() == "companypreferences")
 {
 nlapiLogExecution('DEBUG', "Company Preferences ", "Begin Creating Page");

 assistant.addFieldGroup("companyprefs", "Company Preferences");
 var firstDayOfWeek = assistant.addField("firstdayofweek", "select", "First Day of Week",
 null, "companyprefs");
 var stateAbbrs = assistant.addField("abbreviatestates", "checkbox", "Use State Abbreviation
s
 in Addresses", null, "companyprefs");
 var customerMessage = assistant.addField("customerwelcomemessage", "text", "Customer
 Center Welcome Message", null, "companyprefs");
 customerMessage.setMandatory(true);

 assistant.addFieldGroup("accountingprefs", "Accounting Preferences").setCollapsible(true,
 true);
 var accountNumbers = assistant.addField("accountnumbers", "checkbox", "Use Account
 Numbers", null, "accountingprefs");
 var creditLimitDays = assistant.addField("credlimdays", "integer", "Days Overdue
 for Warning or Hold", null, "accountingprefs");
 var expenseAccount = assistant.addField("expenseaccount", "select", "Default
 Expense Account", 'account', "accountingprefs");
 customerMessage.setMandatory(true);

 assistant.addField('customertypelabel','label','Please Indicate Your Default Customer
 Type?');
 assistant.addField('customertype', 'radio', 'Individual', 'i');
 assistant.addField('customertype', 'radio', 'Company', 'c');

 // get the select options for First Day of Week
 nlapiLogExecution('DEBUG', "Load Configuration ", "Company Preferences");
 var compPrefs = nlapiLoadConfiguration('companypreferences');

 var firstDay = compPrefs.getField('FIRSTDAYOFWEEK');
 nlapiLogExecution('DEBUG', "Create Day of Week Field ", compPrefs.getFieldText(
 'FIRSTDAYOFWEEK'));

 try
 {
 var selectOptions = firstDay.getSelectOptions();
 }
 catch(error)
 {
 assistant.setError(error);
 }

 if(selectOptions != null)
 {
 nlapiLogExecution('DEBUG', "Have Select Options ", selectOptions[0].getText());

 // add the options to the UI field
 for (var i = 0; i < selectOptions.length; i++)
 {
 firstDayOfWeek.addSelectOption(selectOptions[i].getId(),
 selectOptions[i].getText());
 }

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

337

SuiteScript Developer & Reference Guide

 }

 // set the default values based on the product default
 stateAbbrs.setDefaultValue(compPrefs.getFieldValue('ABBREVIATESTATES'));
 customerMessage.setDefaultValue(compPrefs.getFieldValue(
 'CUSTOMERWELCOMEMESSAGE'));

 }
 else if (step.getName() == "enterlocations")
 {
 var sublist = assistant.addSubList("locations", "inlineeditor", "Locations");

 sublist.addField("name", "text", "Name");
 sublist.addField("tranprefix", "text", "Transaction Prefix");
 sublist.addField("makeinventoryavailable", "checkbox", "Make Inventory Available");
 sublist.addField("makeinventoryavailablestore", "checkbox", "Make Inventory Available in
 Web Store");

 sublist.setUniqueField("name");
 }

 else if (step.getName() == "enteremployees")
 {
 // get the host
 var host = request.getURL().substring(0, (request.getURL().indexOf('.com') + 4));

 assistant.addFieldGroup("enteremps", "Enter Employees");
 assistant.addField("employeecount", "integer", "Number of Employees in Company", null,
 "enteremps").setMandatory(true);
 assistant.addField("enterempslink", "url", "", null, "enteremps").setDisplayType
 ("inline").setLinkText("Click Here to Enter Your Employees").setDefaultValue(host
 + getLinkoutURL('employee', 'record'));
 }

 else if (step.getName() == "importrecords")
 {
 var host = request.getURL().substring(0, (request.getURL().indexOf('.com') + 4));

 assistant.addFieldGroup("recordimport", "Import Data");
 assistant.addField("recordcount", "integer", "Number of Records to Import", null,
 "recordimport").setMandatory(true);
 assistant.addField("importlink", "url", "", null, "recordimport").setDisplayType
 ("inline").setLinkText("Click Here to Import Your Data").setDefaultValue(host +
 getLinkoutURL("/app/setup/assistants/nsimport/importassistant.nl"));
 }

 else if (step.getName() == "configurepricing")
 {
 var host = request.getURL().substring(0, (request.getURL().indexOf('.com') + 4));

 assistant.addFieldGroup("pricing", "Price Configuration");
 assistant.addField("itemcount", "integer", "Number of Items to Configure", null,
 "pricing").setMandatory(true);

 /* When users click the ‘Click Here to Configure Pricing' link, they will be taken to
 * another custom assistant Suitelet that has a script ID of 47 and a deploy ID of 1. Note
 * that the code for the “link out” assistant is not provided in this sample.
 *

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

338

SuiteScript Developer & Reference Guide

 * Notice the use of the getLinkoutURL helper function, which sets the URL
 * customwhence parameter so that after users finish the with the “link out” assistant,
 * they will be redirected back to this (the originating) assistant.
 */
 assistant.addField("importlink", "url", "", null, "pricing").setDisplayType
 ("inline").setLinkText("Click Here to Configure Pricing").setDefaultValue(host +
 getLinkoutURL("/app/site/hosting/scriptlet.nl?script=47&deploy=1"));
 }

 else if (step.getName() == "summary")
 {

 assistant.addFieldGroup("companysummary", "Company Definition Summary");
 assistant.addField('orgtypelabel','label','What type of organization are you?', null,
 'companysummary');
 assistant.addField('orgtype', 'radio','Business To Consumer', 'b2c',
 'companysummary').setDisplayType('inline');
 assistant.addField('orgtype', 'radio','Business To Business','b2b',
 'companysummary').setDisplayType('inline');
 assistant.addField('orgtype', 'radio','Non-Profit','nonprofit',
 'companysummary').setDisplayType('inline');

 assistant.addField('companysizelabel','label','How big is your organization?', null,
 'companysummary');
 assistant.addField('companysize', 'radio','Small (0-99 employees)', 's',
 'companysummary').setDisplayType('inline');;
 assistant.addField('companysize', 'radio','Medium (100-999 employees)','m',
 'companysummary').setDisplayType('inline');;
 assistant.addField('companysize', 'radio','Large (1000+ employees)','l',
 'companysummary').setDisplayType('inline');;
 assistant.addField("companyname", "text", "Company Name", null,
 "companysummary").setDisplayType('inline');
 assistant.addField("city", "text", "City", null, "companysummary").setDisplayType('inline')
;
 assistant.addField("abbreviatestates", "checkbox", "Use State Abbreviations in Addresses",
 null, "companysummary").setDisplayType('inline');
 assistant.addField("customerwelcomemessage", "text", "Customer Center Welcome
 Message", null, "companysummary").setDisplayType('inline');

 // get previously submitted steps
 var ciStep = assistant.getStep('companyinformation');
 var cpStep = assistant.getStep('companypreferences');

 // get field values from previously submitted steps
 assistant.getField('orgtype', 'b2b').setDefaultValue(ciStep.getFieldValue('orgtype'))
;
 assistant.getField('companysize', 's').setDefaultValue(ciStep.getFieldValue
 ('companysize'));
 assistant.getField('companyname').setDefaultValue(ciStep.getFieldValue
 ('companyname'));
 assistant.getField('city').setDefaultValue(ciStep.getFieldValue('city'));
 assistant.getField('abbreviatestates').setDefaultValue(cpStep.getFieldValue
 ('abbreviatestates'));
 assistant.getField('customerwelcomemessage').setDefaultValue
 (cpStep.getFieldValue('customerwelcomemessage'));

 }

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

339

SuiteScript Developer & Reference Guide

 }
 response.writePage(assistant);
 }
 /* handle user submit (POST) requests. */
 else
 {

 assistant.setError(null);

 /* 1. if they clicked the finish button, mark setup as done and redirect to assistant page */

 if (assistant.getLastAction() == "finish")
 {
 assistant.setFinished("You have completed the Small Business Setup Assistant.");

 assistant.sendRedirect(response);
 }
 /* 2. if they clicked the "cancel" button, take them to a different page (setup tab) altogeth
er as
 appropriate. */
 else if (assistant.getLastAction() == "cancel")
 {
 nlapiSetRedirectURL('tasklink', "CARD_-10");
 }
 /* 3. For all other actions (next, back, jump), process the step and redirect to assistant pa
ge. */
 else
 {

 if (assistant.getLastStep().getName() == "companyinformation" && assistant.getLastAction()
 == "next")
 {
 // update the company information page
 var configCompInfo = nlapiLoadConfiguration('companyinformation');

 configCompInfo.setFieldValue('city', request.getParameter('city')) ;

 nlapiSubmitConfiguration(configCompInfo);
 }

 if (assistant.getLastStep().getName() == "companypreferences" && assistant.getLastAction()
 == "next")
 {
 // update the company preferences page
 var configCompPref = nlapiLoadConfiguration('companypreferences');

 configCompPref.setFieldValue('CUSTOMERWELCOMEMESSAGE',
 request.getParameter('customerwelcomemessage'));

 nlapiSubmitConfiguration(configCompPref);

 // update the accounting preferences pages
 var configAcctPref = nlapiLoadConfiguration('accountingpreferences');

 configAcctPref.setFieldValue('CREDLIMDAYS', request.getParameter('credlimdays'));

 nlapiSubmitConfiguration(configAcctPref);
 }

Building a NetSuite Assistant with UI Objects
Using UI Objects to Build an Assistant

340

SuiteScript Developer & Reference Guide

 if (assistant.getLastStep().getName() == "enterlocations" && assistant.getLastAction() == "n
ext")
 {
 // create locations

 for (var i = 1; i <= request.getLineItemCount('locations'); i++)
 {
 locationRec = nlapiCreateRecord('location');

 locationRec.setFieldValue('name', request.getLineItemValue('locations', 'name', i));
 locationRec.setFieldValue('tranprefix', request.getLineItemValue('locations',
 'tranprefix', i));
 locationRec.setFieldValue('makeinventoryavailable', request.getLineItemValue
 ('locations', 'makeinventoryavailable', i));
 locationRec.setFieldValue('makeinventoryavailablestore',
 request.getLineItemValue('locations', 'makeinventoryavailablestore', i));

 try
 {
 // add a location to the account
 nlapiSubmitRecord(locationRec);
 }
 catch(error)
 {
 assistant.setError(error);
 }
 }

 }
 if(!assistant.hasError())
 assistant.setCurrentStep(assistant.getNextStep());

 assistant.sendRedirect(response);

 }
 }
}

function getLinkoutURL(redirect, type)
{
 var url = redirect;

 if (type == "record")
 url = nlapiResolveURL('record', redirect);

 url += url.indexOf('?') == -1 ? '?' : '&';

 var context = nlapiGetContext();
 url += 'customwhence='+ escape(nlapiResolveURL('suitelet',context.getScriptId(), context.getDe
ploymentId()))

 return url;

}

Working with the SuiteScript Debugger
SuiteScript Debugger Overview

341

SuiteScript Developer & Reference Guide

Chapter 49 Working with the SuiteScript
Debugger

• SuiteScript Debugger Overview

• Using the SuiteScript Debugger

SuiteScript Debugger Overview
You can use the SuiteScript Debugger to debug server-side scripts and core plug-in
implementations.

To debug client scripts, NetSuite recommends using the Chrome DevTools for Chrome, the
Firebug debugger for Firefox, and the Microsoft Script Debugger for Internet Explorer. For
additional information about these tools, see the documentation provided with each browser.

Note: If you use the SuiteCloud IDE to develop your SuiteScripts, see the help topic Using
the SuiteCloud IDE Debugger. The SuiteCloud IDE Debugger enables you to debug
server-side SuiteScripts in the same Eclipse-based environment you develop them
in.

To work with the SuiteScript Debugger, you will need to learn about the following:

1. Accessing a Debugger domain as well as requirements for running the SuiteScript
Debugger (see Before Using the SuiteScript Debugger)

2. SuiteScript Debugger metering and permission restrictions (see SuiteScript Debugger
Metering and Permissions)

3. How to use the SuiteScript Debugger (see Using the SuiteScript Debugger)

4. SuiteScript Debugger tabs and buttons (see SuiteScript Debugger Interface)

To view script execution details either while using the SuiteScript Debugger, or after the script
has been deployed into NetSuite, see Creating Script Execution Logs.

Using the SuiteScript Debugger

The SuiteScript Debugger provides two debugging modes, which are based on the type of script
you want to debug.

• Ad Hoc Debugging: Enables you to debug code fragments written “on-the-fly.” With
ad-hoc debugging you are debugging a new script or code snippet that does not have

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2928836.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2928836.html

Working with the SuiteScript Debugger
SuiteScript Debugger Overview

342

SuiteScript Developer & Reference Guide

a defined SuiteScript deployment. Scripts that do not require any form/record-specific
interaction are good candidates for ad-hoc debugging.

• Deployed Debugging: Enables you to select an existing script or core plug-in
implementation that already has a defined Script Deployment or Plug-in Implementation
record. The status of your script or implementation must be set to Testing before it can be
loaded into the Debugger. You must also be the owner.

Before Using the SuiteScript Debugger 343

SuiteScript Developer & Reference Guide

Chapter 50 Before Using the SuiteScript
Debugger

Before using the SuiteScript Debugger, you must be aware of the following :

• There are three separate Debugger domains, accessible by going to Customization >
Scripting > Script Debugger from a production account, a Beta account, or a sandbox
account. You can also access a Debugger domain by going directly to the following URLs:

• https://debugger.netsuite.com/pages/login.jsp.

You must then log in to NetSuite.

Important: Any changes you make to your account while on this Debugger
domain will affect the data in your production account. For
example, if you execute a script in the Debugger that creates a new
record, that record will appear in your production account.

• https://debugger.na1.beta.netsuite.com

If you choose to run the Debugger in the release preview or beta environment, go to
this Debugger domain.

Note: If you go to Customization > Scripting > Script Debugger in your Beta
account, you will be directed to the Debugger Beta domain. Any changes
you make to your account while on the Debugger Beta domain will affect
your Beta account only.

• https://debugger.sandbox.netsuite.com

If you have a sandbox account and choose to run the Debugger in this environment,
go to this Debugger domain.

Note: If you go to Customization > Scripting > Script Debugger in your sandbox
account, you will be directed to the Debugger sandbox domain. Any
changes you make to your account while on the Debugger sandbox
domain will affect your sandbox account only.

Once are you logged on to a Debugger domain, you will see the Debugger logo at the top
of your account.

Before Using the SuiteScript Debugger 344

SuiteScript Developer & Reference Guide

Note: There may be a decrease in performance when working on Debugger domains.

• The Debugger executes server-side scripts only (these script types include Suitelets,
Portlet scripts, Scheduled scripts, and User Event scripts). Client scripts (both form- and
record-level) should be tested on the form/record they run against.

• To debug scripts, the following must apply:

• You must have scripting permission.

• You must be the assigned owner of the script.

• If you are debugging a script that already has a defined deployment, that script must
be in Testing mode before it can be loaded into the Debugger. If you want to debug
a script that has already been released into production, you must change the script's
status from Released to Testing on the Script Deployment page.

• If a bundled script has been installed into your account and the script has been marked as
hidden, you will be unable to debug this script.

Be aware that the SuiteScript Debugger is not any of the following:

• An API test console

• An integrated development environment (IDE)

• A script deployment interface. To deploy SuiteScript to NetSuite, you must still create a
script record and define the script's deployment parameters on the Script Deployment
page.

• A Client SuiteScript debugger

• A script runner interface (for example, scheduled scripts still need to be put INQUEUE for
task completion)

Ad Hoc Debugging 345

SuiteScript Developer & Reference Guide

Chapter 51 Ad Hoc Debugging
Ad hoc debugging is for testing scripts or code snippets that do not have a defined SuiteScript
deployment. Ad hoc debugging is not for scripts that have a Script record or defined
deployment parameters (set on the Script Deployment page).

To use the Debugger in ad hoc mode:

1. Go to Customization > Scripting > Script Debugger if you are already logged in to a
production, Beta, or sandbox NetSuite account. Or, go directly to one of the following
Debugger domains:

• https://debugger.netsuite.com

• https://debugger.na1.beta.netsuite.com (if you choose to run the Debugger in the
release preview or beta environment)

• https://debugger.sandbox.netsuite.com (if you have a sandbox account and choose
the run the Debugger in this environment)

Important: See Before Using the SuiteScript Debugger to learn about how the
changes you make to your account on a Debugger domain can affect
your production, Beta, or sandbox account.

The following figure shows the Script Debugger start page.

Ad Hoc Debugging 346

SuiteScript Developer & Reference Guide

2. Type your code snippet in the New Script text area.

If you have already written your code in an IDE, copy and paste the code into the
Debugger text area. If you modify your script in the Debugger and you intend to save the
changes, you must copy the updated script from the Debugger and paste it into your IDE.

Ad Hoc Debugging 347

SuiteScript Developer & Reference Guide

3. Next, click the Debug Script button.

The script is immediately loaded into the Debugger and the program's execution stops
before running the first line of executable code.

Important: Make sure you always have an executable call in your script; otherwise,
the script has nothing to execute and return.

4. With the ad hoc script loaded into the Debugger, you can now step through each line
to inspect local variables and object properties. You can also add watches, evaluate
expressions, and set break points. See SuiteScript Debugger Interface for information on
stepping into/out of functions, adding watches, setting and removing break points, and
evaluating expressions.

5. After testing/debugging your ad hoc script, you can either re-run the script (by clicking
the Re-run Script button), or put the script into edit mode (by clicking the Switch to
Editor button) and continue debugging.

Deployed Debugging 348

SuiteScript Developer & Reference Guide

Chapter 52 Deployed Debugging
Deployed-mode debugging is for testing and inspecting scripts or core plug-in implementations
that have a defined Script Deployment or Plug-in Implementation record.

Note: SuiteScript does not support read-only sublists. If you are debugging a script that
loads a record with a custom child record as a sublist, make sure the Allow Child
Record Editing setting is checked for the child record in SuiteBuilder. If this box is
not checked, the sublist is read-only and will not load in the parent record. See the
help topic Creating Custom Record Types for additional information on creating
custom records.

To use the Debugger in deployed-mode:

1. Go to Customization > Scripting > Script Debugger if you are already logged in to a
production, Beta, or sandbox NetSuite account. Or, go directly to one of the following
Debugger domains:

• https://debugger.netsuite.com

• https://debugger.na1.beta.netsuite.com (if you choose to run the Debugger in the
release preview or beta environment)

• https://debugger.sandbox.netsuite.com (if you have a sandbox account and choose
the run the Debugger in this environment)

Important: See Before Using the SuiteScript Debugger to learn about how the
changes you make to your account on a Debugger domain can affect
your production, Beta, or sandbox account.

2. Once you are on a Debugger domain, navigate to the applicable Script Deployment or
Plug-in Implementation record and verify that Status is set to Testing. If you wish to
debug a script or implementation that has already been released into production, you must
change the status from Released to Testing.

3. Verify that you are the assigned owner of the script or implementation. You can only
debug if you are the assigned owner.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2876492.html

Deployed Debugging 349

SuiteScript Developer & Reference Guide

4. To get to the Debugger start page, use the appropriate option:

• If you are on the Script Deployment page in View mode, click the Debug button.
If you are on the Script Deployment page in Edit mode, click the Save and Debug
button.

• If you are not on the Script Deployment page or you are debugging an
implementation, you can navigate to the Debugger by going to Customization >
Scripting > Script Debugger.

5. When the Script Debugger page opens, click the Debug Existing button.

After clicking Debug Existing, the Script Debugger popup window opens. The popup
shows all the server-side scripts and core plug-in implementations that are available for
debugging (see figure below). Note that only scripts and implementations whose statuses
are set to Testing will appear in the Script Debugger popup.

6. Select the script you want to debug, and then click the Select and Close button in the
popup window.

The following figure shows the selection of a beforeLoad User Event script that runs on
Customer records. When a new Customer is created, this script sets a custom check box
field called Export to OpenAir to true.

Deployed Debugging 350

SuiteScript Developer & Reference Guide

7. After clicking Select and Close, the Waiting for User Action screen appears. To load a
User Event, Portlet, Suitelet, or Core Plug-in Implementations into the Debugger, you
must perform the action that executes its logic.

Note: You do not have to perform any user actions for Scheduled Scripts to load
into the Debugger. Simply select your Scheduled Script from the Script
Debugger popup window, and then click Save and Close. The Scheduled
Script automatically loads.

In this example, you must create a new Customer for the User Event script to load into
the Debugger. Performing the action that actually calls the script creates a “real-time,” live
context for script debugging.

Deployed Debugging 351

SuiteScript Developer & Reference Guide

8. Next, create a new Customer to load the User Event script into the Debugger.

Important: It is highly recommended that when performing user actions, you do so
in another window or another tab (see figure below). Doing so enables
you to keep the Debugger window open so that you can see the script or
implementation as it loads.

• The first figure shows that a new Customer will be created in a separate window.

• The second figure shows the code in the script file as it loads into the Script Debugger
window.

Deployed Debugging 352

SuiteScript Developer & Reference Guide

With the code in the Debugger text area, you have the following options:

• Click the Step Over button to begin stepping through each line of code.

• Add watches and evaluate expressions.

Deployed Debugging 353

SuiteScript Developer & Reference Guide

• Set break points and click the Run button to run the code. The Debugger will stop code
execution at the first break point set.

• Set no break points, click the Run button, and have the Debugger execute the entire piece
of code.

After testing/debugging a deployed-mode script or implementation, you can either re-run it
(by clicking the Re-run Script button), or put it into edit mode (by clicking the Switch to Editor
button) and continue debugging.

Important: If you modify a script or implementation in the Debugger, and you intend
to save the changes, you must copy the updated script from the Debugger
and paste it into your IDE. You must then re-load the updated .js file into the
NetSuite file cabinet.

SuiteScript Debugger Interface 354

SuiteScript Developer & Reference Guide

Chapter 53 SuiteScript Debugger Interface
See the following sections to learn about the Debugger UI.

• SuiteScript Debugger Buttons

• SuiteScript Debugger Tabs

Use the Debugger buttons to control the flow of script execution. Use the tabs to inspect all
script variables, objects, and properties.

SuiteScript Debugger Buttons

There are five Debugger buttons that can be used to control/resume script execution once the
Debugger stops at a particular line:

Note: Keyboard shortcuts are enabled for all five Debugger buttons. See SuiteScript
Debugger Keyboard Shortcuts for details.

Icon Name Description

Step Over Resumes execution from the current line and stops at the next line (even if the
current line is a function call).

Step Into Resumes execution from the current line and stops at the first line in any
function call made from the current line.

Step Out Resumes execution from the current line until the end of the current function,
and stops at the first line following the line from where this function was called

SuiteScript Debugger Interface 355

SuiteScript Developer & Reference Guide

Icon Name Description

-or- until the next break point -or- until the program terminates (either by error
or by normal completion).

Continue Resumes program execution from the current line until the next break point -or-
until the program terminates.

Cancel Aborts execution of the program from the current line.

SuiteScript Debugger Tabs

The SuiteScript Debugger includes the following tabs. Click the links below to jump to
information about each tab.

• Execution Log

• Local Variables

• Watches

• Evaluate Expressions

• Break Points

Execution Log

Click the Execution Log tab to view all the execution logs (including errors logged by the
system) created by the currently executing program. The execution log details that appear on
this tab are the same details that would normally appear in the Execution Log on the Script
Deployment page. However, when working in the Debugger, all script execution details appear
on the Execution Log tab within the Debugger; these details will NOT appear on the Execution
Log tab on the Script Deployment page.

The type, subject, details, and timestamp are displayed in the on the Debugger Execution Log
tab. The timestamp is recorded on the server but converted to the current user's time zone for
display. The console is automatically cleared at the start of every debugging session.

Log details are collapsed by default, but can be seen by clicking the expand/collapse icon.

Local Variables

Click the Local Variables to see a browse-able list of all local variables (primitives, objects, and
NetSuite objects) currently in scope. Note that for NetSuite (nlobj) objects, all properties are

SuiteScript Debugger Interface 356

SuiteScript Developer & Reference Guide

private, even though they can be seen on the Local Variables tab. Do not try to reference these
properties directly in your script. Use the appropriate getter/setter functions instead.

Click the Call Stack drop-down to see a list containing a browse-able view of the current
execution stack of the program. The function call and current line number for that function are
included in the Call Stack drop-down. Use the Call Stack drop-down to switch to different call
stacks for local variable observation. In addition, watch expressions and expression evaluations
will automatically be performed in the context specified by this field.

Important: Due to performance considerations, the member display limit for all variables
is 1000. In addition, only the first 500 characters of a String are displayed. For
large variables, use a watch to see the full member display (see Watches for
additional information).

Watches

The Watch tab is where you can add or remove expressions to a list that is maintained and
kept up-to-date (“watched”) throughout the execution of a script. The expressions are always
evaluated in the current call stack. This means that by default they are evaluated at the current
line of script execution. However, if you switch to a different function in the call stack, they will
be re-evaluated in that context.

SuiteScript Debugger Interface 357

SuiteScript Developer & Reference Guide

• To add an expression, type it into the Add Watch field and press the Enter key.

• To remove a watch expression, click on the x icon to the left of the expression.

• To browse sub-properties of a user-defined object, an array, or a NetSuite object (nlobj)
expression, click the expand/collapse icon next to the property name.

Note that you can use the watch window to navigate to object properties via a command line
interface. Any property that is viewable from the property browser can be added as a watch
expression by referencing the property using dot (.) notation, even if the property is private in
the actual script (for example, you can reference the ID of an nlobjRecord object (referenced by
a variable called record) by typing record .id).

Evaluate Expressions

Use the Evaluate Expressions tab to execute code at break points during the current program.
Doing so provides access to the program's state, allowing you to modify the state of the
program.

Enter an expression in the Evaluate Expression field and press the Enter key to run it at the
selected call stack. The results of an evaluated expression (if any) is displayed in the window
below. Any changes to the program's state will immediately be reflected in the Local Variables
and Watches windows.

SuiteScript Debugger Interface 358

SuiteScript Developer & Reference Guide

Break Points

Click the Break Points tab to view all of your instruction-level (line) break points as well as your
user event break points (see figure). Note that you can add user event break points by selecting
user events from the Break on User Event drop-down.

By setting breakpoints in your code, you can execute your code up to a certain point, and then
halt the execution at the break point and examine the current state of the execution.

To add/remove break points in your code:

1. To add a break point, click between the line number and the actual line of code (see figure
below).

2. To remove a break point, click the break point icon as it appears in the code. You can also
remove a break point by clicking the x icon next to the break point (as it appears on the
Break Points tab).

SuiteScript Debugger Metering and Permissions 359

SuiteScript Developer & Reference Guide

Chapter 54 SuiteScript Debugger Metering
and Permissions

The SuiteScript Debugger adheres to the following metering and permission restrictions:

• A user is only allowed to debug a single script at a time. Attempting to debug multiple
scripts simultaneously (for example, by opening two different browser windows) will result
in the same script/debugging session appearing in both windows.

• Users can debug only their own scripts in their current login session.

• There is a 1000 unit usage limit on all scripts being debugged. This is important to note,
particularly for script types such as Scheduled scripts, which are permitted 10,000 units
when running in NetSuite. If, for example, you load a 2,000 unit Scheduled script into the
Debugger and attempt to step through or execute your code, the Debugger will throw a
usage limit error once it reaches 1000 units.

• Email error notification is disabled for scripts being debugged. Additionally, execution
log details are displayed on the Execution Log tab in the Debugger rather than in the
execution log on the Script Deployment page.

• There is a two minute time limit on scripts sitting idle in the Debugger. If you do not
perform some user action in the Debugger within the two minutes, the following error is
thrown (see figure):

You have exceeded the maximum allowable idle time for debugging scripts. To debug another scrip
t,
simply reload the script debugger page and start a new debugging session.

If you receive this message and you are in deployed-debugging mode, click Go Back . You
must then reload your script by clicking Debug Existing (see figure below).

If you are debugging in ad-hoc mode, click the Go Back button, click in the Debugger text
area, and re-type your code snippet.

(See Using the SuiteScript Debugger for information on deployed and ad-hoc debugging
modes.)

SuiteScript Debugger Metering and Permissions 360

SuiteScript Developer & Reference Guide

• There is a 10 minute global timeout on all scripts being debugged. This means that even
if you are performing user actions within the Debugger every two minutes, the Debugger
itself will timeout after 10 minutes.

SuiteScript Debugger Keyboard Shortcuts 361

SuiteScript Developer & Reference Guide

Chapter 55 SuiteScript Debugger Keyboard
Shortcuts

The following table lists the keyboard shortcuts that are enabled for all five debugger action
buttons. Your cursor must be inside the main Debugger text area for the keyboard shortcuts to
work.

Key Command

i Step Into

space Step Over

o Step Out

shift+space Continue

q Quit

d Debug Script (New)

a Debug Script (Existing)

r Re-run Script

SuiteScript Debugger Glossary 362

SuiteScript Developer & Reference Guide

Chapter 56 SuiteScript Debugger Glossary
Keyword Definition

Line Break Point User-defined line in source code where program halts execution

User Event Break Point User event possibly invokable during script execution where the program halts
execution

Watch A variable expression that will be monitored throughout the program's
execution in the current scope

Call Stack A stack (most recent on top) of all the active functions (and their local variables)
called up until the current line of execution

SuiteScript API Overview 363

SuiteScript Developer & Reference Guide

Chapter 57 SuiteScript API Overview
The SuiteScript API documentation is organized in a few different ways. Depending on how
you wish to access the information, see any of the following links:

• SuiteScript Functions – Organizes the entire SuiteScript API into functional categories.
Links to all functions and objects are provided.

• SuiteScript Objects – Defines all objects in the SuiteScript API

• SuiteScript API - Alphabetized Index – Provides an alphabetized list of all SuiteScript
functions and objects. If you prefer viewing APIs as an alpabetized list, click this link.

Important Things to Note:

• The SuiteScript API lets you programmatically extend NetSuite beyond the capabilities
offered through SuiteBuilder point-and-click customization. However, a sound
understanding of general NetSuite customization principles will help you when writing
SuiteScript. If you have no experience customizing NetSuite using SuiteBuilder, it is worth
seeing SuiteBuilder Overview.

• Most SuiteScript APIs pass record, field, sublist, tab, search filter, and search column IDs
as arguments. In the NetSuite Help Center, see SuiteScript Reference to learn how to access
all supported internal IDs.

• In your SuiteScript code, all record, field, sublist, tab, search join, search field, and search
column IDs must be in lowercase.

• If you are new to SuiteScript and have no idea how to get a script to run in your NetSuite
account, you should start here: SuiteScript - The Basics.

Important: SuiteScript does not support direct access to the NetSuite UI through the
Document Object Model (DOM). The NetSuite UI should only be accessed
using SuiteScript APIs.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2824008.html

SuiteScript Functions
SuiteScript Functions Overview

364

SuiteScript Developer & Reference Guide

Chapter 58 SuiteScript Functions

SuiteScript Functions Overview

Important: If you are not familiar with the SuiteScript API, we recommend you see
SuiteScript API Overview.

This documentation organizes all SuiteScript functions into the functional categories
listed below. Note that some APIs appear in more than one category. For example,
nlapiLookupField() appears in both the Field APIs and Search APIs categories, however it is
documented only once.

• Working with entire record object – see Record APIs

• Working with subrecords – see Subrecord APIs

• Working with fields on a record – see Field APIs

• Working with sublists on a record – see Sublist APIs

• Searching in NetSuite – see Search APIs

• Scheduling scripts to run at specified times – see Scheduling APIs

• Getting context information about a script, a user, an account – see Execution Context
APIs

• Building a NetSuite-looking user interface in a Suitelet – see UI Builder APIs

• Setting application navigation – see Application Navigation APIs

• Working with Date and String objects – see Date APIs

• Working with alternate time zones — see Time Zone APIs

• Working with currency – see Currency APIs

• Adding security to your application – see Encryption APIs

• Working with XML – see XML APIs

• Working with new or existing files – see File APIs

• Adding error handling – see Error Handling APIs

• Communicating to external systems from within NetSuite — see Communication APIs

• Configuring your NetSuite account - see Configuration APIs

• Interacting with the NetSuite Workflow (SuiteFlow) Manager - see SuiteFlow APIs

• Working with dashboard portlets - see Portlet APIs

SuiteScript Functions
SuiteScript Functions Overview

365

SuiteScript Developer & Reference Guide

• Working with NetSuite Analytics - see SuiteAnalytics APIs

• Changing Currently Logged-in User Credentials - see User Credentials APIs

• Working with the NetSuite Job Manager - see Job Manager APIs

Record APIs

Functions

nlapiAttachRecord(type, id, type2, id2, attributes)

nlapiCopyRecord(type, id, initializeValues)

nlapiCreateCSVImport()

nlapiCreateEmailMerger(templateId)

nlapiCreateRecord(type, initializeValues)

nlapiDeleteRecord(type, id)

nlapiDetachRecord(type, id, type2, id2, attributes)

nlapiGetNewRecord()

nlapiGetOldRecord()

nlapiGetRecordId()

nlapiGetRecordType()

nlapiLoadRecord(type, id, initializeValues)

nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

nlapiMergeTemplate(id, baseType, baseId, altType, altId, fields)

nlapiPrintRecord(type, id, mode, properties)

nlapiSubmitCSVImport(nlobjCSVImport)

nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

nlapiTransformRecord(type, id, transformType, transformValues)

nlapiVoidTransaction(transactionType, recordId)

Objects

nlobjCSVImport object and all methods

nlobjRecord object and all methods

Subrecord APIs

Functions

nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

nlapiCreateSubrecord(fldname)

nlapiEditCurrentLineItemSubrecord(sublist, fldname)

nlapiEditSubrecord(fldname)

nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

SuiteScript Functions
SuiteScript Functions Overview

366

SuiteScript Developer & Reference Guide

nlapiRemoveSubrecord(fldname)

nlapiViewCurrentLineItemSubrecord(sublist, fldname)

nlapiViewLineItemSubrecord(sublist, fldname, linenum)

nlapiViewSubrecord(fldname)

Objects

nlobjRecord object and its “subrecord-related” methods

nlobjSubrecord object and all methods

Field APIs

Functions

nlapiDisableField(fldnam, val)

nlapiGetField(fldnam)

nlapiGetFieldText(fldnam)

nlapiGetFieldTexts(fldnam)

nlapiGetFieldValue(fldnam)

nlapiGetFieldValues(fldnam)

nlapiInsertSelectOption(fldnam, value, text, selected)

nlapiLookupField(type, id, fields, text)

nlapiRemoveSelectOption(fldnam, value)

nlapiSetFieldText(fldname, txt, firefieldchanged, synchronous)

nlapiSetFieldTexts (fldname, txts, firefieldchanged, synchronous)

nlapiSetFieldValue(fldnam, value, firefieldchanged, synchronous)

nlapiSetFieldValues (fldnam, value, firefieldchanged, synchronous)

nlapiSubmitField(type, id, fields, values, doSourcing)

Objects

nlobjField object and all methods

nlobjRecord and all methods

nlobjSelectOption and all methods

Sublist APIs

Functions

nlapiCancelLineItem(type)

nlapiCommitLineItem(type)

nlapiDisableLineItemField(type, fldnam, val)

nlapiFindLineItemMatrixValue(type, fldnam, val, column)

nlapiFindLineItemValue(type, fldnam, val)

SuiteScript Functions
SuiteScript Functions Overview

367

SuiteScript Developer & Reference Guide

nlapiGetCurrentLineItemIndex(type)

nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

nlapiGetCurrentLineItemText(type, fldnam)

nlapiGetCurrentLineItemValue(type, fldnam)

nlapiGetCurrentLineItemValues(type, fldnam)

nlapiGetLineItemCount(type)

nlapiGetLineItemField(type, fldnam, linenum)

nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

nlapiGetLineItemText(type, fldnam, linenum)

nlapiGetLineItemValue(type, fldnam, linenum)

nlapiGetLineItemValues(type, fldname, linenum)

nlapiGetMatrixCount(type, fldnam)

nlapiGetMatrixField(type, fldnam, column)

nlapiGetMatrixValue(type, fldnam, column)

nlapiInsertLineItem(type, line)

nlapiInsertLineItemOption(type, fldnam, value, text, selected)

nlapiIsLineItemChanged(type)

nlapiRefreshLineItems(type)

nlapiRemoveLineItem(type, line)

nlapiRemoveLineItemOption(type, fldnam, value)

nlapiSelectLineItem(type, linenum)

nlapiSelectNewLineItem(type)

nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value, firefieldchanged, synchronous)

nlapiSetCurrentLineItemText(type, fldnam, text, firefieldchanged, synchronous)

nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous)

nlapiSetCurrentLineItemValues(type, fldnam, values, firefieldchanged, synchronous)

nlapiSetLineItemValue(type, fldnam, linenum, value)

nlapiSetMatrixValue(type, fldnam, column, value, firefieldchanged, synchronous)

Objects

nlobjSubList and all methods

Note: Also see Subrecord APIs for a list of functions that can be used to create and access a subrecord from
a sublist field.

Search APIs

Functions

nlapiCreateSearch(type, filters, columns)

SuiteScript Functions
SuiteScript Functions Overview

368

SuiteScript Developer & Reference Guide

nlapiLoadSearch(type, id)

nlapiLookupField(type, id, fields, text)

nlapiSearchDuplicate(type, fields, id)

nlapiSearchGlobal(keywords)

nlapiSearchRecord(type, id, filters, columns)

Objects

nlobjSearch and all methods

nlobjSearchColumn object and all methods

nlobjSearchFilter object and all methods

nlobjSearchResult and all methods

nlobjSearchResultSet and all methods

Scheduling APIs

Functions

nlapiScheduleScript(scriptId, deployId, params)

nlapiSetRecoveryPoint()

nlapiYieldScript()

Execution Context APIs

Functions

nlapiGetContext()

nlapiGetDepartment()

nlapiGetLocation()

nlapiGetRole()

nlapiGetSubsidiary()

nlapiGetUser()

nlapiLogExecution(type, title, details)

Objects

nlobjContext object and all methods

UI Builder APIs

Functions

nlapiCreateAssistant(title, hideHeader)

nlapiCreateForm(title, hideNavbar)

nlapiCreateList(title, hideNavbar)

SuiteScript Functions
SuiteScript Functions Overview

369

SuiteScript Developer & Reference Guide

nlapiCreateTemplateRenderer()

Objects

nlobjAssistant object and all methods

nlobjAssistantStep object and all methods

nlobjButton object and all methods

nlobjColumn object and all methods

nlobjField object and all methods

nlobjFieldGroup and all methods

nlobjForm object and all methods

nlobjList object and all methods

nlobjPortlet object and all methods

nlobjSubList object and all methods

nlobjTab object and all methods

nlobjTemplateRenderer object and all methods

Application Navigation APIs

Functions

nlapiRequestURL(url, postdata, headers, callback, httpMethod)

nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod)

nlapiResolveURL(type, identifier, id, displayMode)

nlapiSetRedirectURL(type, identifier, id, editmode, parameters)

Objects

nlobjRequest object and all methods

nlobjResponse object and all methods

Date APIs

Functions

nlapiAddDays(d, days)

nlapiAddMonths(d, months)

nlapiDateToString(d, format)

nlapiStringToDate(str, format)

Time Zone APIs

Functions

nlapiGetCurrentLineItemDateTimeValue(type, fieldId, timeZone)

SuiteScript Functions
SuiteScript Functions Overview

370

SuiteScript Developer & Reference Guide

nlapiGetDateTimeValue(fieldId, timeZone)

nlapiGetLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

nlapiSetCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

nlapiSetDateTimeValue(fieldId, dateTime, timeZone)

nlapiSetLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

Objects

nlobjRecord object and its “datetime time zone conversion” methods

Currency APIs

Functions

nlapiExchangeRate(sourceCurrency, targetCurrency, effectiveDate)

nlapiFormatCurrency(str)

Encryption APIs

Functions

nlapiEncrypt(s, algorithm, key)

XML APIs

Functions

nlapiEscapeXML(text)

nlapiSelectNode(node, xpath)

nlapiSelectNodes(node, xpath)

nlapiSelectValue(node, xpath)

nlapiSelectValues(node, path)

nlapiStringToXML(text)

nlapiValidateXML(xmlDocument, schemaDocument, schemaFolderId)

nlapiXMLToString(xml)

nlapiXMLToPDF(xmlstring)

File APIs

Functions

nlapiCreateFile(name, type, contents)

nlapiDeleteFile(id)

nlapiLoadFile(id)

nlapiSubmitFile(file)

SuiteScript Functions
SuiteScript Functions Overview

371

SuiteScript Developer & Reference Guide

Objects

nlobjFile object and all methods

Error Handling APIs

Functions

nlapiCreateError(code, details, suppressNotification)

Objects

nlobjError object and all methods

Communication APIs

Functions

nlapiOutboundSSO(id)

nlapiRequestURL(url, postdata, headers, callback, httpMethod)

nlapiSendCampaignEmail(campaigneventid, recipientid)

nlapiSendEmail(author, recipient, subject, body, cc, bcc, records, attachments, notifySenderOnBounce,
internalOnly, replyTo)

nlapiSendFax(author, recipient, subject, body, records, attachments)

Configuration APIs

Functions

nlapiLoadConfiguration(type)

nlapiSubmitConfiguration(name)

Objects

nlobjConfiguration object and all methods

SuiteFlow APIs

Functions

nlapiInitiateWorkflow(recordtype, id, workflowid, initialvalues)

nlapiInitiateWorkflowAsync(recordType, id, workflowId, initialValues)

nlapiTriggerWorkflow(recordtype, id, workflowid, actionid, stateid)

Portlet APIs

Functions

nlapiRefreshPortlet()

nlapiResizePortlet()

SuiteScript Functions
Record APIs

372

SuiteScript Developer & Reference Guide

SuiteAnalytics APIs

Functions

nlapiCreateReportDefinition()

nlapiCreateReportForm(title)

Objects

nlobjPivotColumn object and all methods

nlobjPivotRow object and all methods

nlobjPivotTable object and all methods

nlobjPivotTableHandle object and all methods

nlobjReportColumn object and all methods

nlobjReportColumnHierarchy object and all methods

nlobjReportDefinition object and all methods

nlobjReportForm object and all methods

nlobjReportRowHierarchy object and all methods

User Credentials APIs

Function

nlapiGetLogin()

Objects

nlobjLogin object and all methods

Job Manager APIs

Function

nlapiGetJobManager(jobType)

Objects

nlobjJobManager object and all methods

nlobjDuplicateJobRequest and all methods

nlobjFuture and all methods

Record APIs
For an overview of NetSuite records, see the help topic Working with Records in SuiteScript.
For information about sourcing, as it pertains to working with records, see Understanding
Sourcing in SuiteScript.

All APIs listed below are in alphabetical order.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2939919.html

SuiteScript Functions
Record APIs

373

SuiteScript Developer & Reference Guide

• nlapiAttachRecord(type, id, type2, id2, attributes)

• nlapiCopyRecord(type, id, initializeValues)

• nlapiCreateCSVImport()

• nlapiCreateEmailMerger(templateId)

• nlapiCreateRecord(type, initializeValues)

• nlapiDeleteRecord(type, id)

• nlapiDetachRecord(type, id, type2, id2, attributes)

• nlapiGetNewRecord()

• nlapiGetOldRecord()

• nlapiGetRecordId()

• nlapiGetRecordType()

• nlapiLoadRecord(type, id, initializeValues)

• nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

• nlapiMergeTemplate(id, baseType, baseId, altType, altId, fields)

• nlapiPrintRecord(type, id, mode, properties)

• nlapiSubmitCSVImport(nlobjCSVImport)

• nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

• nlapiTransformRecord(type, id, transformType, transformValues)

• nlapiVoidTransaction(transactionType, recordId)

• nlobjCSVImport

• nlobjRecord

nlapiAttachRecord(type, id, type2, id2, attributes)

Attaches a single record to another record. The following attachment relationships are
supported:

• A Support Case to an Issue

• A Contact to any Customer, Partner, Vendor, Lead, Prospect, or Project

• A File to any transaction, item, activity, custom, or entity record

• A custom child record to a supported parent record

• An entity to a static entity group.

SuiteScript Functions
Record APIs

374

SuiteScript Developer & Reference Guide

This API is supported in client, user event, scheduled, and Suitelet scripts.

For more information about the unit cost associated with this API, see API Governance.

Parameters

• type {string} [required] - The record ID for the type of record to attach. For a list of
supported record types and their internal IDs, see SuiteScript Supported Records.

To attach a file from the file cabinet to a record, set type to file.

• id {int} [required] - The internalId of the record to attach.

• type2 {string} [required] - The record ID for the type of record that is receiving the
attachment.

To attach an entity to a static entity group, set type2 to entitygroup.

• id2 {int} [required] - The internalId of the record that is receiving the attachment.

• attributes {hashtable} [optional] - Name/value pairs containing attributes for the
attachment:

• contact->company record: role (the contact role id used for attaching contact to
customer/vendor/partner)

• customrecord*->parent record: field (the custom field used to link child custom
record to parent record)

Returns

• void

Since

• Version 2008.1

Example 1

The following example shows how to attach an Issue record to a Support Case record.

function testAttachment(request, response)
{
 //Define variables for nlapiAttachRecord
 var type = 'issue'; //Define record type for the record being attached
 var id = 372; //Ensure id2 is a valid ID. An error is thrown if id2 is not valid.
 var type2 = 'supportcase'; //Define the record type for the record being attached to
 var id2 = 2352; //Define the internal ID for this record
 var attributes = null;
 nlapiAttachRecord(type, id, type2, id2, attributes);
 response.write('done');
}

SuiteScript Functions
Record APIs

375

SuiteScript Developer & Reference Guide

Example 2

The following sample shows how to attach and detach a child custom record from a parent
record. Prior to running this script, a custom record (record id = customrecord15) was created.
Next, a field was added to the record (field id = custrecord_customer). The field was marked as
a select/list field (source list = customer) and the record is parent was set.

Note: This script assumes there is a record with id=1 and a customer with id=79.

var fld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')
nlapiAttachRecord('customrecord15', 1, 'customer', 79, {'field' : 'custrecord_customer'})
var newFld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')
nlapiDetachRecord('customrecord15', 1, 'customer', 79, {'field' : 'custrecord_customer'})
var finalFld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')

Example 3

This sample shows how to attach a file object to a record (in this case a JPEG to a Customer
record). Once attached, the file will appear on the Files tab of the Customer record.

Important: Although the file record name is referenced in nlapiAttachRecord,
you cannot yet reference file in other record-level APIs – such as
nlapiCreateRecord, nlapiSubmitRecord, or nlapiLoadRecord. The File (file)
record is not yet supported in this capacity.

var type = 'file'; // the record type for the record being attached
var id = 297; // the internal ID of an existing jpeg in the file cabinet
var type2 = 'customer'; // the record type for the record being attached to
var id2 = 406; // this is the internal ID for the customer
var attributes = null;
nlapiAttachRecord(type, id, type2, id2, attributes)

Back to Record APIs | Back to SuiteScript Functions

nlapiCopyRecord(type, id, initializeValues)

Initializes a new record using field data from an existing record. Note that this API simply
creates a new instance of another record. After making changes to the copy, you must
submit the copy (which is considered as a new record) to the database for your changes to be
committed to NetSuite.

This API is supported in all script types. See API Governance for the unit cost associated with
this API.

Parameters

• type {string} [required] - The record internal ID name. For a list of supported record types
and their internal IDs, see SuiteScript Supported Records in the NetSuite Help Center.

SuiteScript Functions
Record APIs

376

SuiteScript Developer & Reference Guide

• id {int} [required] - The internalId for the record. If you are unsure how to find a record's
internalId, see Showing Record and Field IDs in Your Account.

• initializeValues {Object} [optional] - Contains an array of name/value pairs of defaults
to be used during record initialization. For a list of record initialization types and the
values they can take, see Record Initialization Defaults in the NetSuite Help Center.

Returns

• An nlobjRecord object of a copied record

Example

The following example initializes a new partner record from an existing one.

var partner = nlapiCopyRecord('partner', 20)
partner.setFieldValue('entityid', 'New Partner')

Back to Record APIs | Back to SuiteScript Functions

nlapiCreateCSVImport()

Initializes a new record and returns an nlobjCSVImport object. You can then use the
methods available on the returned record object to populate the object with the desired
information. Next, you can pass this object to nlapiSubmitCSVImport(nlobjCSVImport),
which asynchronously imports the data from the returned object into NetSuite.

Note that this API cannot be used to import data that is imported by (2-step) assistants in the
UI, because these import types do not support saved import maps. This limitation applies to
budget, single journal entry, single inventory worksheet, project tasks, and Web site redirects
imports.

Warning: This API is only supported for bundle installation scripts, scheduled scripts, and
RESTlets. If you attempt to execute this API in another type of script, an error is
returned.

Parameters

• None

Returns

• An nlobjCSVImport object to be passed as a parameter to
nlapiSubmitCSVImport(nlobjCSVImport).

Since

• Version 2012.2

SuiteScript Functions
Record APIs

377

SuiteScript Developer & Reference Guide

Examples

This sample uses a script ID to reference the import mapping and raw string for CSV data:

var mappingFileId = "CUSTIMPORTjob1"; //using script id of Saved CSV Import
var primaryFileAsString = "company name,isperson,subsidiary,externalid\ncompanytest001,FALSE,P
arent Company,companytest001";

var job = nlapiCreateCSVImport();
job.setMapping(mappingFileId);
job.setPrimaryFile(primaryFileAsString);
job.setOption("jobName", "job1Import");

//returns the internal id of the new job created in workqueue
var jobId = nlapiSubmitCSVImport(job);

This sample uses an internal ID to reference the import map and a CSV file internal ID to
reference CSV data:

var mappingFileId = 2; //using internal id of Saved CSV Import
var primaryFile = nlapiLoadFile(73); //using the internal id of the file stored in the File Cab
inet

var job = nlapiCreateCSVImport();
job.setMapping(mappingFileId);
job.setPrimaryFile(primaryFile);
job.setOption("jobName", "job2Import");

//returns the internal id of the new job created in workqueue
var jobId = nlapiSubmitCSVImport(job);

This sample, which is a multi-file import, uses a script ID to reference the import map
and CSV file internal IDs to reference CSV data, and provides a sublist identifier in the
setLinkedFile(sublist, file)method:

var mappingFileId = "CUSTIMPORTentityMultiFile";

var job = nlapiCreateCSVImport();
job.setMapping(mappingFileId);

//uploaded to File Cabinet <multifile_entity_primary.csv> with internal Id = 73
job.setPrimaryFile(nlapiLoadFile(73));

//uploaded to File Cabinet <multifile_entity_cust_address.csv> with internal Id = 74
job.setLinkedFile("addressbook", nlapiLoadFile(74));
job.setOption("jobName", "test_ImportMultiFileTransactionRecord-");

var jobId = nlapiSubmitCSVImport(job);

SuiteScript Functions
Record APIs

378

SuiteScript Developer & Reference Guide

For more details about the methods used in these samples, see nlobjCSVImport.

Back to Record APIs | Back to SuiteScript Functions

nlapiCreateEmailMerger(templateId)

With scriptable e-mail templates (Freemarker templates), you can create dynamic templates
for e-mail marketing campaigns and system e-mail. See the help topic Scriptable Templates for
additional information.

This API is called as the first step in performing a mail merge with an existing scriptable e-mail
template. The following record types are supported:

• Contact

• Case

• Customer

• Employee

• Partner

• Vendor

• All transaction types

• All custom records

Important: This function only supports scriptable email templates. It does not support
CRMSDK templates.

To perform a mail merge with a scriptable email template:

1. Use nlapiCreateEmailMerger(templateId) to create an nlobjEmailMerger object. The
function nlapiCreateEmailMerger(templateId) takes the record ID of a scriptable template
as an argument. The object nlobjEmailMerger encapsulates the scriptable template.

var emailMerger = nlapiCreateEmailMerger(<templateId>);

2. Use the nlobjEmailMerger set methods to designate the records to perform the mail merge
on.

emailMerger.setEntity(<entityType>, <entityId>);
emailMerger.setRecipient(<recipientType>, <recipientId>);
emailMerger.setSupportCase(<caseId>);
emailMerger.setTransaction(<transactionId>);
emailMerger.setCustomRecord(<recordType>, <recordId>);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3775087812.html

SuiteScript Functions
Record APIs

379

SuiteScript Developer & Reference Guide

3. Use the nlobjEmailMerger.merge() method to perform the mail merge. The merge()
method returns an nlobjMergeResult object that contains the subject and body of the e-
mail distribution.

Note: The nlobjEmailMerger.merge() method has a governance of 20 usage units.
The remaining APIs described here have no governance.

var mergeResult = emailMerger.merge();

4. Use the nlobjMergeResult methods to obtain the e-mail distribution’s subject and body in
string format.

var emailSubject = mergeResult.getSubject();
var emailBody = mergeResult.getBody();

Parameters

• templateId {number} [required] – Internal ID of the scriptable template you want to use.

Returns

• an nlobjEmailMerger object

Throws

• SSS_MERGER_ERROR_OCCURRED – Thrown if the email merger fails.

Note: Most input validation is performed once nlobjEmailMerger merge() is called.
Therefore most errors are thrown at that point in the script.

Since

Version 2015 Release 1

Back to Record APIs | Back to SuiteScript Functions

nlapiCreateRecord(type, initializeValues)

Initializes a new record and returns an nlobjRecord object containing all the default field data
for that record type. You can then use the methods available on the returned record object to
populate the record with the desired information.

The nlapiCreateRecord function must be followed by the nlapiSubmitRecord(record,
doSourcing, ignoreMandatoryFields) function before the record is actually committed to the
database.

This API is supported in all script types. See API Governance for the unit cost associated with
this API.

SuiteScript Functions
Record APIs

380

SuiteScript Developer & Reference Guide

Note: Values for all required fields must be provided or a newly instantiated record cannot
be submitted. See SuiteScript Supported Records in the NetSuite Help Center for
records that support SuiteScript, their fields, and whether the fields are required for
each record type. You can also refer to the NetSuite UI, which displays all required
fields in yellow. There may be additional required fields when custom forms are
used. Also, Note records cannot be created as standalone records. These records are
always associated with another record. Similarly, Message records require an author
and recipient to ensure that they are not created as standalone records.

Parameters

• type {string} [required] - The record internal ID name. For a list of supported record types
and their internal IDs, see SuiteScript Supported Records in the NetSuite Help Center.

• initializeValues {Object} [optional] - Contains an array of name/value pairs of defaults
to be used during record initialization. For a list of record initialization types and the
values they can take, see Record Initialization Defaults in the NetSuite Help Center.

Returns

• An nlobjRecord object of a new record

Throws

• SSS_INVALID_RECORD_TYPE

• SSS_TYPE_ARG_REQD

Example 1

The following example initializes a new Opportunity record.

var record = nlapiCreateRecord('opportunity')
var defaultstatus = record.getFieldValue('entitystatus')

Example 2

In the next example, the createTaskRecord function causes a new task record to be created.
This could be tied to an afterSubmit function of a user event and deployed to Opportunity
records so that each time an Opportunity is created, a task is automatically created.

Note: You must use the nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)
function in conjunction with nlapiCreateRecord for the new record to be saved to
the database.

function createTaskRecord()

SuiteScript Functions
Record APIs

381

SuiteScript Developer & Reference Guide

{
 var taskTitle = 'Follow up regarding new Opportunity';
 var record = nlapiCreateRecord('task');
 record.setFieldValue('title', taskTitle);
 id = nlapiSubmitRecord(record, true);
}

Example 3

This example shows how to create a Message record, set its fields, and then submit the record.

var message = nlapiCreateRecord('message');
message.setFieldValue('entity', ...)
message.setFieldValue('message', ...)
//... set all the necessary fields
var internalId = nlapiSubmitRecord(message);

Back to Record APIs | Back to SuiteScript Functions

nlapiDeleteRecord(type, id)

Use this API to delete an existing record. This API is supported in all script types. See API
Governance for the unit cost associated with this API.

Warning: Use caution when using the nlapiDeleteRecord function in SuiteScript. Records
deleted using nlapiDeleteRecord are permanently deleted from the NetSuite
database.

Parameters

• type {string} [required] - The record internal ID name. For a list of supported record types
and their internal IDs, see SuiteScript Supported Records in the NetSuite Help Center.

• id {int} [required] - The internalId for the record

Returns

• void

Throws

• SSS_INVALID_RECORD_TYPE

• SSS_TYPE_ARG_REQD

• SSS_INVALID_INTERNAL_ID

• SSS_ID_ARG_REQD

SuiteScript Functions
Record APIs

382

SuiteScript Developer & Reference Guide

Example 1

The following example deletes a specific task record in the system.

var id = nlapiDeleteRecord('task', 5000);

Example 2

In the next example a resultant record set from a customer saved search is deleted. Once the
search is performed, methods on the nlobjSearchResult object take the desired action. In this
example, the nlobjSearchResult.getRecordType and nlobjSearchResult.getId methods are used
to identify which records to delete.

function executeSavedSearch()
{
 var searchresults = nlapiSearchRecord('customer', 57, null, null);
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];
 nlapiDeleteRecord(searchresults[i].getRecordType(), searchresults[i].getId());
 }
}

Back to Record APIs | Back to SuiteScript Functions

nlapiDetachRecord(type, id, type2, id2, attributes)

Use this API to detach a single record from another record. The following detach relationships
are supported:

• Issue detached from Support Case

• Contact detached from Customer|Partner|Vendor|Lead|Prospect|Project

• File detached from any transaction, item, activity, custom, or entity record

• Custom child record detached from supported parent record

• Entity detached from a static entity group. Note that if detaching an entity from a static
entity group, you must specify entitygroup as the internal ID for the type2 argument (see
below).

This API is supported in client, user event, scheduled, portlet, and Suitelet scripts. See API
Governance for the unit cost associated with this API.

Parameters

• type {string} [required] - The record internal ID name for the record being detached. For
a list of record names, see the column called “Record Internal ID” in SuiteScript Supported
Records.

SuiteScript Functions
Record APIs

383

SuiteScript Developer & Reference Guide

• id {int} [required] - The record internalId for the record being detached

• type2 {string} [required] - The record internal ID name for the record being detached
from. Note that if detaching an entity from a static entity group, the internal ID for the
entity group record type is entitygroup.

• id2 {int} [required] - The record internalId for the record being detached from

• attributes {hashtable} [optional] - Name/value pairs containing attributes for the
attachment:

• customrecord*->parent record: field (the custom field used to link child custom
record to parent record)

Returns

• void

Since

• Version 2008.1

Example 1

The following example shows how to detach an Issue record from a Support Case record.

function testDetach(request, response)
{
//Define variables for nlapiDetachRecord
var type = 'issue'; //Define the record type for the record being detached
var id = 2352; //Define the internal ID for this record
var type2 = 'supportcase'; //Define record type for the record being detached from
var id2 = 372; //Ensure id2 is a valid ID. An error is thrown if id2 is not valid.
var attributes = null;
nlapiDetachRecord(type, id, type2, id2, attributes)
response.write('done');
}

Example 2

The following sample shows how to attach and detach a child custom record from a parent
record. Prior to running this script, a custom record (record id = customrecord15) was created.
Next, a field was added to the record (field id = custrecord_customer). The field was marked as
a select/list field (source list = customer) and the record is parent was set.

Note: This script assumes there is a record with id=1 and a customer with id=79.

var fld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')
nlapiAttachRecord('customrecord15', 1, 'customer', 79, {'field' : 'custrecord_customer'})
var newFld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')

SuiteScript Functions
Record APIs

384

SuiteScript Developer & Reference Guide

nlapiDetachRecord('customrecord15', 1, 'customer', 79, {'field' : 'custrecord_customer'})
var finalFld = nlapiLookupField('customrecord15', 1, 'custrecord_customer')

Back to Record APIs | Back to SuiteScript Functions

nlapiGetNewRecord()

Available in beforeLoad, beforeSubmit, and afterSubmit user event scripts. You are not allowed
to submit the current or previous record returned by nlapiGetNewRecord.

When triggered by an inline edit event (type == xedit), this function only returns the field and
sublist line item values that were edited. For all other triggers, nlapiGetNewRecord returns all
record object values.

Returns

• An nlobjRecord containing all the values being used for a write operation

Back to Record APIs | Back to SuiteScript Functions

nlapiGetOldRecord()

Available in beforeLoad, beforeSubmit, and afterSubmit user event scripts. You are not allowed
to submit the current or previous record returned by nlapiGetOldRecord.

Returns

• An nlobjRecord containing all the values for the current record prior to the write
operation

Back to Record APIs | Back to SuiteScript Functions

nlapiGetRecordId()

Use this API to retrieve the internalId of the current record in a user event script. This API is
available in client and user event scripts only.

Returns

• The integer value of the record whose form the user is currently on, or for the record that
the current user event script is executing on. Note that the value of -1 is returned if there is
no current record or the current record is a new record.

Back to Record APIs | Back to SuiteScript Functions

SuiteScript Functions
Record APIs

385

SuiteScript Developer & Reference Guide

nlapiGetRecordType()

Use this API to retrieve the record type internal ID of the current record in a user event script
or a client script. If there is no current record type, the value of null will be returned.

Returns

• The record type internal ID as a string. Example return values are:

• salesorder for a script executed on a Sales Order record

• customer for a script executed on a Customer record

• promotioncode for a script executed on the Promotion record

Back to Record APIs | Back to SuiteScript Functions

nlapiLoadRecord(type, id, initializeValues)

Loads an existing record from the system and returns an nlobjRecord object containing all the
field data for that record. You can then extract the desired information from the loaded record
using the methods available on the returned record object. This API is a core API. It is available
in both client and server contexts.

This API is supported in all script types. See API Governance for the unit cost associated with
this API.

Important: Only records that support SuiteScript can be loaded using this API. In
NetSuite Help Center, see SuiteScript Supported Records for a list of records
that support SuiteScript. Also be aware that if a particular record instance has
been locked by the Lock Record Action workflow action, you will be unable to
load the record using the nlapiLoadRecord API.

Note that when using this API, you can:

• set the type parameter to 'inventoryitem' to load the following types of item records:
inventoryitem, lotnumberedinventoryitem, serializedinventoryitem.

• set the type parameter to 'assemblyitem' to load the following types of item records:
assemblyitem, lotnumberedassemblyitem, serializedassemblyitem.

• set the type parameter to 'customer' to load the following types of entity records: customer,
lead, prospect.

• set the type parameter to ‘usereventscript’, ‘suitelet’, ‘scheduledscript’, ‘clientscript’, ‘restlet’,
‘massupdatescript’, ‘bundleinstallationscript’, ‘workflowactionscript’, or ‘portlet’ to load
script records.

• set the type parameter to ‘scriptdeployment’ to load script deployment records.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2743672.html

SuiteScript Functions
Record APIs

386

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] - The record internal ID name. This parameter is case-insensitive.
In the NetSuite Help Center, see SuiteScript Supported Records. Use the values listed in the
column “Record Internal ID”.

• id {int} [required] - internalId for the record, for example 555 or 78.

• initializeValues {Object} [optional] - Contains an array of name/value pairs of defaults
to be used during record initialization. For a list of record initialization types and the
values they can take, see Record Initialization Defaults in the NetSuite Help Center.

Returns

• An nlobjRecord object of an existing NetSuite record. This function returns the record
object exactly as the record appears in the system. Therefore, in beforeLoad user event
scripts, if you attempt to change a field and load the record simultaneously, the change will
not take effect.

Throws

• SSS_INVALID_RECORD_TYPE

• SSS_TYPE_ARG_REQD

• SSS_INVALID_INTERNAL_ID

• SSS_ID_ARG_REQD

Example 1

The following example loads a customer record from the system. Once the record is
loaded, the script uses the nlobjRecord.getFieldValue method to return the value of the
phone field. Finally, the number of line items on the Address sublist are returned using the
nlobjRecord.getLineItemCount method.

var record = nlapiLoadRecord('customer', 100)
var phone = record.getFieldValue('phone')
var numberOfAddresses = record.getLineItemCount('addressbook');

Example 2

In the next example, the search described in the section on nlapiSearchRecord(type, id, filters,
columns) is performed, but each search result object is loaded using the nlapiLoadRecord(type,
id, initializeValues) function. Then the getRecordType() and getId() nlobjRecord methods are
used to retrieve specific information about each record.

function executeSearch()
{

SuiteScript Functions
Record APIs

387

SuiteScript Developer & Reference Guide

 var rec = '';
 var searchresults = nlapiSearchRecord('customer', null, null, null);
 for (var i = 0; i < Math.min(500, searchresults.length); i++)
 {
 var record = nlapiLoadRecord(searchresults[i].getRecordType(),
 searchresults[i].getId());
 rec = rec + record.getRecordType() ;
 rec = rec + ' -Record ID = ' + record.getId();
 }
 nlapiSendEmail(312, 312, 'customerRecordLoaded', rec, null);
}

Back to Record APIs | Back to SuiteScript Functions

nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

THIS API HAS BEEN DEPRECATED

This API is deprecated as of NetSuite Version 2015 Release 1. This function will no longer be
supported as of Version 2016 Release 1.

Important: This API only supports CRMSDK templates. CRMSDK templates are
deprecated as of Version 2015 Release 1. You can convert your existing
CRMSDK templates to scriptable templates within the UI.

Version 2015 Release 1 included a new set of APIs that you must use with scriptable templates.
For more information on these APIs, see nlapiCreateEmailMerger(templateId). Note that
nlapiMergeRecord(id, baseType, baseId, altType, altId, fields) does not support scriptable
templates. If your existing scripts use nlapiMergeRecord(id, baseType, baseId, altType, altId,
fields), you must do the following before your NetSuite account is upgraded to Version 2016
Release 1:

• Within the UI, convert your scripted CRMSDK templates to scriptable templates. See
the help topic Converting CRMSDK Templates to Scriptable Templates for additional
information.

• After your templates are converted, rewrite all applicable scripts, using the new Scriptable
Email Template APIs. Use nlapiCreateEmailMerger(templateId) as your starting point.

Deprecated Since

• Version 2015 Release 1

Example

The following sample is a user event script that is deployed on an afterSubmit event. This
script applies to the Customer record type.

function afterSubmit(type)
{

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4038074365.html

SuiteScript Functions
Record APIs

388

SuiteScript Developer & Reference Guide

var newRec = nlapiGetNewRecord();
var senderInfo = nlapiGetContext();
var mailRec = nlapiMergeRecord(1, 'customer', newRec.getId());
var records = new Object();
records['entity'] = newRec.getId();
nlapiSendEmail(senderInfo.getUser(), newRec.getFieldValue('email'), mailRec.getName(),
 mailRec.getValue(), null, null, records);
}

Back to Record APIs | Back to SuiteScript Functions

nlapiMergeTemplate(id, baseType, baseId, altType, altId, fields)

THIS API HAS BEEN DEPRECATED

This API is deprecated as of NetSuite Version 2008 Release 1. However, it continues to be
supported. This function will not be enhanced in future versions of NetSuite.

Important: This API only supports CRMSDK templates. CRMSDK templates are
deprecated as of Version 2015 Release 1. You can convert your existing
CRMSDK templates to scriptable templates within the UI. See the help
topic Converting CRMSDK Templates to Scriptable Templates for addition
information.

Scriptable templates are not supported with nlapiMergeRecord. Once
your CRMSDK templates are converted, update all applicable scripts
with nlapiCreateEmailMerger(templateId), nlobjEmailMerger, and
nlobjMergeResult. Use nlapiCreateEmailMerger(templateId) as your starting
point.

Deprecated Since

• Version 2008 Release 1

Example

function mergeDoc(request, response)
{
 var external_fields = new Array();
 external_fields['NLCUSTOM'] = 'Custom Text'+ nlapiGetContext().getCompany();

 var document = nlapiMergeTemplate(9, 'customer',

 request.getParameter('entity') == null ? '76' :
 request.getParameter('entity'), null, null, external_fields);

 response.setContentType('WORD')
 response.write(document);
}

Back to Record APIs | Back to SuiteScript Functions

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4038074365.html

SuiteScript Functions
Record APIs

389

SuiteScript Developer & Reference Guide

nlapiPrintRecord(type, id, mode, properties)

Returns an nlobjFile object containing the PDF or HTML document. This API is supported in
user event, scheduled, and Suitelet scripts.

Note: There is a 5MB limitation to the size of the file that can be accessed using this API.

There are two primary use cases for nlapiPrintRecord:

1. Send email or fax attachments using either nlapiSendEmail(author, recipient, subject,
body, cc, bcc, records, attachments, notifySenderOnBounce, internalOnly, replyTo) or
nlapiSendFax(author, recipient, subject, body, records, attachments). See Example 1 and
Example 2.

For example, you can create a PDF or HTML object of a transaction or statement and
then send the object as an attachment. This would be useful when sending out monthly
collections notices for customers with overdue invoices.

2. Stream PDF/HTML documents to the server (for example, to maintain an archive of
statement/transactions on your server). Example 3.

Important: nlapiPrintRecord is not supported in client scripting. This is a server-
side-only API. Also note that this function does not send transactions or
statements to a printer to be printed. It also does not launch Adobe Acrobat if
the mode specified is PDF.

If the Advanced PDF/HTML Templates feature is enabled in your account,
this function supports the use of advanced templates. If you associate an
advanced template with the custom form saved for a transaction and use
this API to print the transaction, the advanced template is used to format
the printed transaction. For details about this feature, see the help topic
Advanced PDF/HTML Templates (Beta).

Parameters

• type {string} [required] - Print operation type. Can be any of the following:

• TRANSACTION

• STATEMENT

• PACKINGSLIP

• PICKINGTICKET

• BILLOFMATERIAL

• id {int} [required] - The internal ID of the transaction or statement being printed

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2862640.html

SuiteScript Functions
Record APIs

390

SuiteScript Developer & Reference Guide

• mode {string} [optional] - The output type: PDF|HTML|DEFAULT. DEFAULT uses the
user/company preference for print output

• properties {hashtable} [optional] - Name/value pairs used to configure the print
operation.

• TRANSACTION: formnumber

• STATEMENT: openonly (T|F), startdate, statementdate, formnumber

• PACKINGSLIP: formnumber, itemfulfillment

• PICKINGTICKET: formnumber, shipgroup, location

Returns

• nlobjFile object

Since

• Version 2008.1

Example 1

In the following sample a PDF object is created from a specific transaction. This object is then
sent as an attachment using nlapiSendEmail.

function printTrans()
{
//print the transaction to a PDF file object
var file = nlapiPrintRecord('TRANSACTION', 1799, 'DEFAULT', null);

//send the PDF as an attachment
nlapiSendEmail('-5', 'kwolfe@netsuite.com', 'Incoming Transaction', 'Please see attached transa
ction', null, null, null, file);
}

Example 2

In this sample a PDF object is created from a specific statement. This object is then sent as an
attachment using nlapiSendEmail.

function printStatement()
{
//create an array to set the STATEMENT properties
var sdate = new Array();
sdate.startdate = '02/07/2008';
sdate.statementdate = '03/01/2008';
sdate.openonly = 'T';

//print the statement to a PDF file object
var file1 = nlapiPrintRecord('STATEMENT', 87, 'PDF', sdate);

//send the PDF as an attachment

SuiteScript Functions
Record APIs

391

SuiteScript Developer & Reference Guide

nlapiSendEmail('-5', 'kwolfe@netsuite.com', 'Regular Statement', 'Please see attached statment'
, null, null, null, file1);
}

Example 3

This sample shows how to create a PDF of a particular transaction. First the file variable is set
to a PDF file object. This PDF is then returned as an nlobjResponse object. The response object
content type is set to PDF (using the nlobjFile.getType method). Finally, the output of the
response object is written to the server.

var file = nlapiPrintRecord('TRANSACTION', 1799, 'PDF', null);
response.setContentType(file.getType());
response.write(file.getValue());

Back to Record APIs | Back to SuiteScript Functions

nlapiSubmitCSVImport(nlobjCSVImport)

Submits a CSV import job to asynchronously import record data into NetSuite. This API can be
used to:

• Automate standard record data import for SuiteApp installations, demo environments,
and testing environments.

• Import data on a schedule using a scheduled script.

• Build integrated CSV imports with RESTlets.

When the API is executed, the import job is added to the queue. The progress of an import job
can be viewed at Setup > Import/Export > View CSV Import Status. For details, see the help
topic Checking CSV Import Status.

Note: CSV Imports performed within scripts are subject to the existing application limit of
25,000 records.

Executing this API consumes 100 governance units.

Note that this API cannot be used to import data that is imported by (2-step) assistants in the
UI, because these import types do not support saved import maps. This limitation applies to
budget, single journal entry, single inventory worksheet, project tasks, and Web site redirects
imports.

Also note that this API only has access to the field mappings of a saved import map; it does
not have access to advanced import options defined in the Import Assistant, such as multi-
threading and multiple queues. Even if you set options to use multiple threads or queues for an
import job and then save the import map, these settings are not available to this API. When this
API submits a CSV import job based on the saved import map, a single thread and single queue
are used.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N350581.html

SuiteScript Functions
Record APIs

392

SuiteScript Developer & Reference Guide

Warning: This API is only supported for bundle installation scripts, scheduled scripts, and
RESTlets. If you attempt to execute this API in another type of script, an error is
returned.

Parameters

• nlobjCSVImport [required] - nlobjCSVImport object with methods to set the following:
saved import map, primary file, linked file(s) (optional), import job name (optional).

Returns

• Job ID of the import (which is also the identifier for the CSV response file)

Since

• Version 2012.2

Throws

This API throws errors resulting from inline validation of CSV file data before the import of
data begins (the same validation that is performed between the mapping step and the save step
in the Import Assistant). Any errors that occur during the import job are recorded in the CSV
response file, as they are for imports initiated through the Import Assistant.

Examples

This sample uses a script ID to reference the import map and raw string for CSV data:

var mappingFileId = "CUSTIMPORTjob1"; //using script id of Saved CSV Import
var primaryFileAsString = "company name,isperson,subsidiary,externalid\ncompanytest001,FALSE,P
arent Company,companytest001";

var job = nlapiCreateCSVImport();
job.setMapping(mappingFileId);
job.setPrimaryFile(primaryFileAsString);
job.setOption("jobName", "job1Import");

//returns the internal id of the new job created in workqueue
var jobId = nlapiSubmitCSVImport(job);

This sample uses an internal ID to reference the import map and a CSV file internal ID to
reference CSV data:

var mappingFileId = 2; //using internal id of Saved CSV Import
var primaryFile = nlapiLoadFile(73); //using the internal id of the file stored in the File Cab
inet

var job = nlapiCreateCSVImport();

SuiteScript Functions
Record APIs

393

SuiteScript Developer & Reference Guide

job.setMapping(mappingFileId);
job.setPrimaryFile(primaryFile);
job.setOption("jobName", "job2Import");

//returns the internal id of the new job created in workqueue
var jobId = nlapiSubmitCSVImport(job);

This sample, which is a multi-file import, uses a script ID to reference the import map
and CSV file internal IDs to reference CSV data, and provides a sublist identifier in the
setLinkedFile(sublist, file)method:

var mappingFileId = "CUSTIMPORTentityMultiFile";

var job = nlapiCreateCSVImport();
job.setMapping(mappingFileId);

//uploaded to File Cabinet <multifile_entity_primary.csv> with internal Id = 73
job.setPrimaryFile(nlapiLoadFile(73));

//uploaded to File Cabinet <multifile_entity_cust_address.csv> with internal Id = 74
job.setLinkedFile("addressbook", nlapiLoadFile(74));
job.setOption("jobName", "test_ImportMultiFileTransactionRecord-");

var jobId = nlapiSubmitCSVImport(job);

For more details about the methods used in these samples, see nlobjCSVImport.

Back to Record APIs | Back to SuiteScript Functions

nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

Submits and commits new records or changes applied to an existing record and returns
the internalId for the committed record. The nlapiSubmitRecord function can be used in
conjunction with nlapiCreateRecord or nlapiLoadRecord to create or modify a record related
to the current one.

This API is supported in all script types. See API Governance for the unit cost associated with
this API.

Important: When using nlapiSubmitRecord in a user event script, it is possible that the
related record modified or created by the script is committed to the database
but the actual record initiating the script fails on save. To avoid this scenario,
SuiteScripts that cause actions on records other than the current one should
be set to run afterSubmit.

Parameters

• record {nlobjRecord} [required] - nlobjRecord object containing the data record

SuiteScript Functions
Record APIs

394

SuiteScript Developer & Reference Guide

• doSourcing {boolean} [optional] - If not set, this argument defaults to false, which
means that dependent field values are not sourced. If set to true, sources dependent field
information for empty fields. Be aware that doSourcing takes the values of true or false,
not T or F. For more information on sourcing, see Understanding Sourcing in SuiteScript
in the NetSuite Help Center.

Important: When working with records in dynamic mode, the value you provide
for doSourcing will be ignored. Field values will be sourced regardless
of whether you set doSourcing to true or to false. For information on
dynamic scripting, see the help topic Working with Records in Dynamic
Mode.

• ignoreMandatoryFields {boolean} [optional] - Disables mandatory field validation for
this submit operation. If set to true, ignores all standard and custom fields that were
made mandatory through customization. All fields that were made mandatory through
company preferences are also ignored.

Important: Use the ignoreMandatoryFields argument with caution. This argument
should be used mostly with Scheduled scripts, rather than User Event
scripts. This ensures that UI users do not bypass the business logic
enforced through form customization.

Returns

• An integer value of the committed record's internal ID (for example, 555, 21, or 4).

Throws

• SSS_INVALID_RECORD_OBJ

• SSS_RECORD_OBJ_REQD

• SSS_INVALID_SOURCE_ARG

Example 1

The following example creates an estimate with two items.

var record = nlapiCreateRecord('estimate');
record.setFieldValue('entity', 79);
record.setFieldValue('memo', 'Estimate Memo');

record.setLineItemValue('item', 'item', 1, 21);
record.setLineItemValue('item', 'quantity', 1, 10);
record.setLineItemValue('item', 'price', 1, 1);
record.setLineItemValue('item', 'item', 2, 21);
record.setLineItemValue('item', 'quantity', 2, 5);
record.setLineItemValue('item', 'price', 2, 2);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

SuiteScript Functions
Record APIs

395

SuiteScript Developer & Reference Guide

var id = nlapiSubmitRecord(record, true);

Example 2

Expanding on the Example 2 in nlapiCreateRecord(type, initializeValues), the
createTaskRecord function now causes a new task record to be created and submitted. This
could be tied to an afterSubmit function of a user event and deployed to Opportunity records
so that each time an Opportunity is created, a task is automatically created.

function createTaskRecord()
{
 var taskTitle = 'Follow up regarding new Opportunity';
 var record = nlapiCreateRecord('task');
 record.setFieldValue('title', taskTitle);
 id = nlapiSubmitRecord(record, true);
}

Understanding Sourcing in SuiteScript

Important: If you are working with a record in dynamic mode, the following information
does not apply. When submitting a record while in dynamic mode, the
doSourcing argument is ignored. Whether you set doSourcing to true or to
false, all field values will be sourced. For information on dynamic scripting,
see the help topic Working with Records in Dynamic Mode.

When submitting a record in non-dynamic mode, you can retain full control over the data that
is written to the system by setting doSourcing to false, or you can accept sourcing values from
NetSuite by setting doSourcing to true. When set to true, fields normally dependent on values
from parent fields are automatically pre-populated.

Some advantages to setting doSourcing to true include:

• Reduces the number of fields that have to be filled out while retaining data integrity across
fields

• Ensures that field values reflect what would normally be submitted when using the
entering records via the UI.

Some advantages to setting doSourcing to false include:

• You retain full control over the data that is written to the system

• Reduces overhead incurred — with doSourcing set to true, all empty dependent fields on
the record (including supported sublists) must be processed

For example, in the UI when a customer is selected on an opportunity record, the
leadsource, partner, salesrep, and any custom sourced fields are automatically populated.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

SuiteScript Functions
Record APIs

396

SuiteScript Developer & Reference Guide

If creating an opportunity using SuiteScript with doSourcing set to false, the leadsource,
partner, salesrep, and any custom sourced fields not specifically set by the SuiteScript
code would be empty. Therefore, doSourcing must be set to true for these fields to
automatically populate with values based on the value of the customer field.

Back to Record APIs | Back to SuiteScript Functions

nlapiTransformRecord(type, id, transformType, transformValues)

Initializes a new record using data from an existing record of a different type and returns an
nlobjRecord. This function can be useful for automated order processing such as creating item
fulfillment transactions and invoices off of orders.

This API is supported in client, user event, scheduled, and Suitelet scripts. See API Governance
for the unit cost associated with this API.

For a list of supported transform types, see Supported Transformation Types.

Parameters

• type {string} [required] - The record internal ID name. In the NetSuite Help Center, see
SuiteScript Supported Records. The internal ID appears in the column called “Record
Internal ID”.

• id {int} [required] - The internalId for the record, for example 555 or 78.

• transformType {string} [required] - The record internal ID name of the record you are
transforming the existing record into

• transformValues {hashtable} [optional] - An array of field name -> value pairs containing
field defaults used for transformation. Note that you can also specify whether you want the
record transformation to occur in dynamic mode. For details, see the help topic Working
with Records in Dynamic Mode.

Important: When doing a sales order to item fulfillment transform on a sales order
that has Multiple Shipping Routes (MSR) enabled, you must specify a
shipgroup value. For example:

var itemFulfillment = nlapiTransformRecord('salesorder', id, 'itemfulfillment', { ' shipgroup '
 : 5 });
var fulfillmentId = nlapiSubmitRecord(itemFulfillment, true);

If you do not specify a value, the system does not know which items on the order are being
fulfilled. If a shipgroup value is not specified, the value 1 (for the first shipping group)
is defaulted. This means that only the items belonging to the first shipping group will be

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

SuiteScript Functions
Record APIs

397

SuiteScript Developer & Reference Guide

fulfilled when the sales order is transformed. For more information, see Multiple Shipping
Routes and SuiteScript in the NetSuite Help Center.

Returns

• An nlobjRecord object

Throws

• SSS_INVALID_URL_CATEGORY

• SSS_CATEGORY_ARG_REQD

• SSS_INVALID_TASK_ID

• SSS_TASK_ID_REQD

• SSS_INVALID_INTERNAL_ID

• SSS_INVALID_EDITMODE_ARG

Example 1

The following example uses nlapiTransformRecord to create an item fulfillment record from an
existing sales order.

var itemfulfillment = nlapiTransformRecord('salesorder', 1500, 'itemfulfillment');
itemfulfillment.setFieldValue('trandate', nlapiDateToString(new Date()));

Example 2

The next script shows how to create an item receipt from a purchase order.

function transformPurchaseOrder()
{
 var fromrecord;
 var fromid;
 var torecord;
 var trecord;
 var qty;

 fromrecord = 'purchaseorder';
 fromid = 26 ; // Transform PO with ID = 26 ;
 torecord = 'itemreceipt';

 // Transform a record with given id to a different record type.
 // For example - from PO to Item Receipt
 // Get the object of the transformed record.
 trecord = nlapiTransformRecord(fromrecord, fromid, torecord);
 qty = trecord.getLineItemValue('item', 'quantity', 1);
 trecord.setLineItemValue('item', 'quantity', 1, '2');
 var idl = nlapiSubmitRecord(trecord, true);

 nlapiSendEmail(-5, -5, 'Transform Email' + 'Original Qty = ' + qty + ' ' + 'Record Created = '

SuiteScript Functions
Record APIs

398

SuiteScript Developer & Reference Guide

 + idl , null);
}

Example 3

This script shows how to create an assembly build record from an assembly item, as well as how
to set the department field before submitting the new record.

function transformAssemblyItem()
{
var fromRecord = 'assemblyitem';
var fromId = 328;
var toRecord = 'assemblybuild';

var record = nlapiTransformRecord(fromRecord, fromId, toRecord, {'quantity': '1', 'location': '
1'});
record.setFieldValue('department', '1');
var id = nlapiSubmitRecord(record, false);
}

Example 4

The following script shows how to create an assembly build record from an assembly item, as
well as how to set the quantity of the member items.

Important: The following sample references the Components (component) sublist,
which does not yet officially support SuiteScript. This sample is meant for
illustrative purposes only. It is meant only to show how to set the values for
nlapiTransformRecord(type, id, transformType, transformValues).

/* Assembly item name = Computer , Id = 328
2 Member components of Assembly item
Member 1 Name = CPU - Quantity = 2
Member 2 Name = Memory - Quantity = 4
*/

function transformAssemblyItem()
{
var fromRecord = 'assemblyitem';
var fromId = 328; // Id of the assembly item
var toRecord = 'assemblybuild';
var defaultV = new Array();

// Default quantity to build
defaultV.quantity = 1;
// Default location Id if Multi Location Inventory is enabled.
defaultV.location = '3';

var record = nlapiTransformRecord(fromRecord, fromId, toRecord, defaultV);
// Set quantity of member 1 to 4
record.setLineItemValue('component', 'quantity', 1, 4);
// Set quantity of member 2 to 8
record.setLineItemValue('component', 'quantity', 2, 8);
var id = nlapiSubmitRecord(record, false);

SuiteScript Functions
Record APIs

399

SuiteScript Developer & Reference Guide

}

Supported Transformation Types

Certain NetSuite record types cannot be created as standalone records. They are always
created from another record type because of relationships between the record types. The
nlapiTransfromRecord API can be used to create these types of records.

The following table shows the transformations that are supported in NetSuite:

Record Type Record Name Transform Type Transform Name (Target
Record)

assemblyitem Build/Assembly assemblybuild Assembly Build

assemblybuild Assembly Build assemblyunbuild Assembly Unbuild

cashsale Cash Sale cashrefund Cash Sale

customer Customer cashsale Cash Sale

customer Customer customerpayment Customer Payment

customer Customer estimate Quote

customer Customer invoice Invoice

customer Customer opportunity Opportunity

customer Customer salesorder Sales Order

employee Employee expensereport Expense Report

employee Employee timebill Time

estimate Quote cashsale Cash Sale

estimate Quote invoice Invoice

estimate Quote salesorder Sales Order

invoice Invoice creditmemo Credit Memo

invoice Invoice customerpayment Customer Payment

invoice Invoice returnauthorization Return Authorization

lead Lead opportunity Opportunity

opportunity Opportunity cashsale Cash Sale

opportunity Opportunity estimate Quote

opportunity Opportunity invoice Invoice

opportunity Opportunity salesorder Sales Order

prospect Prospect estimate Quote

prospect Prospect opportunity Opportunity

prospect Prospect salesorder Sales Order

purchaseorder Purchase Order itemreceipt Item Receipt

purchaseorder Purchase Order vendorbill Vendor Bill

SuiteScript Functions
Record APIs

400

SuiteScript Developer & Reference Guide

Record Type Record Name Transform Type Transform Name (Target
Record)

purchaseorder Purchase Order vendorreturnauthorization Vendor Return Authorization

returnauthorization Return
Authorization

cashrefund Cash Refund

returnauthorization Return
Authorization

creditmemo Credit Memo

returnauthorization Return
Authorization

itemreceipt Item Receipt

returnauthorization Return
Authorization

revenuecommitmentrever
sal

Revenue Commitment
Reversal

Note: The return
authorization must
be approved and
received for this
transform to work.

salesorder Sales Order cashsale Cash Sale

salesorder Sales Order invoice Invoice

salesorder Sales Order itemfulfillment Item Fulfillment

salesorder Sales Order returnauthorization Return Authorization

salesorder Sales Order revenuecommitment Revenue Commitment

transferorder Transfer Order itemfulfillment Item Fulfillment

transferorder Transfer Order itemreceipt Item Receipt

vendor Vendor purchaseorder Purchase Order

vendor Vendor vendorbill Vendor Bill

vendorbill Vendor Bill vendorcredit Vendor Credit

vendorbill Vendor Bill vendorpayment Vendor Payment

vendorbill Vendor Bill vendorreturnauthorization Vendor Return Authorization

vendorreturnauthorization Vendor Return
Authorization

itemfulfillment Item Fulfillment

vendorreturnauthorization Vendor Return
Authorization

vendorcredit Vendor Credit

workorder Work Order assemblybuild Assembly Build

workorder Work Order workorderclose Work Order Close

workorder Work Order workordercompletion Work Order Completion

workorder Work Order workorderissue Work Order Issue

Back to Record APIs | Back to SuiteScript Functions

SuiteScript Functions
Record APIs

401

SuiteScript Developer & Reference Guide

nlapiVoidTransaction(transactionType, recordId)

When you void a transaction, its total and all its line items are set to zero, but the transaction is
not removed from the system. NetSuite supports two types of voids: direct voids and voids by
reversing journal. See the help topic Voiding, Deleting, or Closing Transactions for additional
information.

nlapiVoidTransaction voids a transaction and then returns an id that indicates the type of void
performed. If a direct void is performed, nlapiVoidTransaction returns the ID of the record
voided. If a void by reversing journal is performed, nlapiVoidTransaction returns the ID of the
newly created voiding journal.

The type of void performed depends on the targeted account’s preference settings:

• If the Using Reversing Journals preference is disabled, nlapiVoidTransaction performs
a direct void. See the help topic Supported Transaction Types — Direct Void for a list of
transactions that support direct voids.

• If the Using Reversing Journals preference is enabled, nlapiVoidTransaction performs
a void by reversing journal. See the help topic Supported Transaction Types — Void by
Reversing Journal for a list of transactions that support voids by reversing journal.

Important: Once you successfully void a transaction, you can no longer make changes to
the transaction that impact the general ledger

This API is supported in the following script types:

• Client

• User Event

• Scheduled

• Suitelet

• RESTlet

• Workflow Action

The Governance on this API is 10.

Parameters

• transactionType {string} [required] — internal ID of the record type to be voided. See the
help topics Supported Transaction Types — Direct Void and Supported Transaction Types
— Void by Reversing Journal for a list of valid arguments.

• recordId {int} [required] — the internal ID of the specific record to be voided. See the help
topic How do I find a record's internal ID? for additional information.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N563543.html

SuiteScript Functions
Record APIs

402

SuiteScript Developer & Reference Guide

Returns

• An id that indicates the type of void performed

• If a direct void is performed, nlapiVoidTransaction returns the original recordId
value passed in.

• If a void by reversing journal is performed, nlapiVoidTransaction returns the ID of
the newly created voiding journal.

Throws

• CANT_VOID_TRANS — if you attempt to void a transaction that is linked to other
transactions (for example, customer payment)

• INVALID_RCRD_TYPE — if the transactionType argument passed is not valid

• RCRD_DSNT_EXIST — if the recordId argument passed is not valid

• THIS_TRANSACTION_HAS_ALREADY_BEEN_VOIDED — if you attempt to void a
transaction that has already been voided

• VOIDING_REVERSAL_DISALLWD — if you attempt to void a transaction with
inventory impact

Since

• Version 2013 Release 2

Example

The following code creates a new Cash Refund transaction and then voids the transaction. Note
that if the Using Reversing Journals preference is enabled, the void will not be successful since
Cash Refund is not a supported transaction type for voids by reversing journal. See the help
topics Supported Transaction Types — Direct Void and Supported Transaction Types — Void
by Reversing Journal.

var recordtype = ‘cashrefund’;
var rec = nlapiCreateRecord(recordtype);
rec.setFieldValue('entity', 48);
rec.setFieldValue('location', 1);
rec.setFieldValue('paymentmethod', 1);
rec.setLineItemValue('item', 'item', 1, 233);
rec.setLineItemValue('item', 'amount', 1, 150);
var id = nlapiSubmitRecord(rec);

var voidingId;
var errorMsg;
try {
 voidingId = nlapiVoidTransaction(recordtype, id);

SuiteScript Functions
Record APIs

403

SuiteScript Developer & Reference Guide

 }
 catch(e) {
 errorMsg = e;
 }

Supported Transaction Types — Direct Void

Supported Transaction Types for Direct Void Internal ID

Cash Refund cashrefund

Cash Sale cashsale

Credit Memo creditmemo

Customer Deposit customerdeposit

Customer Payment customerpayment

Customer Refund customerrefund

Estimate estimate

Expense Report expensereport

Intercompany Journal Entry intercompanyjournalentry

Invoice invoice

Journal Entry journalentry

Paycheck Journal paycheckjournal

Return Authorization returnauthorization

Sales Order salesorder

Transfer Order transferorder

Vendor Bill vendorbill

Vendor Credit vendorcredit

Vendor Payment vendorpayment

Vendor Return Authorization vendorreturnauthorization

Work Order workorder

Supported Transaction Types — Void by Reversing Journal

Supported Transaction Types for Void by
Reversing Journal

Internal ID

Check check

Vendor Payment vendorpayment

Customer Refund customerrefund

Custom Transaction customtransaction_nameOfCustomTransactionType

For more details, see Custom Transaction.

Back to Record APIs | Back to SuiteScript Functions

SuiteScript Functions
Subrecord APIs

404

SuiteScript Developer & Reference Guide

nlobjCSVImport

See nlobjCSVImport - defined in the section on Standard Objects.

Back to Record APIs | Back to SuiteScript Functions

nlobjRecord

See nlobjRecord - defined in the section on Standard Objects.

Back to Record APIs | Back to SuiteScript Functions

Subrecord APIs
For an overview of NetSuite subrecords, see Working with Subrecords in SuiteScript.

The subrecord APIs that contain “LineItem” are for creating and working with subrecords from
a sublist field on the parent record. The APIs that do not have “LineItem” in the name are for
creating and working with subrecords from a body field on the parent record.

Note that most of the functions listed below return an nlobjSubrecord object. After creating
or editing a subrecord, you must save your changes using the nlobjSubrecord.commit()
method. You must then save the subrecord's parent record using nlapiSubmitRecord(record,
doSourcing, ignoreMandatoryFields). If you do not commit both the subrecord and the parent
record, all changes to the subrecord are lost. For complete details on saving subrecords, see
Saving Subrecords Using SuiteScript.

All APIs listed below are in alphabetical order.

• nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

• nlapiCreateSubrecord(fldname)

• nlapiEditCurrentLineItemSubrecord(sublist, fldname)

• nlapiEditSubrecord(fldname)

• nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

• nlapiRemoveSubrecord(fldname)

• nlapiViewCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewLineItemSubrecord(sublist, fldname, linenum)

• nlapiViewSubrecord(fldname)

• nlobjSubrecord

• nlobjRecord - all methods with “subrecord” in method signature

SuiteScript Functions
Subrecord APIs

405

SuiteScript Developer & Reference Guide

nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to create a subrecord from a sublist field on the
parent record.

Important: This API should only be used in user event scripts on the parent record. Note,
however, this API is not supported in beforeLoad user event scripts. This API is
also not currently supported in form-level or record-level client SuiteScripts
associated with the parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Creating an Inventory Detail Subrecord in the NetSuite Help Center.

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiCreateSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to create a subrecord from a body field on the
parent record.

Important: This API should only be used in user event scripts on the parent record. Note,
however, this API is not supported in beforeLoad user event scripts. This API
is not supported in form-level or record-level client SuiteScripts deployed on
the parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

SuiteScript Functions
Subrecord APIs

406

SuiteScript Developer & Reference Guide

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Creating an Inventory Detail Subrecord in the NetSuite Help Center.

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiEditCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to edit a subrecord from a sublist field on the
parent record.

Important: This API should only be used in user event scripts on the parent record. This
API is not currently supported in form-level or record-level client SuiteScripts
associated with the parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

SuiteScript Functions
Subrecord APIs

407

SuiteScript Developer & Reference Guide

Since

• Version 2011.2

Example

See Editing an Inventory Detail Subrecord in the NetSuite Help Center.

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiEditSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to edit a subrecord from a body field on the
parent record.

Important: This API should only be used in user event scripts on the parent record. This
API is not currently supported in form-level or record-level client SuiteScripts
deployed on the parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Editing an Inventory Detail Subrecord in the NetSuite Help Center.

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to remove a subrecord from a sublist field on
the parent record.

SuiteScript Functions
Subrecord APIs

408

SuiteScript Developer & Reference Guide

Important: Client scripts deployed on the timesheet record cannot remove time entry
subrecords. This API is supported in client scripts for other subrecords
exposed to SuiteScript, but not for time entry.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• void

Since

• Version 2011.2

Example

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiRemoveSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to remove a subrecord from a body field on the
parent record.

This API is currently used only in the context of the / Numbered Inventory feature. For
information, see Using SuiteScript with / Numbered Inventory Management. Also see Working
with Subrecords in SuiteScript for general information on working with subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body field).

Returns

• void

Since

• Version 2011.2

SuiteScript Functions
Subrecord APIs

409

SuiteScript Developer & Reference Guide

Example

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiViewCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a sublist field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this API.

You can call this API when you want your script to read the nlobjSubrecord object of the
current sublist line you are on. After you get the nlobjSubrecord object, you can use regular
record API to access its values.

This API is currently used only in the context of the / Numbered Inventory feature. For
information, see Using SuiteScript with / Numbered Inventory Management. Also see Working
with Subrecords in SuiteScript for general information on working with subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiViewLineItemSubrecord(sublist, fldname, linenum)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a sublist field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this function.

SuiteScript Functions
Subrecord APIs

410

SuiteScript Developer & Reference Guide

You can call this API when you want to read the value of a line you are not currently on (or
have not selected). For example, if you are editing line 2 as your current line, you can call
nlapiViewLineItemSubrecord on line 1 to get the value of line 1.

This API is currently used only in the context of the / Numbered Inventory feature. For
information, see Using SuiteScript with / Numbered Inventory Management. Also see Working
with Subrecords in SuiteScript for general information on working with subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

• linenum {int} [required] - The line number for the sublist field. Note the first line number
on a sublist is 1 (not 0).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

Back to Subrecord APIs | Back to SuiteScript Functions

nlapiViewSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a body field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this function.

This API is currently used only in the context of the / Numbered Inventory feature. For
information, see Using SuiteScript with / Numbered Inventory Management. Also see Working
with Subrecords in SuiteScript for general information on working with subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

SuiteScript Functions
Field APIs

411

SuiteScript Developer & Reference Guide

Returns

• nlobjSubrecord

Since

• Version 2011.2

Back to Subrecord APIs | Back to SuiteScript Functions

nlobjSubrecord

See nlobjSubrecord - defined in the section on Standard Objects.

Back to Subrecord APIs | Back to SuiteScript Functions

nlobjRecord

See nlobjRecord - defined in the section on Standard Objects. If you have used SuiteScript to
load the parent record, you will use the “subrecord related” methods on nlobjRecord to create
and access a subrecord.

Field APIs
For an overview of NetSuite fields, see Working with Fields.

All APIs listed below are in alphabetical order.

• nlapiDisableField(fldnam, val)

• nlapiGetField(fldnam)

• nlapiGetFieldText(fldnam)

• nlapiGetFieldTexts(fldnam)

• nlapiGetFieldValue(fldnam)

• nlapiGetFieldValues(fldnam)

• nlapiInsertSelectOption(fldnam, value, text, selected)

• nlapiLookupField(type, id, fields, text)

• nlapiRemoveSelectOption(fldnam, value)

• nlapiSetFieldText(fldname, txt, firefieldchanged, synchronous)

• nlapiSetFieldTexts (fldname, txts, firefieldchanged, synchronous)

SuiteScript Functions
Field APIs

412

SuiteScript Developer & Reference Guide

• nlapiSetFieldValue(fldnam, value, firefieldchanged, synchronous)

• nlapiSetFieldValues (fldnam, value, firefieldchanged, synchronous)

• nlapiSubmitField(type, id, fields, values, doSourcing)

• nlobjField

nlapiDisableField(fldnam, val)

Sets the given field to disabled or enabled based on the value (true or false). This API is
supported in client scripts only.

Parameters

• fldnam {string} [required] - The internal ID name of the field to enable/disable

• val {boolean true || false} [required] - If set to true, the field is disabled. If set to false, it
is enabled.

Returns

• void

Back to Field APIs | Back to SuiteScript Functions

nlapiGetField(fldnam)

Use this function to obtain body field metadata. Calling this function instantiates the
nlobjField object, which then allows you to use the methods available to nlobjField to get
field metadata.

This API is supported in client and user event scripts only. Note, however, when nlapiGetField
is used in client scripts, the field object returned is read-only. The means that you can use
nlobjField getter methods in client scripts (to obtain metadata about the field), but you cannot
use nlobjField setter methods to set field properties.

Note: To obtain metadata for sublist fields, use nlapiGetLineItemField(type, fldnam,
linenum).

Parameters

• fldnam {string} [required] - The internal ID of the field.

Returns

• Returns an nlobjField object representing this field

SuiteScript Functions
Field APIs

413

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Example

The following script is attached to a Sales Order. The nlapiGetField API returns a nlobjField
object. This script then uses the field object methods getType and getLabel to return the field's
type and UI label.

function clientScript(type)
{
var field = nlapiGetField('memo'); // specifiy the internalId of the Memo field
alert(field.getType()); // returns text as the field type
alert(field.getLabel()); // returns Memo as the field UI label
}

Back to Field APIs | Back to SuiteScript Functions

nlapiGetFieldText(fldnam)

Use this API to get the text value (rather than the internal ID value) of a field. This API is
available in client and user event scripts only.

Note: This API is not supported on subrecords.

Parameters

• fldnam {string} [required] - The internal ID of the field.

Returns

• The string UI display name for a select field corresponding to the current selection

Example

The following client script reads the text value of the Department field. If the Department
field contains no value when the page loads, an alert is thrown telling users to select the
Service department (one of the text values in the Department dropdown field). If the page
loads and the department field defaults to Sales, an alert is thrown telling users to select
the Service department instead.

function pageInit_getFieldTextTest() {
var departId = nlapiGetFieldText('department');

 if (departId == '') {
 alert('Please specify the Service department');
 }

SuiteScript Functions
Field APIs

414

SuiteScript Developer & Reference Guide

 if (departId == 'Sales') {
 alert('Please select the Service department');
 }
}

Important: nlapiGetFieldText cannot be used on hidden fields or non select fields.

Back to Field APIs | Back to SuiteScript Functions

nlapiGetFieldTexts(fldnam)

Returns the display names for a multiselect field corresponding to the current selection. This
API is available in client and user event scripts only.

Parameters

• fldnam {string} [required] - The internal ID of the field whose display values are returned

Returns

• The display names for a multiselect field as an Array.

SuiteScript Functions
Field APIs

415

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Back to Field APIs | Back to SuiteScript Functions

nlapiGetFieldValue(fldnam)

Use this function to get the internal ID of a field. For example, if the customer Abe Simpson
appears in a field, this function will return 87, which represents the internal ID value of the
Abe Simpson customer record. Note that if you are getting the value of an inline check box, the
return value will be F if the field is unset.

This API is available in client and user event scripts only, and it not supported on subrecords.

Also be aware that this API is not supported during delete events. Calling nlapiGetFieldValue
on a record you are attempting to delete will return a user error.

Also note that if you are trying to return an array of values from a multiselect field, it is
recommended that you use the nlapiGetFieldValues(fldnam) API.

Finally, NetSuite recommends that you read the topic Getting Field Values in SuiteScript, which
addresses the rare instances in which the value returned by this API is inconsistent.

Parameters

• fldnam {string} [required] - The internal ID of the field.

Returns

• The string value of a field on the current record, or returns null if the field does not exist
on the record or the field is restricted.

Important: If you choose to use nlapiGetFieldValue(fldnam) to return values from
a multiselect field (rather than use the nlapiGetFieldValues(fldnam) API),
you must delimit multiselect values using CHR(5) or the ANSI control
character with code 5.

For example:

function stringToArray (str)
{
 //Use ChrCode 5 as a separator
 var strChar5 = String.fromCharCode(5);

 //Use the Split method to create an array,
 //where Chrcode 5 is the separator/delimiter
 var multiSelectStringArray = str.split(strChar5);

SuiteScript Functions
Field APIs

416

SuiteScript Developer & Reference Guide

 return multiSelectStringArray;
}

function displayResult ()
{
 var str = stringToArray(nlapiGetFieldValue('custentity8'));
 alert (str);
}

Back to Field APIs | Back to SuiteScript Functions

nlapiGetFieldValues(fldnam)

Use this function to get an array of internal ID values for a multiselect field.

This API is available in client and user event scripts only.

Parameters

• fldnam {string} [required] - The internal ID of the field. For a list of fields that are
supported in SuiteScript and their internal IDs, see the SuiteScript Reference Guide.

Returns

• The values of a multiselect field as an Array on the current record. Returns null if the field
does not exist on the record or the field is restricted.

Since

• Version 2009.1

Back to Field APIs | Back to SuiteScript Functions

nlapiInsertSelectOption(fldnam, value, text, selected)

Adds a select option to a select/multiselect field added via script. Note that this API can only be
used on select/multiselect fields that are added via the UI Objects API (for example, in Suitelets
or beforeLoad user events scripts).

Parameters

• fldnam {string} [required] - The internalId of the scripted field

• value {string | int} [required] - A unique value for the select option. Note that the datatype
for this argument will vary depending on the value that is set. For example, you may assign
numerical values such as 1, 2, 3 or string values such as option1, option2, option3.

SuiteScript Functions
Field APIs

417

SuiteScript Developer & Reference Guide

• text {string} [required] - The display name of the select option

• selected {boolean true || false} [optional] - If not set, this argument defaults to false. If
set to true, the select option becomes the default option.

Returns

• void

Back to Field APIs | Back to SuiteScript Functions

nlapiLookupField(type, id, fields, text)

Performs a search for one or more body fields on a record. This function supports joined-field
lookups. Note that the notation for joined fields is: join_id.field_name

Note: Long text fields are truncated at 4000 characters in search/lookup operations.

See API Governance for the unit cost associated with this API. This API is available in client,
user event, scheduled, portlet, and Suitelet scripts.

Parameters

• type {string} [required] - The record internal ID name. In the NetSuite Help Center, see
SuiteScript Supported Records. Record IDs are listed in the “Record Internal ID” column.

• id {int} [required] - The internalId for the record, for example 777 or 87.

• fields {string | string[]} [required] - Sets an array of column/field names to look up, or a
single column/field name. The fields parameter can also be set to reference joined fields
(see the third code sample).

• text {boolean} [optional] - If not set, this argument defaults to false and the internal ID of
the drop-down field is returned. If set to true, this argument returns the UI display name
for this field or fields (valid only for SELECT|IMAGE|DOCUMENT fields).

Returns

• {string | hashtable} - A single value (or text) or an associative Array of field name -> value
(or text) pairs depending on the field's argument.

Example 1

The following example is executed from an Opportunity afterSubmit User Event script and
returns salesrep detail information.

SuiteScript Functions
Field APIs

418

SuiteScript Developer & Reference Guide

var record = nlapiGetNewRecord();
var salesrep = record.getFieldValue('salesrep')
var salesrep_email = nlapiLookupField('employee', salesrep, 'email');
var salesrep_supervisor = nlapiLookupField('employee', salesrep, 'supervisor', true);

Example 2

The following example shows how to use the nlapiLookupField function to return an
array of field names. In this example, the email, phone, and name fields are returned from
a Customer record.

var fields = ['email', 'phone', 'entityid']
var columns = nlapiLookupField('customer', customer_id, fields);
var email = columns.email
var phone = columns.phone
var name = columns.entityid

Example 3

The following example returns the partner phone number for a customer specified by
the customer recordId. In this scenario, using a joined field lookup eliminates having to
perform two different nlapiLookupField calls (one for customer.partner and another for
partner.phone) to obtain the same information.

nlapiLookupField('customer', customer_id, 'partner.phone')

Back to Field APIs | Back to SuiteScript Functions

nlapiRemoveSelectOption(fldnam, value)

Removes a single select option from a select or multiselect field added via script. Note that this
API call can only be used on select/multiselect fields that are added via the UI Objects API (for
example on Suitelets or beforeLoad user event scripts).

Parameters

• fldnam {string} - The name of the scripted field

• value {string} - The value of the select option to be removed or null to delete all the
options

Returns

• void

Back to Field APIs | Back to SuiteScript Functions

SuiteScript Functions
Field APIs

419

SuiteScript Developer & Reference Guide

nlapiSetFieldText(fldname, txt, firefieldchanged, synchronous)

Sets the value of a select field on the current record using the UI display name. This API can be
used in user event beforeLoad scripts to initialize a field on new records or to initialize a non-
stored field. (Non-stored fields are those that have the Store Value preference unchecked on the
custom field page.)

This function is available in client and user event scripts only.

Parameters

• fldname {string} [required] - The name of the field being set

• txt {string} [required] - The display name associated with the value that the field is being
set to

• firefieldchanged {boolean} [optional] - If true, then the fieldchange script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Back to Field APIs | Back to SuiteScript Functions

nlapiSetFieldTexts (fldname, txts, firefieldchanged, synchronous)

Sets the values of a multi-select field on the current record using the UI display names. This
function is available in client and user event scripts only.

Parameters

• fldname {string} [required] - The name of the field being set

SuiteScript Functions
Field APIs

420

SuiteScript Developer & Reference Guide

• txts {string[]} [required] - The display names associated with the values that the field is
being set to

• firefieldchanged {boolean} [optional] - If true, then the fieldchange script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Since

• 2009.1

Back to Field APIs | Back to SuiteScript Functions

nlapiSetFieldValue(fldnam, value, firefieldchanged, synchronous)

Sets the value of a given body field. This API can be used in user event beforeLoad scripts to
initialize a field on new records or to initialize a non-stored field. (Non-stored fields are those
that have the Store Value preference unchecked on the custom field page.)

For client-side scripting, this API can be triggered by a PageInit client event trigger.

This API is available in client and user event scripts only.

Parameters

• fldnam {string} [required] - The internal ID name of the field being set

• value {string} [required] - The value the field is being set to.

SuiteScript Functions
Field APIs

421

SuiteScript Developer & Reference Guide

Note: Check box fields take the values of T or F, not true or false

• firefieldchanged {boolean} [optional] - If true, then the fieldchange script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Example

This sample shows the relationship between setting the value for a parent field and the sourcing
that occurs synchronously for a child field.

In this example the value for the Customer (entity) field gets set to a specific customer when
a Sales Order first loads. Once the value is set for entity, the value of the Sales Rep (salesrep
) field synchronously sources, and an alert is thrown to identify the Sales Rep. If the value of
the synchronous parameter had not been set to true for nlapiSetFieldValue, there is a possibility
that the alert would be thrown before it included the sales rep ID. With synchronous set to
true, the alert cannot be thrown until the salesrep field data has been correctly sourced from
the entity field.

//Set this script to run on a PageInit (page load) client event trigger
function setCustomer()
{
nlapiSetFieldValue('entity', 87, null, true);
}

//Set this script to run on a FieldChanged client trigger. The Sales Rep
//(salesrep) field sources its data based on the value of the entity field.
 function setSalesRep(type, fld)
{
 if (fld =='entity')
 {

SuiteScript Functions
Field APIs

422

SuiteScript Developer & Reference Guide

 var val = nlapiGetFieldValue('salesrep');
 alert('sales rep is ' + val);
 }
}

Back to Field APIs | Back to SuiteScript Functions

nlapiSetFieldValues (fldnam, value, firefieldchanged, synchronous)

Sets the value of a multiselect body field on a current record. This API can be used for user
event beforeLoad scripts to initialize fields on new records or non-stored fields. (Non-stored
fields are those that have the Store Value preference unchecked on the custom field page.

For client-side scripting, this API can be triggered by a PageInit client event trigger.

This API is available in client and user event scripts only.

Parameters

• fldnam {string} [required] - The internal ID name of the field being set

• value {string} [required] - The value the field is being set to (Array).

• firefieldchanged {boolean true || false} [optional] - If true, then the fieldchange script
for that field is executed. If no value is provided, this argument defaults to true.

Important: This parameter is available in client scripts only. See Using the Fire Field
Changed Parameter for more information.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Important: In client scripts, the synchronous parameter takes the value of true or
false, not T or F.

Returns

• void

Since

• 2009.1

SuiteScript Functions
Field APIs

423

SuiteScript Developer & Reference Guide

Example

var values = new Array() // define a new Array and set customers
values[0] ='80'; // 80 references the internal ID of first customer, Abe Simpson
values[1] = '81'; // 81 references the internal ID of the second customer, Abe Lincoln

// set values for the multiselect field called Customers Multiselect Field
nlapiSetFieldValues('custbody23', values);

Back to Field APIs | Back to SuiteScript Functions

nlapiSubmitField(type, id, fields, values, doSourcing)

Updates one or more body fields or custom fields on a record. This function can be used on any
record that supports inline editing and on any body field or custom field that supports inline
editing. Note that this function cannot be used to update sublist “line item” fields.

The nlapiSubmitFieldfunction is a companion function to nlapiLookupField(type, id, fields,
text).

nlapiSubmitField is available in client, user event, scheduled, portlet, and Suitelet scripts.

See API Governance for the unit cost associated with this API. Note that the metering for this
API is on a per-call basis, not per updated line. For example you can update five fields with one
call to nlapiSubmitField, and the entire operation will cost 10 units (if the API is executing on
a standard transaction record).

Important: In the NetSuite UI, users cannot set fields that are not inline editable.
SuiteScript, however, does let you set non inline editable fields using
nlapiSubmitField, but this is NOT the intended use for this API. See
Consequences of Using nlapiSubmitField on Non Inline Editable Fields to
learn about the increased governance cost of using this API on non inline
editable fields.

Parameters

• type {string} [required] - The record internal ID name of the record you are updating.

SuiteScript Functions
Field APIs

424

SuiteScript Developer & Reference Guide

• id {int} [required] - The internalId for the record, for example 777 or 87

• fields {string | string[]} [required] - An Array of field names being updated -or- a single
field name

• values {string | string[]} [required] - An Array of field values being updated -or- a single
field value

• doSourcing {boolean true || false} [optional] - If not set, this argument defaults to false
and field sourcing does not occur. If set to true, sources in dependent field information for
empty fields.

Returns

• void

Example 1

The following example inactivates a set of custom records returned by a saved search. Note
that the Inactive field on the Custom Record definition page is check box. In SuiteScript, check
boxes always take the value or T or F, not true or false.

var records = nlapiSearchRecord('customrecord_oldrecords', 'customsearch_records_to_inactivate'
);
 for (var i = 0; i < records.length; i++) {
 nlapiSubmitField(records[i].getRecordType(), records[i].getId(), 'isinactive', 'T');
 }

Example 2

This sample shows nlapiSubmitField in the context of a Suitelet.

function updateFields(request, response) {
//item fulfillment
nlapiSubmitField('itemfulfillment', 55, 'memo', 'Memo for item fulfillment', true);

//customer
nlapiSubmitField('customer', 87, 'comments', 'Enter custom memo here', true);
}

Back to Field APIs | Back to SuiteScript Functions

nlobjField

See nlobjField - defined in the section on UI Objects.

Back to Field APIs | Back to SuiteScript Functions

SuiteScript Functions
Sublist APIs

425

SuiteScript Developer & Reference Guide

Sublist APIs
For an overview of NetSuite sublists, see Working with Subtabs and Sublists.

All APIs listed below are in alphabetical order.

• nlapiCancelLineItem(type)

• nlapiCommitLineItem(type)

• nlapiDisableLineItemField(type, fldnam, val)

• nlapiFindLineItemMatrixValue(type, fldnam, val, column)

• nlapiFindLineItemValue(type, fldnam, val)

• nlapiGetCurrentLineItemIndex(type)

• nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

• nlapiGetCurrentLineItemText(type, fldnam)

• nlapiGetCurrentLineItemValue(type, fldnam)

• nlapiGetLineItemCount(type)

• nlapiGetLineItemField(type, fldnam, linenum)

• nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

• nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

• nlapiGetLineItemText(type, fldnam, linenum)

• nlapiGetLineItemValue(type, fldnam, linenum)

• nlapiGetMatrixCount(type, fldnam)

• nlapiGetMatrixField(type, fldnam, column)

• nlapiGetMatrixValue(type, fldnam, column)

• nlapiInsertLineItem(type, line)

• nlapiInsertLineItemOption(type, fldnam, value, text, selected)

• nlapiIsLineItemChanged(type)

• nlapiRefreshLineItems(type)

• nlapiRemoveLineItem(type, line)

• nlapiRemoveLineItemOption(type, fldnam, value)

• nlapiSelectLineItem(type, linenum)

SuiteScript Functions
Sublist APIs

426

SuiteScript Developer & Reference Guide

• nlapiSelectNewLineItem(type)

• nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value, firefieldchanged,
synchronous)

• nlapiSetCurrentLineItemText(type, fldnam, text, firefieldchanged, synchronous)

• nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous)

• nlapiSetCurrentLineItemValues(type, fldnam, values, firefieldchanged, synchronous)

• nlapiSetLineItemValue(type, fldnam, linenum, value)

• nlapiSetMatrixValue(type, fldnam, column, value, firefieldchanged, synchronous)

• nlobjSubList

nlapiCancelLineItem(type)

Cancels any uncommited changes to the current line of a sublist

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiCommitLineItem(type)

Saves/commits the changes to the current line in a sublist. This is the equivalent of clicking
Done for a line item in the UI.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• void

SuiteScript Functions
Sublist APIs

427

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiDisableLineItemField(type, fldnam, val)

Sets the given line item field of a sublist to disabled or enabled based on the value (true or
false). This function is only supported in client scripts.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the line item field to enable/disable

• val {boolean true || false} [required] - If set to true the field is disabled. If set to false it
is enabled.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiFindLineItemMatrixValue(type, fldnam, val, column)

This API returns the line number of a particular price in a given column. If the value is present
on multiple lines, it will return the line item of the first line that contains the value. This API is
supported in client and user event scripts. Use this API on a matrix sublists only.

Note: Currently the Pricing sublist and Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript. For details, see Pricing Sublist and Demand
Plan Detail Sublist in the NetSuite Help Center.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field

• val {string} [required] - The value of the field

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

SuiteScript Functions
Sublist APIs

428

SuiteScript Developer & Reference Guide

Returns

• The line number (as an integer) of a specified matrix field

Since

• Version 2009.2

Example

This sample shows how to return the line number of a particular price in a given column. Note
that if the specified value is present on multiple lines, this API returns the line number of the
first line that contains the value.

var column1 = nlapiFindLineItemMatrixValue('price', 'price', 213.00, 1);
alert('The line number of price 213 from column 1 is. ' + column1);

Back to Sublist APIs | Back to SuiteScript Functions

nlapiFindLineItemValue(type, fldnam, val)

Use this API to find the line number of a specific field in a sublist. This API can be used on any
sublists that supports SuiteScript. This API is supported in client and user event scripts only.

Note: This API is not supported on subrecords.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The field internal ID

• val {string} [required] - The value of the field

Returns

• The line number (as an integer) of a specific sublist field

Since

• Version 2009.2

Example

nlapiFindLineItemValue('item', 'quantity', '1');

SuiteScript Functions
Sublist APIs

429

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetCurrentLineItemIndex(type)

Returns the line number of the currently selected line in a group.

Note: The first line number on a sublist is 1 (not 0).

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• The integer value for the currently selected line number in a sublist

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

Use this API to get the value of the currently selected matrix field. This API should be used on
matrix sublists only. This API is supported in client and user event scripts.

Important: Currently the Pricing sublist and Demand Plan Detail sublist are the only
matrix sublist types that support SuiteScript. For details, see Pricing Sublist
and Demand Plan Detail Sublist in the NetSuite Help Center.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field being set.

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

Returns

• The string value of a field on the currently selected line in a matrix sublist. Returns null if
the field does not exist.

Since

• Version 2009.2

SuiteScript Functions
Sublist APIs

430

SuiteScript Developer & Reference Guide

Example

This sample executes on a pageInit client event. The script throws an alert to let the user know
the values that appear in the first column and the second column of a Pricing sublist.

function getCurrentLine()
{
//Get values for column 1 and column 2
var column1 = nlapiGetCurrentLineItemMatrixValue('price', 'price', 1);
var column2 = nlapiGetCurrentLineItemMatrixValue('price', 'price', 2);
alert('The values in column 1 and 2 are ' + column1 + ' '+column2);
}

Example 2

This sample executes on a validateField client event. It runs in an account that has the
Multiple Currencies feature enabled. The script gets the value specified in the second column
of the pricing matrix that appears on the USA currency tab (price1). Based on the value, it
then sets values on the British Pound tab (price2). To set line item values, notice the pattern of
selecting the line, then setting values, then committing the changes.

function validateFieldOnItem(type, fld, column)
{
if(type == 'price1')
 {
 if(nlapiGetCurrentLineItemMatrixValue('price1', 'price', 1)=='44.00')
 {
 nlapiSetFieldValue('department', 5);
 nlapiSelectLineItem('price2', '1');
 nlapiSetCurrentLineItemMatrixValue('price2', 'price', 1, '11');
 nlapiSetCurrentLineItemMatrixValue('price2', 'price', 2, '12');
 nlapiCommitLineItem('price2');
 }

 }
 return true;
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetCurrentLineItemText(type, fldnam)
Returns the display name (the UI label) of a select field (based on its current selection) on the
currently selected line. Typically used in validate line functions.

Note: This API is not supported on subrecords.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

SuiteScript Functions
Sublist APIs

431

SuiteScript Developer & Reference Guide

• fldnam {string} [required] - The name of the field being set

Returns

• The string display name of a select field (based on its current selection) on the currently
selected line. Returns null if the field does not exist.

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetCurrentLineItemValue(type, fldnam)

Returns the value of a sublist field on the currently selected line.

Note: This API is not supported on subrecords.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

Returns

• The string value of a field on the currently selected line. Returns null if field does not
exist.

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetCurrentLineItemValues(type, fldnam)

Returns the values of a multiselect sublist field on the currently selected line. One example of a
multiselect sublist field is the Serial Numbers field on the Items sublist.

This function is not supported in client SuiteScript. It is meant to be used in user event scripts.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the multiselect field.

SuiteScript Functions
Sublist APIs

432

SuiteScript Developer & Reference Guide

Returns

• An array of string values for the multiselect sublist field (on the currently selected line)

Since

• Version 2012.1

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetLineItemCount(type)

Use this API to determine the number of line items on a sublist. You can then use APIs such
as nlapiInsertLineItem or nlapiRemoveLineItem to add or remove lines before/after existing
lines.

The nlapiGetLineItemCount API is available in Client and User Event scripts only. If you want
to get the line count of a sublist in a Suitelet, see nlobjSubList.getLineItemCount().

Important: The first line number on a sublist is 1 (not 0).

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• The integer value for the number of lines in a sublist for the current record

Note: For performance reasons, the return value of this API call is undefined for
sublists with custom child records in CSV Import and SuiteTalk.

Example

The following sample shows how to use nlapiGetLineItemCount to programmatically
determine the number of line items on a sublist.

function getLineCount()
{
 var lineNum = nlapiGetLineItemCount('solutions');
 alert('The line item count for this sublist is: ' + lineNum);
}

Back to Sublist APIs | Back to SuiteScript Functions

SuiteScript Functions
Sublist APIs

433

SuiteScript Developer & Reference Guide

nlapiGetLineItemField(type, fldnam, linenum)

Use this function to obtain sublist (line item) field metadata. Calling this function instantiates
the nlobjField object, which then allows you to use all the methods available to nlobjField to
get field metadata.

Note: To obtain metadata for body fields, use nlapiGetField(fldnam).

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The internal ID of the sublist field

• linenum {int} [optional] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• An nlobjField object representing this line item field

Since

• Version 2009.1

Example

The following script is attached to a Sales Order. The nlapiGetLineItemField API returns
a nlobjField object. This script then uses the field object methods getType and getLabel
to return the sublist field's type and UI label.

function clientSideScript(type, form)
{
var field = nlapiGetLineItemField('item', 'quantity', 3);
alert(field.getType()); // returns float as the field type
alert(field.getLabel()); // returns Quantity as the field UI label
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

Use this API to obtain metadata for a field that appears in a matrix sublist. This API is
supported in client and user event scripts.

SuiteScript Functions
Sublist APIs

434

SuiteScript Developer & Reference Guide

Note: Currently the Pricing sublist and Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript. For details, see Pricing Sublist and Demand
Plan Detail Sublist in the NetSuite Help Center.

Calling this function instantiates the nlobjField object, which then allows you to use all the
methods available to the nlobjField object.

Note: To obtain metadata for body fields, use nlapiGetField(fldnam).

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the field (line) whose value you want
returned.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

Returns

• An nlobjField object representing this sublist field. Returns null if the field you have
specified does not exist.

Since

• Version 2009.2

Example

This script executes on a pageInit client event. It gets the metadata of a matrix field on the
Pricing sublist.

function getFieldInfo()
{
 var matrixField = nlapiGetLineItemMatrixField('price1', 'price', '1', '1');
 var fieldLabel = matrixField.getLabel();
 var fieldName = matrixField.getName();
 var fieldType = matrixField.getType();
 var fieldMetaInfo = 'Label: '+fieldLabel+' Name: '+fieldName+' Type: '+fieldType ;
 alert('price field metadata is : '+ fieldMetaInfo);
}

SuiteScript Functions
Sublist APIs

435

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

Use this API to get the value of a matrix field that appears on a specific line in a specific
column. This API can be used only in the context of a matrix sublist. This API is supported in
client and user event scripts.

Important: Currently the Pricing sublist and Demand Plan Detail sublist are the only
matrix sublist types that support SuiteScript. For details, see Pricing Sublist
and Demand Plan Detail Sublist in the NetSuite Help Center.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field whose value you want
returned.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• The string value of the matrix field.

Since

• Version 2009.2

Example

This sample executes on a pageInit client event. The script will throw an alert that lists the
values appearing in columns 1 and 2 on line 1 of the Pricing sublist.

function getMatValues()
{
nlapiSelectLineItem('price', 1);
var column1 = nlapiGetLineItemMatrixValue('price', 'price', 1, 1);
var column2 = nlapiGetLineItemMatrixValue('price', 'price', 1, 2);
alert('Values from row 1 and 2 are ' + column1 + ' '+column2);
}

Back to Sublist APIs | Back to SuiteScript Functions

SuiteScript Functions
Sublist APIs

436

SuiteScript Developer & Reference Guide

nlapiGetLineItemText(type, fldnam, linenum)

Returns the display name of a select field (based on its current selection) in a sublist.

Note: This API is not supported on subrecords.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• The string value of the display name of a select field (based on its current selection) in a
sublist. Returns null if field does not exist on the record or the field is restricted.

Example

This is a client script that throws an alert with the value of the myText variable.

function testGetText()
{
var myText = nlapiGetLineItemText('item', 'item', 1);
 if (myText != '' || myText != null)
 {
 alert ('value obtained is ' +myText);
 }
 else
 {
 alert('value obtained is not valid');
 }
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetLineItemValue(type, fldnam, linenum)

Available only in client and user event SuiteScripts. Note that you cannot set default line item
values when the line is not in edit mode.

Also, NetSuite recommends that you read the topic Getting Field Values in SuiteScript, which
addresses the rare instances in which the value returned by this API is inconsistent.

SuiteScript Functions
Sublist APIs

437

SuiteScript Developer & Reference Guide

Note: This API is not supported on subrecords.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The internal ID of the field (line item) whose value is being
returned

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• The string value of a sublist line item

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetLineItemValues(type, fldname, linenum)

Returns the values of a multiselect sublist field on a selected line. One example of a multiselect
sublist field is the Serial Numbers field on the Items sublist.

This function is not supported in client SuiteScript. It is meant to be used in user event scripts.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The internal ID of the multiselect field

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• An array of string values for the multiselect sublist field

SuiteScript Functions
Sublist APIs

438

SuiteScript Developer & Reference Guide

Since

• Version 2012.1

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetMatrixCount(type, fldnam)

Use this API in a matrix sublist to get the number of columns for a specific matrix field. This
API is supported in client and user event scripts.

Note: Currently the Pricing sublist and the Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript, and this API typically would not be used for
the Demand Plan Detail sublist. For details on working with the Pricing sublist, see
Pricing Sublist in the NetSuite Help Center.

Note: The first column in a matrix is 1, not 0.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The field internal ID of the matrix field.

Returns

• The integer value for the number of columns of a specified matrix field

Since

• Version 2009.2

Example

This sample executes on a pageInit client event. If there are 2 columns in the pricing matrix, the
value of 2 will be passed to matrixCount variable. If there are 3 columns, the value of 3 will be
passed. Note that the type parameter is set to price1. This means that the Multiple Currencies
feature has been enabled in the user's account, and the user is scripting to the USA tab on the
Pricing Sublist.

function getCount()
{
var matrixCount = nlapiGetMatrixCount('price1', 'price');
alert('Matrix Count is '+ matrixCount);
}

SuiteScript Functions
Sublist APIs

439

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetMatrixField(type, fldnam, column)

Use this API to get field metadata for a matrix “header” field in a matrix sublist.

Note: Currently the Pricing sublist and the Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript, and this API is used only for the Pricing
sublist. For details on working with the Pricing sublist, see Pricing Sublist in the
NetSuite Help Center.

For example, if the Quantity Pricing feature is enabled in your account, you will see the Qty
fields at the top of the pricing matrix. The Qty fields are considered to be the header fields
in the pricing matrix. For more information on matrix header fields, see Matrix APIs in the
NetSuite Help Center.

This API is supported in client and user event scripts.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix header field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• nlobjField object

Since

• Version 2009.2

Example

This sample executes on a pageInit client event to get the metadata of a matrix header
field. In this case, Qty is the matrix header field on the Pricing sublist. Once you call
nlapiGetMatrixField you can use all the methods on the nlobjField object to get whatever field
metadata you might need.

function getMatrixHeaderInfo()
{
 var qtyObject = nlapiGetMatrixField('price', 'price', 2);

 var fieldLabel = qtyObject.getLabel();

SuiteScript Functions
Sublist APIs

440

SuiteScript Developer & Reference Guide

 var fieldName = qtyObject.getName();
 var fieldType = qtyObject.getType();

 var fieldMetaInfo = 'Label: '+fieldLabel+' Name: '+fieldName+' Type: '+fieldType ;
 alert('Get Quantity Field Meta data ' + fieldMetaInfo);
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiGetMatrixValue(type, fldnam, column)

Use this API to get the value of a matrix “header” field in a matrix sublist.

Note: Currently the Pricing sublist and the Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript, and this API is used only for the Pricing
sublist. For details on working with the Pricing sublist, see Pricing Sublist in the
NetSuite Help Center.

For example, if the Quantity Pricing feature is enabled in your account, you will see the Qty
fields at the top of the pricing matrix. The Qty fields are considered to be the header fields
in the pricing matrix. See Matrix APIs in the NetSuite Help Center for more information on
matrix header fields.

This API is supported in client and user event scripts.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix header field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• The integer value of a matrix header field. For example, on the Pricing sublist the value of
a specified quantity level (Qty) field is returned.

Since

• Version 2009.2

Example 1

This sample executes on a pageInit client event to get the value of the quantity level that
appears on the second column of the Pricing sublist. Note that the type parameter is set to

SuiteScript Functions
Sublist APIs

441

SuiteScript Developer & Reference Guide

price1. This means that the Multiple Currencies feature has been enabled in the user's account,
and the user is scripting to the USA tab on the Pricing Sublist.

function getMatValue()
{
var matrixValue = nlapiGetMatrixValue('price1', 'price', 2);
alert('Value in the column is '+ matrixValue);
}

Example 2

This sample executes on a validateField client event. It gets the value of a quantity (Qty) matrix
header field.

function validateFieldOnItem(type, fld, column)
{
if(type=='price1')
 {
 if(nlapiGetMatrixValue('price1', 'price', '2')=='100')
 {
 alert('Item is available to ship');
 nlapiSetFieldValue('department', 5);
 nlapiSelectLineItem('price2', '1');
 nlapiSetCurrentLineItemMatrixValue('price2', 'price', 1, '100');
 nlapiSetCurrentLineItemMatrixValue('price2', 'price', 2, '90');
 nlapiCommitLineItem('price2');
 }

 }
 return true;
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiInsertLineItem(type, line)

Inserts a line above the currently selected line in a sublist. Available to client and user event
scripts only.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• line {int} [required] - The line number in which to insert new line. Note the first line
number on a sublist is 1 (not 0).

Returns

• void

SuiteScript Functions
Sublist APIs

442

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiInsertLineItemOption(type, fldnam, value, text, selected)

Adds a select option to a select/multiselect field that was added through scripting. This field
will appear as a line item on a sublist.

Note that this API can only be used on select/multiselect fields that are added via the UI
Objects API (for example on Suitelets or beforeLoad user events).

For performance reasons, you should disable the drop-down before adding multiple options,
then enable the drop-down when finished.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the scripted field

• value {string | int} [required] - A unique value for the select option. Note that the datatype
for this argument will vary depending on the value that is set. For example, you may assign
numerical values such as 1, 2, 3 or string values such as option1, option2, option3.

• text {string} [required] - The display name of the select option

• selected {boolean true || false} [optional] - If not set, this argument defaults to false. If
set to true, the selected option will become the default selection.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiIsLineItemChanged(type)

Determines whether any changes have been made to a sublist.

This API can only be used in client scripts.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

SuiteScript Functions
Sublist APIs

443

SuiteScript Developer & Reference Guide

Returns

• Returns true if the currently selected line of the sublist has been edited

Back to Sublist APIs | Back to SuiteScript Functions

nlapiRefreshLineItems(type)

Makes a server call to refresh staticlist (read-only) sublists. For inlineeditor or editor sublists,
it simply redraws the sublist. This API does not do anything for sublists of type list.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiRemoveLineItem(type, line)

Removes the currently selected line in a sublist. Supported in client scripts, user event scripts,
and Suitelets.

Important: For user event scripts and Suitelets, you must use the line parameter to
select the line item. For client scripts, you can use nlapiSelectLineItem(type,
linenum).

Note: For Scheduled scripts, use the equivalent record-level method:
nlobjRecord.removeLineItem(group, linenum, ignoreRecalc).

Parameters:

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• line {int} [required for user event scripts and Suitelets] - The line number you want to
remove. Note the first line number on a sublist is 1 (not 0).

Returns

• void

SuiteScript Functions
Sublist APIs

444

SuiteScript Developer & Reference Guide

Back to Sublist APIs | Back to SuiteScript Functions

nlapiRemoveLineItemOption(type, fldnam, value)

Removes a single select option from a select or multiselect line item field added through a script

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the scripted field.

• value {string} [required] - The value of the select option to be removed or null to delete
all the options.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSelectLineItem(type, linenum)

Selects an existing line in a sublist

Parameters

• type - {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• linenum - {int} [required] - The line number to select. Note the first line number on a
sublist is 1 (not 0).

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSelectNewLineItem(type)

Use this function if you want to set a value on a sublist line that does not currently exist. This
API is the UI equivalent of clicking a sublist tab (for example the Items sublist tab) so that you
can then add a new line (or item, in this example) to the sublist.

SuiteScript Functions
Sublist APIs

445

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

Returns

• void

Example

function sampleClientPageInit()
{
nlapiSetFieldValue('entity', '294');
// this is the equivalent of selecting the Items sublist tab. You must do this when you want to

// add new lines to a sublist
nlapiSelectNewLineItem('item');

// set the item and location values on the currently selected line
nlapiSetCurrentLineItemValue('item', 'item', 380, true, true);
nlapiSetCurrentLineItemValue('item', 'location', 102, true, true);

// commit the line to the database
nlapiCommitLineItem('item');
}

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value,
firefieldchanged, synchronous)

This API is typically used in validate line functions to set the value of a given matrix sublist
field before it has been added to the form. This API is supported in client and user event
scripts. Also note that it should be used on matrix sublists only.

Note: Currently the Pricing sublist and Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript. For details, see Pricing Sublist and Demand
Plan Detail Sublist in the NetSuite Help Center.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

SuiteScript Functions
Sublist APIs

446

SuiteScript Developer & Reference Guide

• value {string | int} [required] - The value the field is being set to.

• firefieldchanged {boolean} [optional] - If true, then the field change script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Since

• Version 2009.2

Example

The following sample is a user event script that executes on a beforeLoad event. This script
is set to execute on the Pricing sublist on an Inventory Item record. On the Pricing sublist it
will set the Base Price for the first two columns of the USA tab. The presence of the USA tab
indicates that the Multiple Currencies feature is enabled in this account. Therefore, the internal
ID of the type parameter in all matrix APIs will be price1.

function beforeLoad(type, form)
{
 nlapiSetFieldValue('itemid', '124');

 //Set the pricing matrix header field (Qty) in the second column to 600
 nlapiSetMatrixValue('price1', 'price', '2', 600);
 //Set values on line one. First you must select the line, then set all values,
 //then commit the line.
 nlapiSelectLineItem('price1', '1');
 nlapiSetCurrentLineItemMatrixValue('price1', 'price', 1, '11');
 nlapiSetCurrentLineItemMatrixValue('price1', 'price', 2, '12');
 nlapiCommitLineItem('price1');
}

Back to Sublist APIs | Back to SuiteScript Functions

SuiteScript Functions
Sublist APIs

447

SuiteScript Developer & Reference Guide

nlapiSetCurrentLineItemText(type, fldnam, text, firefieldchanged,
synchronous)

Sets the value of a select field on the currently selected line using the display name. See also,
Using the Fire Field Changed Parameter.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

• text {string} [required] - The display name associated with the value that the field is being
set to

• firefieldchanged {boolean} [optional] - If true, then the fieldchange script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged,
synchronous)

Sets the value of the given line-item field before it has been added to the form. Typically used in
validate line functions. See also, Using the Fire Field Changed Parameter.

SuiteScript Functions
Sublist APIs

448

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

• value {string} [required] - The value the field is being set to.

Important: Check box fields take the values of T or F, not true or false.

• firefieldchanged {boolean true || false} [optional] - If true, then the fieldchange script
for that field is executed. If no value is provided, this argument defaults to true.

Note: Available in Client SuiteScript only. See Using the Fire Field Changed Parameter
for more information.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSetCurrentLineItemValues(type, fldnam, values, firefieldchanged,
synchronous)

Sets the values for a multi-select sublist field. Note that like any other “set field” APIs, the
values you use will be internal ID values. For example, rather than specifying 'Abe Simpson'
as a customer value, you will use 232 or 88 or whatever the internal ID is for customer Abe
Simpson.

However, if you are using this API to set the serialnumber field on the Item sublist, you will set
the text string of the actual serial number, for example 'serialnum1', 'serialnum2', and so on.

This API is supported in client scripts only.

SuiteScript Functions
Sublist APIs

449

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the multi-select sublist field being set.

• values {array} [required] - The values for the field.

• firefieldchanged {boolean} [optional] - If true, then the fieldchange script for that field
is executed. If no value is provided, this argument defaults to true. (Available in Client
SuiteScript only). See Using the Fire Field Changed Parameter for more information.

Note: The firefieldchanged parameter takes the values of true or false, not T or F.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Since

• Version 2012.1

Example

If the source of the items comes from different lot numbers, the best way of setting the serial
number is the following. Note this is for client scripting only.

var serialArr = new Array();
serialArr[0] = 'amsLot1(1)';
serialArr[1] = 'amsLot2(1)';

nlapiSelectNewLineItem('item');
nlapiSetCurrentLineItemValue('item', 'item', 199, true, true);
nlapiSetCurrentLineItemValue('item', 'quantity', 2, true, true);
nlapiSetCurrentLineItemValues('item', 'serialnumbers', serialArr, true, true);
nlapiCommitLineItem('item');

Back to Sublist APIs | Back to SuiteScript Functions

SuiteScript Functions
Sublist APIs

450

SuiteScript Developer & Reference Guide

nlapiSetLineItemValue(type, fldnam, linenum, value)

Sets the value of a sublist field on the current, new record. This API can be used in beforeLoad
user event scripts to initialize sublist line items, but only on new records and only on non-
stored sublist fields. If you execute this API on an existing record, nothing will happen.

Note that this API is supported in user event scripts only.

This function can be used in client SuiteScript, but note that it is supported only on custom
fields and the Description field. If you use this function to set the value of a standard, built-in
line item field, the function will not execute.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• type {string} [required] - The sublist internal ID (for example, use price as the ID for the
Pricing sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of sublists that
support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• value {string} [required] - The value the field is being set to

Returns

• void

Back to Sublist APIs | Back to SuiteScript Functions

nlapiSetMatrixValue(type, fldnam, column, value, firefieldchanged,
synchronous)

This API is used to set a header field in a matrix sublist. This API is supported in client and
user event scripts. It is typically used in pageInit (client) and beforeLoad (user event) events.
Also note that this API should be used on matrix sublists only.

SuiteScript Functions
Sublist APIs

451

SuiteScript Developer & Reference Guide

Note: Currently the Pricing sublist and the Demand Plan Detail sublist are the only matrix
sublist types that support SuiteScript, and this API is used only for the Pricing
sublist. For details on working with the Pricing sublist, see Pricing Sublist in the
NetSuite Help Center.

In the case of the Pricing sublist, this API is used to set the quantity levels that appear in the
Qty fields (see figure). Note that you should use this API only if you have the Quantity Pricing
feature enabled in your account, as these header fields appear only if this feature is enabled. The
following figure shows the header fields that can be set using nlapiSetMatrixValue:

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The name of the field being set.

• value {string} [required] - The value the field is being set to .

Important: Check box fields take the values of T or F, not true or false.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

• firefieldchanged {boolean true || false} [optional] - If true, then the field change script
for that field is executed. If no value is provided, this argument defaults to true.

Note: Available in Client SuiteScript only. See Using the Fire Field Changed Parameter
for more information.

• synchronous {boolean} [optional] - This parameter is relevant for client SuiteScripts only.
In server scripts (such as user event scripts), this parameter will always execute as true.

In client scripts, if you do not set the value of synchronous, the default value is false, and
the API executes asynchronously. If set to true, this API executes synchronously, which
ensures a predictable script execution. Setting to true forces your client script to wait on
any specified sourcing before continuing with the rest of the script.

SuiteScript Functions
Sublist APIs

452

SuiteScript Developer & Reference Guide

Note: In client scripts, the synchronous parameter takes the values of true or false,
not T or F.

Returns

• void

Since

• Version 2009.2

Example

The following sample is a user event script that executes on a beforeLoad event. This script
is set to execute on the Pricing sublist on an Inventory Item record. On the Pricing sublist it
will set the Base Price for the first two columns of the USA tab. The presence of the USA tab
indicates that the Multiple Currencies feature is enabled in this account. Therefore, the internal
ID of the type parameter in all matrix APIs will be price1.

function beforeLoad(type, form)
{
 nlapiSetFieldValue('itemid', '124');

 //Set the pricing matrix header field (Qty) in the second column to 600
 nlapiSetMatrixValue('price1', 'price', '2', 600);
 //Set values on line one. First you must select the line, then set all values,
 //then commit the line.
 nlapiSelectLineItem('price1', '1');
 nlapiSetCurrentLineItemMatrixValue('price1', 'price', 1, '11');
 nlapiSetCurrentLineItemMatrixValue('price1', 'price', 2, '12');
 nlapiCommitLineItem('price1');
}

Back to Sublist APIs | Back to SuiteScript Functions

nlobjSubList

See nlobjSubList - defined in the section on UI Objects.

Back to Sublist APIs | Back to SuiteScript Functions

Using the Fire Field Changed Parameter

When creating scripts that provide the ability to watch a field for a change, and then write back
to the field that changed, a risk of creating an infinite loop exists as follows:

1. The Client script watches for fieldA to change.

SuiteScript Functions
Search APIs

453

SuiteScript Developer & Reference Guide

2. fieldA changes.

3. The script writes to fieldA, causing the Field Changed event to fire, returning the code to
step 2, and this loop repeats indefinitely.

To prevent this looping behavior, you can set the optional firefieldchanged parameter in your
client scripts.

The firefieldchanged parameter is available for all write functions. If set to true, the
parameter causes any field changed events to fire as normal. This is the default setting. If set to
false, field changed events are NOT fired.

Using the firefieldchanged parameter, you can modify the above example to:

1. Client script watches for fieldA to change.

2. fieldA changes.

3. Client script writes to fieldA using firefieldchanged = false, so the Field Changed event
does not fire.

The following API calls can set the firefieldchanged parameter.

Note: The set line item text and value functions are NOT affected, as these do not
currently call field changed after firing.

• nlapiSetFieldValue(fldnam, value, firefieldchanged, synchronous)

• nlapiSetFieldText(fldname, txt, firefieldchanged, synchronous)

• nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous)

• nlapiSetCurrentLineItemText(type, fldnam, text, firefieldchanged, synchronous)

Note: The firefieldchanged parameter is provided for convenience. To prevent this loop,
you could also include code that either checks to ensure that you are not writing
the same value to the field or that tracks whether you wrote to the field.

Search APIs
For an overview of using SuiteScript to execute searches in NetSuite, see Searching Overview.

All APIs listed below are in alphabetical order.

• nlapiCreateSearch(type, filters, columns)

• nlapiLoadSearch(type, id)

SuiteScript Functions
Search APIs

454

SuiteScript Developer & Reference Guide

• nlapiLookupField(type, id, fields, text)

• nlapiSearchDuplicate(type, fields, id)

• nlapiSearchGlobal(keywords)

• nlapiSearchRecord(type, id, filters, columns)

• nlobjSearchColumn

• nlobjSearchFilter

• nlobjSearchResult

nlapiCreateSearch(type, filters, columns)

Creates a new search. The search can be modified and run as an ad-hoc search, without saving
it. Alternatively, calling nlobjSearch.saveSearch(title, scriptId) will save the search to the
database, so it can be resused later in the UI or using nlapiLoadSearch(type, id).

Note: This function is agnostic in terms of its filters argument. It can accept input of
either a search filter (nlobjSearchFilter), a search filter list (nlobjSearchFilter[]), or
a search filter expression (Object[]).

Parameters

• type {string} [required] - The record internal ID of the record type you are searching (for
example, customer|lead|prospect|partner|vendor|contact). For a list of internal IDs, in the
NetSuite Help Center see SuiteScript Supported Records.

• filters {nlobjSearchFilter | nlobjSearchFilter[] | Object[] } [optional] - A single
nlobjSearchFilter object - or - an array of nlobjSearchFilter objects - or - a search filter
expression.

Note: You can further filter the returned nlobjSearch object by passing additional
filter values. You will do this using the nlobjSearch.addFilter(filter) method or
nlobjSearch.addFilters(filters) method.

• columns {nlobjSearchColumn or nlobjSearchColumn[]} [optional] - A
single nlobjSearchColumn(name, join, summary) object - or - an array of
nlobjSearchColumn(name, join, summary) objects. Note that you can further filter the
returned nlobjSearch object by passing additional search return column values. You will
do this using the nlobjSearch.setColumns(columns) method.

Returns

• nlobjSearch

SuiteScript Functions
Search APIs

455

SuiteScript Developer & Reference Guide

Since

• Version 2012.1

Example 1

This example shows how to create a new saved search. First you define any search filters and
search return columns. Next you call nlapiCreateSearch to execute the search. To save the
search, you must then call the nlobjSearch.saveSearch(title, scriptId) method. Note that you are
not required to save searches that are generated through nlapiCreateSearch.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
columns[3] = new nlobjSearchColumn('projectedamount');
columns[4] = new nlobjSearchColumn('probability');
columns[5] = new nlobjSearchColumn('email', 'customer');
columns[6] = new nlobjSearchColumn('email', 'salesrep');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Example 2

This example shows how to load an existing search, create a new search based on existing
criteria, define additional criteria, and then save the search as a new search.

var search = nlapiLoadSearch('opportunity', 'customsearch_blackfriday');
var newSearch = nlapiCreateSearch(search.getSearchType(), search.getFilters(),
 search.getColumns());
newSearch.addFilter(new nlobjSearchFilter(...)); //Specify your own criteria here to add as a f
ilter
newSearch.setIsPublic(true);
newSearch.saveSearch('My new opp search', 'customsearch_blacksaturday');

Example 3

This example shows how to create a new saved search using a search filter expression.

//Define search filter expression
var filterExpression = [['trandate', 'onOrAfter', 'daysAgo90'],
 'and',
 ['projectedamount', 'between', 1000, 100000],
 'and',
 ['customer.salesrep', 'anyOf', -5]];

SuiteScript Functions
Search APIs

456

SuiteScript Developer & Reference Guide

//Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
columns[3] = new nlobjSearchColumn('projectedamount');
columns[4] = new nlobjSearchColumn('probability');
columns[5] = new nlobjSearchColumn('email', 'customer');
columns[6] = new nlobjSearchColumn('email', 'salesrep');

//Create the saved search
var search = nlapiCreateSearch('opportunity', filterExpression, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Example 4

This example shows how to load an existing search, create a new search based on existing
criteria with the use of a search filter expression, define additional criteria, and then save the
search as a new search.

var search = nlapiLoadSearch('opportunity', 'customsearch_blackfriday');
var newSearch = nlapiCreateSearch(search.getSearchType(), search.getFilterExpression(), search.
getColumns());
newSearch.addFilter (new nlobjSearchFilter(…)); //Specify your own criteria here to add as a fi
lter
newSearch.setIsPublic(true);
newSearch.saveSearch('My new opp search', 'customsearch_blacksaturday');

Back to Search APIs | Back to SuiteScript Functions

nlapiLoadSearch(type, id)

Loads an existing saved search. The saved search could have been created using the
UI, or created using nlapiCreateSearch(type, filters, columns) in conjunction with
nlobjSearch.saveSearch(title, scriptId).

Executing this API consumes 5 governance units.

Parameters

• type {string} [optional] - The record internal ID of the record type you are searching
(for example, customer|lead|prospect|partner|vendor|contact). This parameter is case-
insensitive. For a list of internal IDs, in the NetSuite Help Center see SuiteScript Supported
Records.

• id {string} [required] - The internal ID or script ID of the saved search. The script ID of
the saved search is required, regardless of whether you specify the search type. If you do
not specify the search type, you must set type to null and then set the script/search ID. See
Example 3 for more details.

SuiteScript Functions
Search APIs

457

SuiteScript Developer & Reference Guide

Returns

• nlobjSearch

Since

• Version 2012.1

Example 1

This sample shows how to load an existing saved search and add additional filtering criteria to
the search. The search is then designated as a public search and saved.

var s = nlapiLoadSearch('opportunity', 'customsearch_blackfriday');
s.addFilter(new nlobjSearchFilter(...));
s.setIsPublic(true);
s.saveSearch('My new opp search', 'customsearch_blackfriday');

Example 2

This sample shows how to load an existing search, create a new search based on existing
criteria, define additional criteria, and then save the search as a new search.

var search = nlapiLoadSearch('opportunity', 'customsearch_blackfriday');
var newSearch = nlapiCreateSearch(search.getSearchType(), search.getFilters(),
 search.getColumns());
newSearch.addFilter(new nlobjSearchFilter(...));
newSearch.setIsPublic(true);
newSearch.saveSearch('My new opp search', 'customsearch_blacksaturday');

Example 3

With the type parameter optional, developers have the flexibility to load existing searches, or
execute new or existing searches without knowing the record type of the search.

A user can select a saved search from a custom saved search field. As a developer, you can
have a user event script that loads or re-executes the selected search once the user saves the
record. In this scenario, your script does not have access to the record type of the saved search.
Your code has access only to the saved search ID, which is the value of My Saved Search Field.
Once you get the ID of the search, you can then pass in the ID to either nlapiLoadSearch or
nlapiSearchRecord, depending on whether you want to load an existing search or re-execute it.

The following snippet shows how to get the ID of the saved search and then re-execute it,
without having to specify the record type of the search.

Important: If you do not specify the search type, you must set type to null and then set
the search ID.

var searchID = nlapiGetFieldValue('custentity_mysavedsearch');

SuiteScript Functions
Search APIs

458

SuiteScript Developer & Reference Guide

var results = nlapiSearchRecord(null, searchID);

Back to Search APIs | Back to SuiteScript Functions

nlapiLookupField(type, id, fields, text)

See nlapiLookupField(type, id, fields, text) - also listed in the section Field APIs.

Back to Search APIs | Back to SuiteScript Functions

nlapiSearchDuplicate(type, fields, id)

Performs a search for duplicate records based on the account's Duplicate Detection
configuration. Note that this API only works for records that support duplicate record
detection. These records include customers, leads, prospects, contacts, partners, and vendors.

This API is supported in client, user event, scheduled, portlet, and Suitelet scripts.

Parameters

• type {string} [required] - The record internal ID name you are checking duplicates for (for
example, customer|lead|prospect|partner|vendor|contact). In the NetSuite Help Center,
see SuiteScript Supported Records.

• fields {string[]} [optional] - The internal ID names of the fields used to detect duplicate
(for example, companyname|email|name|phone|address1|city|state|zipcode). Depending
on the use case, fields may or may not be a required argument. If you are searching for
duplicates based on the fields that appear on a certain record type, fields would be a
required argument. If you are searching for the duplicate of a specific record (of a specifed
type), you would set id and not set fields.

• id {int} [optional] - internalId of existing record. Depending on the use case, id may or
may not be a required argument. If you are searching for a specific record of a specified
type, you must set id. If you are searching for duplicates based on field names, you will not
set id ; you will set fields.

Returns

• {nlobjSearchResult[]} - An Array of nlobjSearchResult objects corresponding to the
duplicate records.

Important: Results are limited to 1000 records. Note that if there are no search
results, null is returned.

Back to Search APIs | Back to SuiteScript Functions

SuiteScript Functions
Search APIs

459

SuiteScript Developer & Reference Guide

Example

The following example performs a duplicate detection search for all customer records using the
“email” field of the currently submitted record.

var fldMap = new Array();
fldMap['email'] = nlapiGetFieldValue('email');
var duplicateRecords = nlapiSearchDuplicate('customer', fldMap);
for (var i = 0; i < duplicateRecords.length; i++)
{
 var duplicateRecord = duplicateRecords[i];
 var record = duplicateRecord.getId();
 var rectype = duplicateRecord.getRecordType();
}

nlapiSearchGlobal(keywords)

Performs a global search against a single keyword or multiple keywords. This API is supported
in client, user event, scheduled, portlet, and Suitelet scripts. Usage metering allowed for
nlapiSearchGlobal is 10 units.

Parameters

• keywords {string} [required] - Global search keywords string or expression

Returns

• An Array of nlobjSearchResult objects containing the following four columns: name, type
(as shown in the UI), info1, and info2.

Important: Results are limited to 1000 rows. Note that if there are no search results,
null is returned.

Example

The following example performs a global search for all records with the keyword simpson.

var searchresults = nlapiSearchGlobal('simpson');
for (var i = 0; i < searchresults.length; i++)
{
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();

 var name = searchresult.getValue('name');
 var type = searchresult.getValue('type');
 var info1 = searchresult.getValue('info1');
 var info2 = searchresult.getValue('info2');
}

In the UI, the results returned from the snippet would look similar to the following:

SuiteScript Functions
Search APIs

460

SuiteScript Developer & Reference Guide

Note: This screenshot displays the NetSuite user interface that was available before
Version 2010 Release 2.

Note that as with global search functionality in the UI, you can programmatically filter the
global search results that are returned. In the snippet above, if your first line of code looked like
this:

var searchresults = nlapiSearchGlobal(' cu: simpson');

only the three Abe Simpson customer records will be returned in your search. For more general
information about global search in NetSuite, see the help topic Global Search in the NetSuite
Help Center.

Back to Search APIs | Back to SuiteScript Functions

nlapiSearchRecord(type, id, filters, columns)
Performs a search using a set of criteria (your search filters) and columns (the results).
Alternatively, you can use this API to execute an existing saved search. Results are limited to
1000 rows. Also note that in search/lookup operations, long text fields are truncated at 4,000
characters. Usage metering allowed for nlapiSearchRecord is 10 units.

This API is supported in client, user event, scheduled, portlet, and Suitelet scripts.

Note: This API can also be used to search custom lists. In the NetSuite Help Center, see
Searching Custom Lists for an example.

You can extract the desired information from the search results using the methods available on
the returned nlobjSearchResult object.

Note that results returned by nlapiSearchRecord are not sortable directly. However, you can
accomplish sorting using either of the following methods:

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N636548.html

SuiteScript Functions
Search APIs

461

SuiteScript Developer & Reference Guide

1. Use the setSort function on an nlobjSearchColumn object(s), and then pass the sorted
nlobjSearchColumn object(s) to the columns parameter. See setSort(order) for an
example.

2. Reference a saved search that is sorted by internalid or internalidnumber

3. Sort the array of results that is returned in JavaScript using a custom Array sorting
function. See the topic called “Creating, displaying, and sorting an array” at http://
developer.mozilla.org/.

Note: This function is agnostic in terms of its filters argument. It can accept input of
either a search filter (nlobjSearchFilter), a search filter list (nlobjSearchFilter[]),
or a search filter expression (Object[]).

Parameters

• type {string} [optional] - The record internal ID of the record type you are searching. For a
list of internal IDs, in the NetSuite Help Center see SuiteScript Supported Records.

• id {int | string} [optional] - The internalId or custom scriptId for the saved search. To
obtain the internalId, go to Lists > Search > Saved Searches. The internalId appears in the
Internal ID column. If you have created a custom scriptId when building your search, this
ID will appear in the ID column.

Note the following about how this argument is validated:

• If the internalId or scriptId is valid, the saved search is executed (assuming the search
has no user or role restrictions applied to it).

• If you do not specify the search type, the id parameter becomes REQUIRED. In this
case, you must set type to null and then specify the scriptId for the saved search. See
Example 3 for an example of when and type you might create this type of script.

• If there is no internalId or scriptId (null or empty string or left out altogether), an ad-
hoc search will be executed and this argument will be ignored.

• If the internalId or scriptId is invalid, the following user error is thrown: That search
or mass updates does not exist.

• filters {nlobjSearchFilter | nlobjSearchFilter[] | Object[]} [optional] - A single
nlobjSearchFilter object - or - an array of nlobjSearchFilter objects - or - a search filter
expression.

Note: You can further filter the returned saved search by passing additional filter
values.

• columns {nlobjSearchColumn or nlobjSearchColumn[]} [optional] - A
single nlobjSearchColumn(name, join, summary) object - or - an array of
nlobjSearchColumn(name, join, summary) objects. Note that you can further filter the
returned saved search by passing additional search return column values.

http://developer.mozilla.org/
http://developer.mozilla.org/

SuiteScript Functions
Search APIs

462

SuiteScript Developer & Reference Guide

Returns

• {nlobjSearchResult[]} - An array of nlobjSearchResult objects corresponding to the
searched records.

Important: The array returned by this API is read-only. Note that if there are no
search results, null is returned.

Throws

• SSS_INVALID_RECORD_TYPE

• SSS_TYPE_ARG_REQD

• SSS_INVALID_SRCH_ID

• SSS_INVALID_SRCH_FILTER

• SSS_INVALID_SRCH_FILTER_JOIN

• SSS_INVALID_SRCH_OPERATOR

• SSS_INVALID_SRCH_COL_NAME

• SSS_INVALID_SRCH_COL_JOIN

• SSS_INVALID_SRCH_FILTER_EXPR

• SSS_INVALID_SRCH_FILTER_EXPR_DANGLING_OP

• SSS_INVALID_SRCH_FILTER_EXPR_OBJ_TYPE

• SSS_INVALID_SRCH_FILTER_EXPR_PAREN_DEPTH

• SSS_INVALID_SRCH_FILTER_LIST_PARENS

• SSS_INVALID_SRCH_FILTER_LIST_TERM

Examples

For code samples showing the kinds of searches you can execute using the nlapiSearchRecord
function, see Search Samples in the NetSuite Help Center. If you are new to searching with
SuiteScript, also see Searching Overview.

Back to Search APIs | Back to SuiteScript Functions

nlobjSearchColumn

See nlobjSearchColumn(name, join, summary) - defined in the section on Standard Objects.

Back to Search APIs | Back to SuiteScript Functions

SuiteScript Functions
Scheduling APIs

463

SuiteScript Developer & Reference Guide

nlobjSearchFilter

See nlobjSearchFilter - defined in the section on Standard Objects.

Back to Search APIs | Back to SuiteScript Functions

nlobjSearchResult

See nlobjSearchResult - defined in the section on Standard Objects.

Back to Search APIs | Back to SuiteScript Functions

Scheduling APIs
The scheduling APIs are used to start, gather information about, and pause, scripts until a more
appropriate time.

• nlapiScheduleScript(scriptId, deployId, params)

• nlapiSetRecoveryPoint()

• nlapiYieldScript()

For a complete overview of working with scheduled scripts in NetSuite, see Scheduled
Scripts.

nlapiScheduleScript(scriptId, deployId, params)

A call to this API places a scheduled script into the NetSuite scheduling queue. For this to work,
the scheduled script must have a status of Not Scheduled on the Script Deployment page. If the
script's status is set to Testing on the Script Deployment page, the API will not place the script
into the scheduling queue.

If the deployment status on the Script Deployment page is set to Scheduled, the script will be
placed into the queue according to the time(s) specified on the Script Deployment page.

The nlapiScheduleScript API consumes 20 units per call. This API is supported in user event,
portlet, scheduled, and Suitelet scripts.

Important: There is no unit metering if you are re-queueing the current script (see
Example 1 - Rescheduling a Script). Note, however, nlapiScheduleScript is
still 20 units per call if you are trying to schedule other scripts.

One or more calls to nlapiScheduleScript can be made from Suitelet, user event, and portlet
scripts. Note that you can also call nlapiScheduleScript from within a scheduled script to:

1. Place the currently executing scheduled script back into the scheduled script workqueue.

SuiteScript Functions
Scheduling APIs

464

SuiteScript Developer & Reference Guide

2. Call another scheduled script. When the new script is called, it is then put in the
scheduled script workqueue.

3. Place a scheduled script into the queue from another script type, such as a user event
script or a Suitelet.

Note: Only administrators can run scheduled scripts. If a user event script calls
nlapiScheduleScript, the user event script has to be deployed with admin
permissions.

For additional details specific to using nlapiScheduleScript, see Using
nlapiScheduleScript to Deploy a Script into the Scheduling Queue.

For general details on working with scheduled scripts, see Overview of Scheduled Script
Topics.

Parameters

• scriptId {string | int} [required] - The script internalId or custom scriptId

• deployId {string | int} [optional] - The deployment internal ID or script ID. If empty, the
first “free” deployment will be used. Free means that the script's deployment status appears
as Not Scheduled or Completed. If there are multiple “free” scripts, the NetSuite scheduler
will take the first free script that appears in the scheduling queue.

Important: deployId is a required argument if you are calling nlapiScheduleScript
to requeue a scheduled script that is currently executing. This argument
is also required if, from within a scheduled script, you are calling
nlapiScheduleScript to queue another scheduled script that may be multiple
deployments (and therefore multiple deployment IDs). In this case you must
specify which of the script's deployments you want to schedule.

• params {Object} [optional] - Object of name/values used in this schedule script instance -
used to override the script parameters values for this execution.

Note that name values are the script parameter internal IDs. If you are not familiar with
what a script parameter is in the context of SuiteScript, see Creating Script Parameters
Overview in the NetSuite Help Center.

Returns

• A string whose value is QUEUED if the script was successfully queued by this call, or it
returns the script's current status. Valid status values are:

• INQUEUE - The script you requested is already in a queue and waiting to be run.
This script cannot be requested again until it finishes processing. If the script is
INQUEUE, you must try again later if you want to run the script.

SuiteScript Functions
Scheduling APIs

465

SuiteScript Developer & Reference Guide

• INPROGRESS - The scheduled script is currently running.

• SCHEDULED - The script's deployment status is set to scheduled and will be picked
up and put into the execution queue.

Important: This API returns NULL if the scheduled script is undeployed or invalid.

Example 1 - Rescheduling a Script

Use nlapiScheduleScript, nlobjContext.getScriptId and nlobjContext.getDeploymentId
to reschedule the currently executing scheduled script if there are more sales orders to update
when the unit usage limit is reached.

Important: There is no unit metering if you are re-queueing the current script. In the
following sample, for example, nlapiScheduleScript consumes no units.
Note, however, that nlapiScheduleScript is still 20 units per call if you are
trying to schedule other scripts.

function updateSalesOrders()
{
 var context = nlapiGetContext();
 var searchresults = nlapiSearchRecord('salesorder', 'customscript_orders_to_update')
 if (searchresults == null)
 return;
 for (var i = 0; i < searchresults.length; i++)
 {
 nlapiSubmitField('salesorder', searchresults[i].getId(), 'custbody_approved', 'T')
 if (context.getRemainingUsage() <= 0 && (i+1) < searchresults.length)
 {
 var status = nlapiScheduleScript(context.getScriptId(), context.getDeploymentId())
 if (status == 'QUEUED')
 break;
 }
 }
}

Example 2

See more examples in the section Scheduled Script Samples.

Back to Scheduling APIs | Back to SuiteScript Functions

nlapiSetRecoveryPoint()

Creates a recovery point saving the state of the script's execution. When NetSuite resumes the
execution of the script, it resumes the script at the specified recovery point. Also note that
when the script is resumed, its governance units are reset. Be aware, however, all scheduled
scripts have a 50 MB memory limit. For complete details on scheduled script memory limits,
see Understanding Memory Usage in Scheduled Scripts.

SuiteScript Functions
Scheduling APIs

466

SuiteScript Developer & Reference Guide

A typical implementation for this API might be as follows. Based on the status returned by
nlapiSetRecoveryPoint, the script executes different logic.

res = nlapiSetRecoveryPoint()
if (res.status == ‘FAILURE')
 examine the reason and either cleanup/try again OR exit
else if (res.status == ‘SUCCESS')
 do X
 else if (res.status == ‘RESUME')
 examine the reason and react appropriately
do Z
do A

Note you can use nlapiSetRecoveryPoint in conjunction with nlapiYieldScript to effectively
pause the script until a later time when it is more appropriate to run the script.

Important: This API can only be called from scheduled scripts; calling this API from any
other script type will result in an error.

Important: Scripts that contain live references to files larger than 5MB
must null the references before they call nlapiYieldScript or
nlapiSetRecoveryPoint. If these references are not nulled, the script returns
an SSS_FILE_OBJECT_NOT_SERIALIZABLE error. See Example – Nulling a
reference to a file larger than 5MB for an example.

Important: This API is not supported within JavaScript array iteration functions (for
example, map, some, filter). JavaScript array iteration functions are designed
to be executed as a whole. SuiteScript cannot yield in the middle of these
control structures.

The nlapiSetRecoveryPoint API consumes 100 units per call.

For an overview of possible use cases for setting recovery points in your scheduled scripts, see
Setting Recovery Points in Scheduled Scripts.

Returns

• Native Javascript Object

• status {string}

• SUCCESS – Save point was created.

• FAILURE – The recovery point was unable to be created. Returns the reason for
the failure and the footprint size of the script.

• RESUME – Script is being resumed.

• reason {string}

SuiteScript Functions
Scheduling APIs

467

SuiteScript Developer & Reference Guide

• SS_NLAPIYIELDSCRIPT - Yield was called.

• SS_ABORT -The JVM unintentionally stopped (native error, no response, etc.)
--mimics normal "ABORT" states.

• SS_MAJOR_RELEASE – A major NetSuite release is pending, processes are
being stopped.

• SS_EXCESSIVE_MEMORY_FOOTPRINT – The saved object is too big.

• SS_CANCELLED – A user requested that the script stop.

• SS_DISALLOWED_OBJECT_REFERENCE – The script is attempting to
serialize an object that is not serializable (see Supported Objects).

• SSS_FILE_OBJECT_NOT_SERIALIZABLE – The script is attempting to
serialize an nlobjFile object that references a file larger than 5MB.

• size {integer} – The size of the saved object.

• information {string} – Additional information about the status.

Important: If nlapiYieldScript or nlapiSetRecoveryPoint returns a FAILURE with
SS_DISALLOWED_OBJECT_REFERENCE, the object type will be stored in the
information property. To fix this problem, find the offending reference and
set it to null.

Supported Objects:

All JavaScript native types, plus:

• nlobjConfiguration

• nlobjContext

• nlobjError

• nlobjFile (files up to 5BM in size)

• nlobjRecord

• nlobjSubrecord

• nlobjSearchColumn

• nlobjSearchFilter

• nlobjSearchResult

• nlobjSearchResultCell

• all 3rd party XML Library objects

SuiteScript Functions
Scheduling APIs

468

SuiteScript Developer & Reference Guide

Important: All other object types are not supported.

Example – Setting a recovery point, handling errors, and resuming a script

The following sample shows a scheduled script that runs a customer search. The script iterates
through the results of the customer search, and after every five records, sets a recovery point.
If there is an unexpected server failure, the script will resume from the current "i" index of the
search results.

Note: The handleCustomer function in this script is not defined. The function is there only
to demonstrate generic processing you could do with search results.

This script also checks the governance of the script. If the script goes above the governance
threshold, the script is yielded. Based on the status returned by setRecoveryPoint, an
execution log is created to document the reason this scrip was resumed. And based on the
reason, a more descriptive text message is thrown to the user. Note that if the reason is
SS_EXCESSIVE_MEMORY_FOOTPRINT the cleanUpMemory function is executed and an
additional recovery point is set.

function runScheduledScript(status, queueid)
{
 var records = nlapiSearchRecord('customer', 15);

 for(var i = 0; i < records.length; i++)
 {
 handleCustomer(records[i].getRecordType(), records[i].getId());

 if((i % 5) == 0) setRecoveryPoint(); //every 5 customers, we want to set a recovery point
 so that, in case of an unexpected server failure, we resume from the current "i" index instead
 of 0

 checkGovernance();
 }
}

function setRecoveryPoint()
{
 var state = nlapiSetRecoveryPoint(); //100 point governance
 if(state.status == 'SUCCESS') return; //we successfully create a new recovery point
 if(state.status == 'RESUME') //a recovery point was previously set, we are resuming due to s
ome unforeseen error
 {
 nlapiLogExecution("ERROR", "Resuming script because of " + state.reason+". Size = "+ state.s
ize);
 handleScriptRecovery();
 }
 else if (state.status == 'FAILURE') //we failed to create a new recovery point
 {
 nlapiLogExecution("ERROR","Failed to create recovery point. Reason = "+state.reason + " /
Size = "+ state.size);
 handleRecoveryFailure(state);
 }
}

function checkGovernance()

SuiteScript Functions
Scheduling APIs

469

SuiteScript Developer & Reference Guide

{
 var context = nlapiGetContext();
 if(context.getRemainingUsage() < myGovernanceThreshold)
 {
 var state = nlapiYieldScript();
 if(state.status == 'FAILURE'
 {
 nlapiLogExecution("ERROR","Failed to yield script, exiting: Reason = "+state.reason + " /
 Size = "+ state.size);
 throw "Failed to yield script";
 }
 else if (state.status == 'RESUME')
 {
 nlapiLogExecution("AUDIT", "Resuming script because of " + state.reason+". Size = "+ state.
size);
 }
 // state.status will never be SUCCESS because a success would imply a yield has occurred. Th
e equivalent response would be yield
 }
}

function handleRecoverFailure(failure)
{
 if(failure.reason == 'SS_MAJOR_RELEASE") throw "Major Update of NetSuite in progress, shutti
ng down all processes";
 if(failure.reason == 'SS_CANCELLED') throw "Script Cancelled due to UI interaction";
 if(failure.reason == 'SS_EXCESSIVE_MEMORY_FOOTPRINT) { cleanUpMemory(); setRecoveryPoint();
}//avoid infinite loop
 if(failure.reason == 'SS_DISALLOWED_OBJECT_REFERENCE') throw "Could not set recovery point b
ecause of a reference to a non-recoverable object: "+ failure.information;
}

function cleanUpMemory(){...set references to null, dump values seen in maps, etc}

Example – Nulling a reference to a file larger than 5MB

The following example assumes that the nlobjFile object, largeFile, references a file larger
than 5MB. Scripts that contain live references to files larger than 5MB must null the references
before they call nlapiYieldScript or nlapiSetRecoveryPoint. If these references are not nulled,
the script returns an SSS_FILE_OBJECT_NOT_SERIALIZABLE error.

var largeFile = nlapiLoadRecord('1234');
var pdf = nlapiXMLToPDF(largeFile);
largeFile = null;
nlapiYieldScript();
//perform additional logic after points refreshed

Back to Scheduling APIs | Back to SuiteScript Functions

nlapiYieldScript()

Creates a recovery point and then reschedules the script. The newly rescheduled script has
its governance units reset, and is then placed at the back of the scheduled script queue. To
summarize, nlapiYieldScript works as follows:

SuiteScript Functions
Scheduling APIs

470

SuiteScript Developer & Reference Guide

1. Creates a new recovery point.

2. Creates a new scheduled script with a governance reset.

3. Associates the recovery point to the scheduled script

4. Puts the script at the back of the scheduled script queue.

Note: If the yield call fails, a FAILURE status will be returned. On success, the call does not
return until the script is resumed.

Calling this function consumes no governance units. Note also, calling this API resets the
unit counter for the currently executing script. Be aware, however, all scheduled scripts have
a 50 MB memory limit. Calling this API will not reset the memory size of the script to 0. It
only resets the governance units. For complete details on scheduled script memory limits, see
Understanding Memory Usage in Scheduled Scripts.

Important: This API can only be called from scheduled scripts. Calling this API from any
other script type will result in an error.

Important: Scripts that contain live references to files larger than 5MB
must null the references before they call nlapiYieldScript or
nlapiSetRecoveryPoint. If these references are not nulled, the script returns
an SSS_FILE_OBJECT_NOT_SERIALIZABLE error. See Example – Nulling a
Reference to a File Larger than 5MB for an example.

Important: This API is not supported within JavaScript array iteration functions (for
example, map, some, filter()). JavaScript array iteration functions are
designed to be executed as a whole. SuiteScript cannot yield in the middle of
these control structures.

Returns

• Native Javascript Object

• status {string}

• FAILURE – The recovery point was unable to be created. Returns the reason for
the failure and the footprint size of the script.

• RESUME – Script is being resumed.

• reason {string}

• SS_NLAPIYIELDSCRIPT - Yield was called.

• SS_ABORT -The JVM unintentionally stopped (native error, no response, etc.)
--mimics normal "ABORT" states.

• SS_MAJOR_RELEASE – A major NetSuite release is pending, processes are
being stopped.

• SS_EXCESSIVE_MEMORY_FOOTPRINT – The saved object is too big.

SuiteScript Functions
Scheduling APIs

471

SuiteScript Developer & Reference Guide

• SS_CANCELLED – A user requested that the script stop.

• SS_DISALLOWED_OBJECT_REFERENCE – The script is attempting to
serialize an object that is not serializable (see Supported Objects).

• SSS_FILE_OBJECT_NOT_SERIALIZABLE – The script is attempting to
serialize an nlobjFile object that references a file larger than 5MB.

• size {integer} – The size of the saved object.

• information {string} – Additional information about the status.

• Be careful if using this API within try / catch / finally. On a successful yield, all the finally
blocks will be called, but catches will be ignored.

• It is advisable to use the final block for code which is not going to affect program flow, for
example - writing log entries.

• If you have a yield in the try block, it is possible that some instructions in the finally block
will execute before the yield takes place. The same instructions will execute again on
resume.

Supported Objects:

All JavaScript native types, plus:

• nlobjConfiguration

• nlobjContext

• nlobjError

• nlobjFile (files up to 5MB in size)

• nlobjRecord

• nlobjSubrecord

• nlobjSearchColumn

• nlobjSearchFilter

• nlobjSearchResult

• nlobjSearchResultCell

• all 3rd party XML Library objects

Important: All other object types are not supported.

Example – Nulling a Reference to a File Larger than 5MB

The following example assumes that the nlobjFile object, largeFile, references a file larger
than 5MB. Scripts that contain live references to files larger than 5MB must null the references

SuiteScript Functions
Execution Context APIs

472

SuiteScript Developer & Reference Guide

before they call nlapiYieldScript or nlapiSetRecoveryPoint. If these references are not nulled,
the script returns an SSS_FILE_OBJECT_NOT_SERIALIZABLE error.

var largeFile = nlapiLoadRecord('1234');
var pdf = nlapiXMLToPDF(largeFile);
largeFile = null;
nlapiYieldScript();
//perform additional logic after points refreshed

Back to Scheduling APIs | Back to SuiteScript Functions

Execution Context APIs
Context APIs are used to get system information or metadata about a script that is running, a
user in a NetSuite account, or certain settings that have been applied to account.

All APIs listed below are in alphabetical order.

• nlapiGetContext()

• nlapiGetDepartment()

• nlapiGetLocation()

• nlapiGetRole()

• nlapiGetSubsidiary()

• nlapiGetUser()

• nlapiLogExecution(type, title, details)

• nlobjContext

nlapiGetContext()

Used to branch scripts depending on the metadata or context of the execution. For example,
you may want the script to perform in one way when a form is accessed via the UI and another
when the form is accessed via web services.

This API is supported in client, user event, scheduled, portlet, and Suitelet scripts.

Returns

• nlobjContext object containing information (metadata) about the current user or script
context.

You must use the nlobContext. getSetting method on nlapiGetContext to reference
script parameters. For example, to obtain the value of a script parameter called
custscript_case_field, you must use the following code:

SuiteScript Functions
Execution Context APIs

473

SuiteScript Developer & Reference Guide

nlapiGetContext().getSetting('SCRIPT', 'custscript_case_field')

Specifying Web Services Context

To cause a form to behave differently in web services versus the UI, you can do one of the
following:

• Write context-specific SuiteScript code and use the nlapiGetContext function to branch
the code

• Disable SuiteScript in web services

However, both Client and Server SuiteScripts are written to enforce customized business
rules that may need to be enforced regardless of the mechanism by which a record is
created or updated within NetSuite. This is particularly true for customers who deploy a
SuiteCloud partner application and want to be sure their business rules are still respected.
Since Client SuiteScript often has browser-specific behavior that requires user action
and cannot automatically run during a web services call, NetSuite recommends that you
disable Client SuiteScript and deploy Server SuiteScript for those business conditions that
need to be enforced in all cases.

To specify that Server SuiteScript should never execute during a web services call, enable
the Disable Server-side Scripting preference on the web services Preference page at Setup
> Integration > Web Services.

Important: Only enable this preference when data submitted via web services does
NOT need to adhere to custom business logic and workflows that may
be executed via Server SuiteScript.

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiGetDepartment()

This API is supported in client, user event, scheduled, portlet, and Suitelet scripts.

Returns

• The integer value of the current user's department (for example, 3, 9, or 1)

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiGetLocation()

Returns the integer value of the current user's location. This API is supported in client, user
event, scheduled, portlet, and Suitelet scripts.

SuiteScript Functions
Execution Context APIs

474

SuiteScript Developer & Reference Guide

Returns

• The integer value of the current user's location (for example, 5, 7, -2). Note that if a
location has not been set, the value of -1 is returned.

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiGetRole()

Returns the internalId for the current user's role. This API is supported in client, user event,
scheduled, portlet, and Suitelet scripts.

Returns

• The integer value of the current user's role (for example: 1, 3, or 5). Note that the value
of -31 is returned if a user cannot be properly identified by NetSuite. This occurs when
the user has not authenticated to NetSuite, for example when using externally available (
Available without Login) Suitelets or online forms.

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiGetSubsidiary()

Returns the internalId for the current user's subsidiary. This API is supported in client, user
event, scheduled, portlet, and Suitelet scripts.

Returns

• The integer value for the current user's subsidiary (for example 1, 3, or 5). Note that if a
subsidiary has not been set (for example, the subsidiaries feature is not turned on in the
user's account), the value of 1 is returned if this function is called.

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiGetUser()

Returns the internalId of the current NetSuite user. This API is supported in client, user event,
scheduled, portlet, and Suitelet scripts.

Returns

• The integer value of the current user (for example, 195, 25, 21). Note that the value of
-4 is returned if a user cannot be properly identified by NetSuite. This occurs when the
user has not authenticated to NetSuite, for example when using externally available (
Available without Login) Suitelets or online forms.

SuiteScript Functions
Execution Context APIs

475

SuiteScript Developer & Reference Guide

Example

The following sample shows how to use nlapiGetUser in conjunction with
nlapiSendEmail. In this sample, the internal ID of the currently logged in user is passed to
the author argument in nlapiSendEmail, which is a required argument in this API.

function afterSubmitEmail(type)
{
//User event script deployed to purchase orders.
//Set the afterSubmit type to approve. As soon as the PO is
//approved, an email is sent.
if (type == 'approve')

//Get the user ID of the person approving the PO. This will be the email author.
var userId = nlapiGetUser();

//Send an email to the supervisor, K. Wolfe in this case.
var sendEmail = nlapiSendEmail(userId, 'kwolfe@netsuite.com', 'Purhase Order Notification', 'Pu
rchase
order approved', null, null, 'transaction', null);
}

See also

nlapiSendEmail(author, recipient, subject, body, cc, bcc, records, attachments,
notifySenderOnBounce, internalOnly, replyTo)

Back to Execution Context APIs | Back to SuiteScript Functions

nlapiLogExecution(type, title, details)

This API is supported in all server-side and record-level (global) client scripts.

Use this API to log an entry on the Execution Log subtab. The Execution Log subtab appears
on the Script Deployment page for a script. See Creating Script Execution Logs to learn more
about writing logs to the Execution Log subtab.

Note: When you are debugging a script in the SuiteScript Debugger, log details appear
on the Execution Log tab of the SuiteScript Debugger, NOT the script's Script
Deployment page.

The log type argument is used in conjunction with the Log Level field on the Script
Deployment to determine whether to log an entry on the Execution Log subtab. If a log level is
defined on a Script Deployment, then only nlapiLogExecution calls with a log type equal to or
greater than this log level will be logged. This is useful during the debugging of a script or for
providing useful execution notes for auditing or tracking purposes. See Setting Script Execution
Log Levels for more information using the Log Level field.

SuiteScript Functions
Execution Context APIs

476

SuiteScript Developer & Reference Guide

Important: Be aware that NetSuite governs the amount of logging that can be done by
a company in any given 60 minute time period. For complete details, see
Governance on Script Logging.

Also note that if the script's deployment status is set to Released, then the default Log Level is
ERROR. If the status is set to Testing, the default Log Level is DEBUG.

Note: The Execution Log tab also lists notes returned by NetSuite such as error messages.
For additional information on using the Execution Log, see Creating Script
Execution Logs in the NetSuite Help Center.

Parameters

Important: The Script Deployment Execution Log does not support JavaScript execution
or markup rendering. When passed to nlapiLogExecution(), JavaScript and
markup (html, xml, etc.) appear as plain text on the Execution Log.

• type {string} [required] - One of the following log types:

• DEBUG

• AUDIT

• ERROR

• EMERGENCY

• title {string} [optional] - A title used to organize log entries (max length: 99 characters).
If you set title to null or empty string (''), you will see the word “Untitled” appear in your
log entry.

• details {string} [optional] - The details of the log entry (max length: 3999 characters)

Throws

• SSS_MISSING_REQD_ARGUMENT - if no value is specified for title.

Returns

• void

Example 1

This sample creates a new Customer record. When this script runs, execution details are logged
on the Execution Log subtab on the Script Deployment page.

//Create a new Customer record
var newCust = nlapiCreateRecord('customer');

//Set the title field on the Customer record
newCust.setFieldValue('title', 'My New Customer');

SuiteScript Functions
UI Builder APIs

477

SuiteScript Developer & Reference Guide

var custId = nlapiSubmitRecord(newCust, true);
nlapiLogExecution('DEBUG', 'customer record created successfully', 'ID = ' + custId);

Example 2

This snippet shows a search against sales orders, based on specified search filters and search
columns. After the search is complete, the remaining units for the script will be logged on the
Execution Log tab. If you are worried that your script will exceed unit governance limits, it is
useful to track unit usage in the Execution Log.

//Search for the sales orders with trandate of today
var todaySO = nlapiSearchRecord('salesorder', null, todaySOFilters, todaySOColumns);

nlapiLogExecution('DEBUG', 'Remaining usage after searching sales orders from today', context.g
etRemainingUsage());

Back to Execution Context APIs | Back to SuiteScript Functions

nlobjContext

See nlobjContext - defined in the section on Standard Objects.

Back to Execution Context APIs | Back to SuiteScript Functions

UI Builder APIs
UI builder APIs allow developers to programmatically create various components of a the
NetSuite UI (for example, forms, fields, sublists, tabs, portlets). You can also use the UI builder
APIs to create NetSuite-looking assistant wizards.

For more details on working with UI builder APIs, see also UI Objects Overview.

All APIs listed below are in alphabetical order.

• nlapiCreateAssistant(title, hideHeader)

• nlapiCreateForm(title, hideNavbar)

• nlapiCreateList(title, hideNavbar)

• nlapiCreateTemplateRenderer()

• nlobjAssistant

• nlobjAssistantStep

• nlobjButton

• nlobjColumn

SuiteScript Functions
UI Builder APIs

478

SuiteScript Developer & Reference Guide

• nlobjField

• nlobjFieldGroup

• nlobjForm

• nlobjList

• nlobjPortlet

• nlobjSubList

• nlobjTab

• nlobjTemplateRenderer

nlapiCreateAssistant(title, hideHeader)

Use this function to return a reference to an nlobjAssistant object, which is the basis for
building your own custom assistant. This API is supported in Suitelets.

Parameters

• title {string} [required] - The name of the assistant. This name will appear at the top of
all assistant pages.

• hideHeader {boolean} [optional] - If not set, defaults to false. If set to true, the header
(navbar/logo) on the assistant is hidden from view. Note that the header is where the Add
to Shortcuts link appears.

Returns

• nlobjAssistant object

Since

• Version 2009.2

Example

This snippet shows how to call nlapiCreateAssistant to return a reference to the
nlobjAssistant object. With the nlobjAssistant object instantiated, you can then define the
steps of the assistant.

var assistant = nlapiCreateAssistant("Small Business Setup Assistant");
assistant.setOrdered(true); // indicate that all steps must be completed sequentially

assistant.addStep('companyinformation', 'Setup Company Information').setHelpText("Setup your
 important company information in the fields below.")

assistant.addFieldGroup('companyinfogroup', 'Company Information');
assistant.addField('companyname', 'text', 'Company Name', null, 'companyinfogroup');

SuiteScript Functions
UI Builder APIs

479

SuiteScript Developer & Reference Guide

assistant.addField('legalname', 'text', 'Legal Name', null, 'companyinfogroup');

assistant.addStep('entercontacts', 'Enter Contacts').setHelpText("Manually add contacts into yo
ur account.")
assistant.addStep('importdata', 'Import Data').setHelpText("Finally, import records into your a
ccount via CSV.");

response.writePage(assistant);

Back to UI Builder APIs | Back to SuiteScript Functions

nlapiCreateForm(title, hideNavbar)

Creates an nlobjForm object which can be used to generate an entry form page. This API is
available to Suitelets only.

Parameters

• title {string} [required] - The title for the form

• hideNavbar {boolean} [optional] - Set to true if the navigation bar should be hidden on
the Suitelet. Setting to true enables “popup page” use cases in which the popup can be
created with the UI Objects API rather than HTML.

When hideNavbar is set to false, the standard NetSuite navigation appears on the form or
popup. Note that this navigation bar contains links to pages that require users to be logged
in to access.

Returns

• An nlobjForm object

Back to UI Builder APIs | Back to SuiteScript Functions

nlapiCreateList(title, hideNavbar)

Creates an nlobjList object used to generate an internal standalone list. This API is available to
Suitelets only.

SuiteScript Functions
UI Builder APIs

480

SuiteScript Developer & Reference Guide

Parameters

• title {string} [required] - The title for the list

• hideNavbar {boolean} [optional] - Set to true if the navigation bar should be hidden on the
Suitelet. Setting to true enables “popup page” use cases in which the popup can be created
with the UI Objects API rather than HTML.

When hideNavbar is set to false, the standard NetSuite navigation appears on the form or
popup. Note that this navigation bar contains links to pages that require users to be logged
in to access.

Returns

• An nlobjList object

Back to UI Builder APIs | Back to SuiteScript Functions

nlapiCreateTemplateRenderer()

Use this function to produce HTML and PDF printed forms that utilize advanced PDF/
HTML template capabilities. This API returns an nlobjTemplateRenderer object. This object
includes methods that pass in a template as string to be interpreted by FreeMarker, and
render interpreted content in your choice of two different formats: as HTML output to an
nlobjResponse object, or as XML string that can be passed to nlapiXMLToPDF(xmlstring) to
produce a PDF.

This function is available when the Advanced PDF/HTML Templates feature is enabled. For
information about this feature, see the help topic Advanced PDF/HTML Templates.

Note: The advanced template API expects your template string to conform to FreeMarker
syntax. Refer to http://freemarker.sourceforge.net/docs/index.xml for details.

Returns

• An nlobjTemplateRenderer object

Since

• Version 2013.1

Example

function renderRecord(request, response)
{
var salesOrderID = 3;
var salesOrder = nlapiLoadRecord(‘salesorder', salesOrderID);
var renderer = nlapiCreateTemplateRenderer();

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2862640.html
http://freemarker.sourceforge.net/docs/index.xml

SuiteScript Functions
UI Builder APIs

481

SuiteScript Developer & Reference Guide

renderer.setTemplate(…);
renderer.addRecord(‘record', salesOrder);
response.setContentType(‘HTMLDOC');
renderer.renderToResponse(response);
}

Note: See the help topic Using SuiteScript to Apply Advanced Templates to Non-
Transaction Records for a code sample and an explanation of how to use this
function to print a record type that is not a transaction.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjAssistant

See nlobjAssistant - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjAssistantStep

See nlobjAssistantStep - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjButton

See nlobjButton - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjColumn

See nlobjColumn - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjField

See nlobjField - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjFieldGroup

See nlobjFieldGroup - defined in the section on UI Objects.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4259402776.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4259402776.html

SuiteScript Functions
Application Navigation APIs

482

SuiteScript Developer & Reference Guide

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjForm

See nlobjForm - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjList

See nlobjList - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjPortlet

See nlobjPortlet - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjSubList

See nlobjSubList - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjTab

See nlobjTab - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

nlobjTemplateRenderer

See nlobjTemplateRenderer - defined in the section on UI Objects.

Back to UI Builder APIs | Back to SuiteScript Functions

Application Navigation APIs
The following APIs let you define a navigation path for your users within NetSuite. Through
these APIs you can redirect users to other standard or custom records within NetSuite. You can
also direct them to custom Suitlets or other web sites outside of NetSuite.

SuiteScript Functions
Application Navigation APIs

483

SuiteScript Developer & Reference Guide

All APIs listed below are in alphabetical order.

• nlapiRequestURL(url, postdata, headers, callback, httpMethod)

• nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod)

• nlapiResolveURL(type, identifier, id, displayMode)

• nlapiSetRedirectURL(type, identifier, id, editmode, parameters)

• nlobjRequest

• nlobjResponse

nlapiRequestURL(url, postdata, headers, callback, httpMethod)

Important: There are two “versions” of this API: a client-side version and a server-side
version. When you execute this API in a server call, there is no callback
parameter. Therefore, the function signature in a server-side call is
nlapiRequestURL(url, postdata, headers, httpMethod). When you execute
this API in a client script, the function signature is nlapiRequestURL(url,
postdata, headers, callback, httpMethod).

Requests an HTTP(s) URL (internal or external). Note a timeout occurs if the initial
connection takes > 5 seconds and/or the request takes > 45 to respond.

nlapiRequestURL automatically encodes binary content using base64 representation, since
JavaScript is a character-based language with no support for binary types. This means you can
take the contents returned and save them in the NetSuite file cabinet as a file or stream them
directly to a response.

Note: nlapiRequestURL supports SSL 3.0 and SSL 3.1/TLS 1.0.

Also note that if you call nlapiRequestURL, passing in the header with a content type, NetSuite
respects the following types:

• all text media types (types starting with “text/”)

• "application/json"

• “application/vnd.maxmind.com-country+json”

• “application/xml”

• "application/soap+xml"

• “application/xhtml+xml”

• “application/atom+xml”

SuiteScript Functions
Application Navigation APIs

484

SuiteScript Developer & Reference Guide

Otherwise, NetSuite will overwrite the content type with our default type as if the type had not
been specified. NetSuite default types are:

• "text/xml; charset=UTF-8"

• "application/x-www-form-urlencoded; charset=UTF-8"

Additionally, nlapiRequestURL calls from the server do not include the current user's session
information. This means you can only use this API to request Suitelets that are set to available
without login using the external URL.

Usage metering allowed is 10 units. This API is supported in client, user event, scheduled,
portlet, and Suitelet scripts.

Parameters

• url {string} [required] - The HTTP(s) URL being requested - (fully qualified unless
NetSuite page)

Important: The url argument cannot include white space. If your URL includes
white space, use the standard JavaScript function encodeURIComponentto
encode the url argument. See http://www.w3schools.com/jsref/
jsref_encodeuricomponent.asp and Example 4 for additional
information.

• postdata {string | object} [optional] - Body used for a POST request. It can either be an
object of form parameters or a string. If set to null, then a GET request is used.

Note: If you specify DELETE for the httpMethod parameter, the postdata is ignored.

• headers {object} [optional] - An object of header and header value pairs.

• callback {function} [optional] - A callback function called when the request is completed
(client SuiteScript only). IMPORTANT: There is NO callback parameter when you
use nlapiRequestURL in a server-side call. In a server-side call, httpMethod becomes
the fourth parameter for this API, as in: nlapiRequestURL(url, postdata, headers,
httpMethod).

If you specifiy a callback a client-side SuiteScript, the request is processed asynchronously,
and once it is processed, the callback is called/invoked.

If you know your request may take a long time and you do not want to impair user
experience, it is recommended that you set the callback function within nlapiRequestURL
so that the request is processed asynchronously. If a callback function is specified, then the
response will be passed, instead to the callback function, upon completion.

However, if validation is needed, nlapiRequestURL should run synchronously and the
callback function should be omitted from nlapiRequestURL. For example:

http://www.w3schools.com/jsref/jsref_encodeuricomponent.asp
http://www.w3schools.com/jsref/jsref_encodeuricomponent.asp

SuiteScript Functions
Application Navigation APIs

485

SuiteScript Developer & Reference Guide

var response = nlapiRequestURL(URL, postdata, header);

// callback function outside of the API call - will only execute after
// nlapiRequestURL has processed
function foo(response) {
...
}

• httpMethod {string} [optional] - Specify the appropriate http method to use for your
integration. IMPORTANT: When using nlapiRequestURL in a server-side script,
httpMethod becomes the fourth parameter. In other words, the function signature in a
server-side script is nlapiRequestURL(url, postdata, headers, httpMethod).

Supported http methods are HEAD, DELETE and PUT. This parameter allows for easier
integration with external RESTful services using the standard REST functions. Note that if
the httpMethod parameter is empty or not specified, this behavior is followed: the method
is POST if postdata is not empty. The method is GET if it is.

Be aware that the httpMethod parameter overrides, so you can specify GET and specify
postdata, NetSuite will do a GET and ignore the postdata.

Returns

• nlobjResponse object (or void if a callback function has been specified)

Important: NetSuite supports the same list of trusted third-party certificate authorities
(CAs) as Microsoft. Click the following link for a list of these CAs: http://
social.technet.microsoft.com/wiki/contents/articles/14215.windows-and-
windows-phone-8-ssl-root-certificate-program-member-cas.aspx

Throws

• SSS_CONNECTION_CLOSED (with “Connection Closed” message) — if the connection
is closed because the server associated with the URL is unresponsive

• SSS_CONNECTION_TIME_OUT — if the initial connection exceeds the 5 second
timeout period

• SSS_INVALID_HOST_CERT — if the client and server could not negotiate the desired
level of security. The connection is no longer usable.

• SSS_INVALID_URL (with “Invalid URL — Connection Closed” message) — if the
connection is closed due to an invalid URL, including those containing white space

• SSS_REQUEST_TIME_EXCEEDED — if the request exceeds the 45 second timeout
period

• SSS_UNKNOWN_HOST — if the IP address of a host could not be determined.

http://social.technet.microsoft.com/wiki/contents/articles/14215.windows-and-windows-phone-8-ssl-root-certificate-program-member-cas.aspx
http://social.technet.microsoft.com/wiki/contents/articles/14215.windows-and-windows-phone-8-ssl-root-certificate-program-member-cas.aspx
http://social.technet.microsoft.com/wiki/contents/articles/14215.windows-and-windows-phone-8-ssl-root-certificate-program-member-cas.aspx

SuiteScript Functions
Application Navigation APIs

486

SuiteScript Developer & Reference Guide

• SSS_UNSUPPORTED_ENCODING — if the character encoding is not supported

Example 1

Request an XML document from a server and also include a header.

var a = {"User-Agent-x": "SuiteScript-Call"};
var response = nlapiRequestURL('https://webservices.netsuite.com/wsdl/v1_2_0/netsuite.wsdl', nu
ll, a);
var body = response.getBody();
var headers = response.getAllHeaders();

Example 2

Make an asynchronous request.

var a = {"User-Agent-x": "SuiteScript-Call"};
nlapiRequestURL('https://webservices.netsuite.com/wsdl/v1_2_0/netsuite.wsdl', null, a, handleRe
sponse);
function handleResponse(response)
{
 var headers = response.getAllHeaders();
 var output = 'Code: '+response.getCode()+'\n';
 output += 'Headers:\n';
 for (var i in headers)
 output += i + ': '+headers[i]+'\n';
 output += '\n\nBody:\n\n';
 output += response.getBody();
 alert(output);
}

Example 3

Make a request using a new browser window.

var a = {"User-Agent-x": "SuiteScript-Call"};
nlapiRequestURL('https://webservices.netsuite.com/wsdl/v1_2_0/netsuite.wsdl', null, a, null);

Example 4

Use the standard JavaScript function encodeURIComponent(uri) to encode an invalid URL
that contains white space.

//Use encodeURIComponent when you want to encode a URL argument
var orderId = getOrderId(); //a dynamic generated value that could have space in it.
var customerId = getCustomerId(); //a dynamic generated value that could have space in it.
var url = 'www.netsuite.com/app/site/hosting/scriptlet.nl?script=187&deploy=1';
url += '&orderId=' + encodeURIComponent(orderId);
url += '&customerId=' + encodeURIComponent(customerId);
var response = nlapiRequestURL(url, null, null, null);

Back to Application Navigation APIs | Back to SuiteScript Functions

SuiteScript Functions
Application Navigation APIs

487

SuiteScript Developer & Reference Guide

nlapiRequestURLWithCredentials(credentials, url, postdata, headers,
httpsMethod)

Allows you to send credentials outside of NetSuite. This API securely accesses a handle to
credentials that users specify in a NetSuite credential field.

Note: NetSuite credential fields can be added to Suitelets using the
nlobjForm.addCredentialField(id, label, website, scriptId, value, entityMatch, tab)
method.

Note a timeout occurs if the internal connections takes more than 5 seconds and/or the request
takes more than 45 seconds to respond.

Also note that if you call nlapiRequestURLWithCredentials, passing in the header with a
content type, NetSuite respects only the following two types:

• "application/json"

• "application/soap+xml"

Otherwise, NetSuite will overwrite the content type with our default type as if the type had not
been specified. NetSuite default types are:

• "text/xml; charset=UTF-8"

• "application/x-www-form-urlencoded; charset=UTF-8"

You can Base64 any part of the request by wrapping any text in $base64(<input text>).
NetSuite will then Base64 encode the values in <input text>. This can be done in the value of a
header, in the post body, or url. See Example 2.

If you require additional encryption or encoding on the request string, you can pass an
nlobjCredentialBuilder object to nlapiRequestURLWithCredentials in the url, postdata or
headers argument. The nlobjCredentialBuilder(string, domainString) constructor takes in a
user defined string, that can include an embedded globally unique string (GUID), and your
URL’s host name. nlobjCredentialBuilder includes six string transformation methods: two
encryption methods for SHA-1 and SHA-256 encryption, two encoding methods for Base64
and UTF8 encoding, a character replacement method, and a string appending method. See
Example 3.

Usage metering allowed for this API is 10 units.

Supported Script Types

• User Event

• Scheduled Script

SuiteScript Functions
Application Navigation APIs

488

SuiteScript Developer & Reference Guide

• Portlet

• Suitelet

Parameters

• credentials {array} [required — see Note] - List of credential handles. This API does
not know where you have stored the data, it only knows the credentials to use by handle.
Therefore, if you have multiple credentials for a single call, you need a list. The handles are
32 byte, globally unique strings (GUIDs).

Note: If an nlobjCredentialBuilder object is passed in for the url, postdata or headers
argument, you can pass in a null value for credentials.

• url {string | nlobjCredentialBuilder object} [required] - The HTTPS URL being
requested - (fully qualified unless it is a NetSuite page).

Important: If an nlobjCredentialBuilder object is passed in as the url, it must
be passed in its original state (pre-encryption and pre-encoding);
nlapiRequestURLWithCredentials cannot validate the url if it has been
encrypted or encoded.

• postdata {string | nlobjCredentialBuilder object | hashtable} [optional] - Body
used for a POST request. It can be a string, an nlobjCredentialBuilder object, an
associative array of form parameter pairs, or an associative array of form parameter and
nlobjCredentialBuilder object pairs. If set to null, then a GET request is used.

• headers {nlobjCredentialBuilder object | hashtable} [optional] - Can be an
nlobjCredentialBuilder object, an associative array of header and header value pairs, or
an associative array of header and nlobjCredentialBuilder object pairs.

• httpsMethod {string} [optional] - Specify the appropriate http method to use for your
integration. Supported http methods are HEAD, DELETE and PUT. This parameter
allows for easier integration with external RESTful services using the standard REST
functions. Note that if the httpsMethod parameter is empty or not specified, this behavior
is followed: the method is POST if postdata is not empty. The method is GET if it is.

Be aware that the httpsMethod parameter overrides, so you can specify GET and specify
postdata, NetSuite does a GET and ignores the postdata.

Returns

• nlobjResponse object

Since

• Version 2012.1

SuiteScript Functions
Application Navigation APIs

489

SuiteScript Developer & Reference Guide

Example 1

The following shows a general process for creating credential fields and then, later, getting their
handles and passing them on using nlapiRequestURLWithCredentials.

1. Two custom fields with username and passwords are added to a form:

var credField = form.addCredentialField('custpage_credname', 'password', null, valueFromCustomF
ield, 'cert.merchante-solutions.com', 'customscript_usecredentialfield');
var usrfield = form.addCredentialField('custpage_username', 'username', null, valuefromusername
custfield, 'cert.merchante-solutions.com', 'customscript_usecredentialfield');

2. During a beforeSubmit user event, obtain the values from credential fields and store them in
two custom fields, which are not visible on the form:

var credValue = nlapiGetFieldValue('custpage_credname');
var username = nlapiGetFieldValue('custpage_username');

nlapiSetFieldValue('custentity_custompassword', credValue);
nlapiSetFieldValue('custentity_customusername', username);

3. Before using the credentials, copy them as a list in a variable. At this point, uname and pwd
will contain the GUIDS (credentials handle):

var uname = rec.getFieldValue('custentity_customusername');
var pwd = rec.getFieldValue('custentity_custompassword');
var creds = [uname, pwd];

4. Use credentials in an external call:

var connect = nlapiRequestURLWithCredentials(creds, url);

Example 2

The following shows a general process for creating credential fields and then, later, getting their
handles and passing them on using nlapiRequestURLWithCredentials. This example assumes
that you already created the form and that the credentials are entered in a free-form text field.

1. Add credential fields during the beforeLoad event:

function doActionOnCredientialField()
{
nlapiLogExecution('DEBUG', 'Inside the PageInit Script');
var currentContext = nlapiGetContext();

//Add a second tab to the form.
var valuefromusernamecustfield = nlapiGetFieldValue('custbody1'); //fields from save credenti
al script
var valuefrompasswdcustfield = nlapiGetFieldValue('custbody2');

nlapiLogExecution('DEBUG', 'Value of Custom Field custbody1: ', valuefromusernamecustfield);
nlapiLogExecution('DEBUG', 'Value of Custom Field custbody2: ', valuefrompasswdcustfield);

SuiteScript Functions
Application Navigation APIs

490

SuiteScript Developer & Reference Guide

var myDomains = new Array('merchantesolutionstest', 'www.veritrans.co.jp', 'system.netsuite.com
');

//refer script id of the use credential script here
var usrfield = form.addCredentialField('custpage_username', 'username',
 myDomains,'customscript19', valuefromusernamecustfield, false, null);
var credField = form.addCredentialField('custpage_credname', 'password', myDomains, 'customscri
pt19',
 valuefrompasswdcustfield, false, null);
}

Note: The addCredentialField function does not work for Suitelet that are available
without login.

2. beforeSubmit – Save credentials:

function saveCredentialField()
{
nlapiLogExecution('DEBUG', 'Inside the Save Credential Script');

var currentContext = nlapiGetContext();
var credValue = nlapiGetFieldValue('custpage_username');
var username = nlapiGetFieldValue('custpage_credname');

nlapiLogExecution('DEBUG','Credential Value: ', credValue);
nlapiLogExecution('DEBUG', 'Username: ' + username);

nlapiSetFieldValue('custbody1', credValue);
nlapiSetFieldValue('custbody2', username);

var valueFromCustomField = nlapiGetFieldValue('custbody_password');

nlapiLogExecution('DEBUG','Value of Custom Field: ', valueFromCustomField);
}

3. afterSubmit – Use credentials:

function connectMES()
{
nlapiLogExecution('DEBUG', 'Inside the connection script ');

var currentContext = nlapiGetContext();
var uname = nlapiGetFieldValue('custbody1');
var pwd = nlapiGetFieldValue('custbody2');
var url = 'https://system.netsuite.com/app/site/hosting/scriptlet.nl?script=20&deploy=1?';
url = url + 'profile_id=' + '$base64(('+uname+'))';
url = url + '&profile_key=' + '{'+pwd+'}';

nlapiLogExecution('DEBUG', 'profile id - ' + uname);
nlapiLogExecution('DEBUG', 'key - ' + pwd);
nlapiLogExecution('DEBUG', 'url - ' + url);

var creds = [uname,pwd];
var connect = nlapiRequestURLWithCredentials(creds, url);
var res = connect.body;

nlapiLogExecution('DEBUG', 'response - ' , connect.body);

SuiteScript Functions
Application Navigation APIs

491

SuiteScript Developer & Reference Guide

}

Example 3

The following code instantiates an nlobjCredentialBuilder object and performs various
modifications on it. A associative array of a form parameter and nlobjCredentialBuilder
object pair is then passed into nlapiRequestURLWithCredentials as the postdata argument.

var _uname=”user@company.com”;
var _pwd = 'PASSWORD';

var creds = [_uname, _pwd];

var url = 'https://cert.merchante-solutions.com/mes-api/tridentApi?';
 url = url + 'profile_id=' + '{'+_uname+'}';
 url = url + '&profile_key=' + '{'+_pwd+'}';

 var cbSha256 = new nlobjCredentialBuilder(url, 'cert.merchante-solutions.com').sha256();
 var cbUtf8 = cbSha256.utf8();
 var cbBase64 = cbUtf8.base64();
 var cbReplace = cbBase64.replace('-', '*');

 var a = nlapiRequestURLWithCredentials(creds ,url,{ 'CredentialBuilder' : cbReplace });

Back to Application Navigation APIs | Back to SuiteScript Functions

nlapiResolveURL(type, identifier, id, displayMode)

Creates a URL on-the-fly by passing URL parameters from within your SuiteScript. For
example, when creating a SuiteScript Portlet script, you may want to create and display the
record URLs for each record returned in a search.

When creating the URL, you can use either the RECORD reference as retrieved in a search
result or a known TASKLINK. Each page in NetSuite has a unique Tasklink Id associated with
it for a given record type. Refer to the SuiteScript Reference Guide for a list of available NetSuite
tasklinks.

This API is supported in client, user event, scheduled, portlet, Suitelet, and RESTlet scripts.

Note: You can also discover the task ID for a NetSuite page by viewing the HTML page
source and searching for the nlPopupHelp string. For example, this search might
return onclick="nlPopupHelp('LIST_SCRIPT','help'), where LIST_SCRIPT is the task
ID.

Parameters

• type {string} [required] - The base type for this resource. These types include:

• RECORD – Record Type

• TASKLINK – Task Link

SuiteScript Functions
Application Navigation APIs

492

SuiteScript Developer & Reference Guide

• SUITELET – Suitelet

• RESTLET – RESTlet

• identifier {string} [required] - The primary id for this resource (recordType for
RECORD, scriptId for SUITELET)

• id {string} [optional] - The secondary id for this resource (recordId for RECORD,
deploymentId for SUITELET).

Important: This argument is required if type has been set to RECORD and you are
trying to resolve to a specific NetSuite record. In this scenario, you must
set id to the id of the target record.

• displayMode {string | boolean} [optional] - If the type argument is set to RECORD, set
displayMode to either VIEW or EDIT to return a URL for the record in EDIT mode or
VIEW mode. Note that even for RECORD calls, the displayMode argument is optional.
The default value is VIEW.

Important: If the type argument is set to SUITELET or RESTLET, set displayMode to
true to return an external URL. Set displayMode to false, or simply omit
the argument, to return an internal URL. For Suitelets and RESTlets,
displayMode automatically defaults to false.

Returns

• Depending on the values specified for the type and displayMode arguments, returns
URL string to an internal NetSuite resource or an external/internal URL to a Suitelet or
RESTlet.

Throws

• SSS_INVALID_URL_CATEGORY

• SSS_CATEGORY_ARG_REQD

• SSS_INVALID_TASK_ID

• SSS_TASK_ID_REQD

• SSS_INVALID_INTERNAL_ID

• SSS_INVALID_EDITMODE_ARG

Example

The following lines of code show 5 different approaches for resolving to a record or
Suitelet.

//resolve to a new Event record

SuiteScript Functions
Application Navigation APIs

493

SuiteScript Developer & Reference Guide

var url_new_event = nlapiResolveURL('RECORD', 'calendarevent');

//resolve to a specific Event record page in view mode
var url_view_event = nlapiResolveURL('RECORD', 'calendarevent', 1000);

//resolve to a specific Event record in edit mode
var url_edit_event = nlapiResolveURL('RECORD', 'calendarevent', 1000, 'EDIT');

//resolve to a specified tasklink
var url_job_search = nlapiResolveURL('TASKLINK', 'SRCH_JOB');

//resolve to a specific Suitelet by specifying the Suitelet scriptId and deploymentId
var_url_servlet = nlapiResolveURL('SUITELET', 10, 5);

Back to Application Navigation APIs | Back to SuiteScript Functions

nlapiSetRedirectURL(type, identifier, id, editmode, parameters)

Sets the redirect URL by resolving to a NetSuite resource. Note that all parameters must be
prefixed with custparam otherwise an SSS_INVALID_ARG error will be thrown.

This API is supported in beforeLoad and synchronous afterSubmit user events; it is also
supported in Suitelet scripts. Note that nlapiSetRedirectURL is ignored in beforeSubmit and
asynchronous afterSubmit user events.

You can use nlapiSetRedirectURL to customize navigation within NetSuite. In a user event
script, you can use nlapiSetRedirectURL to send the user to a NetSuite page based on a specific
user event. For example, under certain conditions you may choose to redirect the user to
another NetSuite page or custom Suitelet to complete a workflow.

Note: If you want to redirect a user to an external URL, you must use this function in a
Suitelet and set the type parameter to EXTERNAL. See the documentation for the
type parameter below.

If you redirect a user to a record, the record must first exist in NetSuite. If you want to redirect
a user to a new record, you must first create and submit the record before redirecting them. You
must also ensure that any required fields for the new record are populated before submitting
the record.

Parameters

• type {string} [required] - The base type for this resource. The types include:

• RECORD : Record type - - Note that when you set type to RECORD, and the third
param (id) to null, the redirection is to the “create new” record page, not an existing
record page.

• TASKLINK : Tasklink

• SUITELET : Suitelet

SuiteScript Functions
Application Navigation APIs

494

SuiteScript Developer & Reference Guide

• EXTERNAL : The URL of a Suitelet that is available externally (for example, Suitelets
that have been set to “Available without Login” on the Script Deployment page)

Important: The EXTERNAL value for type is only supported in Suitelets called
with an external URL.

• identifier {string} [required] - The primary id for this resource (recordType for
RECORD, scriptId for SUITELET, taskId for TASKLINK, url for EXTERNAL)

• id {string} [optional]- The secondary id for this resource (recordId for RECORD,
deploymentId for SUITELET).

Important: This argument is required if type has been set to RECORD and you are
trying to redirect to a specific NetSuite record. In the scenario, you must
set id to the id of the target record.

• editmode {boolean true || false} [optional] - For RECORD calls, this determines whether
to return a URL for the record in edit mode or view mode. If set to true, returns the URL
to an existing record in edit mode.

• parameters {hashtable} [optional] - An associative array of additional URL parameters.

Important: All parameters must be prefixed with custparam.

Returns

• void

Throws

• SSS_INVALID_ARG

• SSS_INVALID_URL_CATEGORY

• SSS_CATEGORY_ARG_REQD

• SSS_INVALID_TASK_ID

• SSS_TASK_ID_REQD

• SSS_INVALID_INTERNAL_ID

• SSS_INVALID_EDITMODE_ARG

Example 1

The following example sets the redirect URL following the creation of an opportunity to a
new task page. This script executes on an afterSubmit in a user event script.

if (type == 'create')
{

SuiteScript Functions
Date APIs

495

SuiteScript Developer & Reference Guide

 var opportunity_id = nlapiGetRecordId();
 var params = new Array();
 params['opportunity'] = opportunity_id;
 nlapiSetRedirectURL('RECORD','task', null, null, params);
}

Example 2

This script sets the redirect URL to a newly created task record. Note that the record must
exist and be submitted so the ID from the record can be used to set the redirect. This
function is also executed on an afterSubmit in a user event script.

function redirectTaskRecord()
{
 var taskTitle = 'New Opportunity';
 var record = nlapiCreateRecord('task');
 record.setFieldValue('title', taskTitle);
 id = nlapiSubmitRecord(record, true);
 nlapiSetRedirectURL('RECORD', 'task', id, false);
}

Back to Application Navigation APIs | Back to SuiteScript Functions

nlobjRequest

See nlobjRequest - defined in the section on Standard Objects.

Back to Application Navigation APIs | Back to SuiteScript Functions

nlobjResponse

See nlobjResponse - defined in the section on Standard Objects.

Back to Application Navigation APIs | Back to SuiteScript Functions

Date APIs
Use these APIs to manipulate standard JavaScript date and string objects.

All APIs listed below are in alphabetical order.

• nlapiAddDays(d, days)

• nlapiAddMonths(d, months)

• nlapiDateToString(d, format)

• nlapiStringToDate(str, format)

SuiteScript Functions
Date APIs

496

SuiteScript Developer & Reference Guide

nlapiAddDays(d, days)

Adds/subtracts a number of days to or from a date object

Parameters

• d {date} [required] - Date object

• days {int} [required] - Number of days being added to the date

Returns

• Date object corresponding to date that was passed in, plus the days you added or
subtracted

Back to Date APIs | Back to SuiteScript Functions

nlapiAddMonths(d, months)

Adds/subtracts a number of months to or from a date object

Parameters

• d {date} [required] - Date object

• months {int} [required] - number of months being added to the date

Returns

• Date object corresponding to date that was passed in, plus the months you added or
subtracted

Back to Date APIs | Back to SuiteScript Functions

nlapiDateToString(d, format)

Converts a date object to a string, formats the string based on the format argument passed in,
and then returns the formatted string.

Note: For client side scripts, the string returned is based on the user’s system time. For
server-side scripts, the string returned is based on the system time of the server
your NetSuite system is running on.

Parameters

• d {date} [required] - Date object being converted into a string

SuiteScript Functions
Date APIs

497

SuiteScript Developer & Reference Guide

• format {string} [optional] - Use one of the following arguments. If an argument is not
passed in, the date format is used by default.

• date — formats the string as a date, based on the Date Format selected in Set
Preferences.

• timeofday — formats the string as a time (hour and minutes), based on the Time
Format selected in Set Preferences.

• datetime — formats the string as a concatenation of date and time (hour and
minutes), based on the Date Format and Time Format selected in Set Preferences

• datetimetz — formats the string as a concatenation of date and time (hour, minutes
and seconds), based on the Date Format and Time Format selected in Set Preferences

Returns

• String format of the date that was passed

Back to Date APIs | Back to SuiteScript Functions

nlapiStringToDate(str, format)

Converts a string to a date object, formats the date object based on the format argument passed
in, and then returns the formatted date object. Be aware that leading zeroes in the month and
day values are not supported.

Note: For client side scripts, the date object returned is based on the user’s system time.
For server-side scripts, the date object returned is based on the system time of the
server your NetSuite system is running on.

Parameters

• str {string} [required] - String being converted to a date.

• format {string} [optional] - Use one of the following arguments.

Note: If you do not provide a format argument, your input string must not include
seconds. Without a format argument, the returned string defaults to the date
format.

• datetime — formats the string as a concatenation of date and time (hour and
minutes), based on the Date Format and Time Format selected in Set Preferences. If
you use this format type, your input string must not include seconds.

• datetimetz — formats the string as a concatenation of date and time (hour,
minutes and seconds), based on the Date Format and Time Format selected in Set
Preferences. If you use this format type, your input string must include seconds.

SuiteScript Functions
DateTime Time Zone APIs

498

SuiteScript Developer & Reference Guide

Returns

• Date object. Returns NaN if date includes a leading zero.

Example

var myDate = nlapiStringToDate('8.5.2008'); // supported
var myDate = nlapiStringToDate('8/5/2008'); // supported

var myDate = nlapiStringToDate('08.5.2009'); // not supported
var myDate = nlapiStringToDate('08/5/2009'); // not supported

var myDate = nlapiStringToDate('8.05.2009'); // not supported
var myDate = nlapiStringToDate('8/05/2009'); // not supported

Back to Date APIs | Back to SuiteScript Functions

DateTime Time Zone APIs
Use these APIs in user event scripts to manipulate the default time zone set by NetSuite.

All APIs listed are in alphabetical order.

• nlapiGetCurrentLineItemDateTimeValue(type, fieldId, timeZone)

• nlapiGetDateTimeValue(fieldId, timeZone)

• nlapiGetLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

• nlapiSetCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

• nlapiSetDateTimeValue(fieldId, dateTime, timeZone)

• nlapiSetLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

nlapiGetCurrentLineItemDateTimeValue(type, fieldId, timeZone)

This API returns the value of a datetime field on the currently selected line of a sublist. If
timeZone is passed in, the datetime value is converted to that time zone and then returned. If
timeZone is not passed in, the datetime value is returned in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. This field ID must point to a datetime
formatted field.

SuiteScript Functions
DateTime Time Zone APIs

499

SuiteScript Developer & Reference Guide

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• The string value of a Date/Time field on the currently selected line.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

nlapiGetDateTimeValue(fieldId, timeZone)

This API returns the value of a datetime field. If timeZone is passed in, the datetime value is
converted to that time zone and then returned. If timeZone is not passed in, the datetime value
is returned in the default time zone.

Parameters

• fieldId {string} [required] — The internal field ID. This field ID must point to a datetime
formatted field.

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• The string value of a datetime field.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

var tz = nlapiGetDateTimeValue('custrecord_datetimetz', 'America/Los_Angeles');

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Functions
DateTime Time Zone APIs

500

SuiteScript Developer & Reference Guide

nlapiGetLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

This API returns the value of a datetime field on a sublist. If timeZone is passed in, the datetime
value is converted to that time zone and then returned. If timeZone is not passed in, the
datetime value is returned in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• lineNum {int} [required] — The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• The string value of a datetime field on a sublist.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

nlapiSetCurrentLineItemDateTimeValue(type, fieldId, dateTime,
timeZone)

This API sets the value of a datetime field on the currently selected line of a sublist. If timeZone
is passed in, the datetime value is converted to that time zone and then set. If timeZone is not
passed in, the datetime value is set in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Functions
DateTime Time Zone APIs

501

SuiteScript Developer & Reference Guide

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• void

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

nlapiSelectNewLineItem('recmachcustrecord_childdatetime');
nlapiSetCurrentLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datetimetzc
ol', '07/10/2013 06:00:01 am');
nlapiCommitLineItem('recmachcustrecord_childdatetime');

nlapiSetDateTimeValue(fieldId, dateTime, timeZone)

This API sets the value of a datetime field. If timeZone is passed in, the datetime value is
converted to that time zone and then set. If timeZone is not passed in, the datetime value is set
in the default time zone.

Parameters

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• void

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Functions
DateTime Time Zone APIs

502

SuiteScript Developer & Reference Guide

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

nlapiSetDateTimeValue('custrecord_datetimetz', '09/25/2013 06:00:01 am', 'Asia/Manila');

nlapiSetLineItemDateTimeValue(type, fieldId, lineNum, dateTime,
timeZone)

This API sets the value of a datetime field on a sublist. If timeZone is passed in, the datetime
value is converted to that time zone and then set. If timeZone is not passed in, the datetime
value is set in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• lineNum {int} [required] — The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• void

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Functions
Currency APIs

503

SuiteScript Developer & Reference Guide

Example

nlapiSetLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datetimetzcol', 1,
 '09/25/2013 06:01:01 AM', 'Asia/Hong_Kong');

Currency APIs
Use these APIs to work with currency, as it pertains to your NetSuite account.

All APIs listed below are in alphabetical order.

• nlapiExchangeRate(sourceCurrency, targetCurrency, effectiveDate)

• nlapiFormatCurrency(str)

nlapiExchangeRate(sourceCurrency, targetCurrency, effectiveDate)

Use this API to get the exchange rate between two currencies based on a certain date. The
exchange rate values you are getting are those that appear in the Exchange Rate column of the
Currency Exchange Rates record (see figure).

Note: The Currency Exchange Rate record itself is not a scriptable record.

The usage metering allowed for this API is 10 units. This API is supported in all script types.

When using this API, the first currency (sourceCurrency) is the one to look up relative to the
second (targetCurrency). The date (effectiveDate) is the rate in effect on that date. If there
are multiple rates, it is the latest entry on that date.

SuiteScript Functions
Currency APIs

504

SuiteScript Developer & Reference Guide

For example, if you call nlapiExchangeRate('GBP', 'USD', '04/22/2010') and it returns '2',
this means that if you were to enter an invoice on 4/22/10 for a GBP customer in your USD
subsidiary, the rate would be 2.

Parameters

• sourceCurrency {string|int} [required] - The currency internal ID or symbol. For example,
you can use either 1 (currency ID) or USD (currency symbol). If you have the Multiple
Currencies feature enabled in your account, you can see all currency IDs and symbols by
going to Lists > Accounting > Currencies.

• targetCurrency {string|int} [required] - The currency internal ID or symbol.

• effectiveDate {string|int} [optional] - If not supplied, then effectiveDate defaults to the
current date.

Returns

• The exchange rate (as a decimal number) in the same precision that is displayed in the
NetSuite UI.

Throws

• SSS_INVALID_CURRENCY_ID (if an invalid currency (from or to) is specified)

Since

• Version 2009.1

Example

This sample shows how to obtain the exchange rate between the Canadian dollar and the US
dollar on March 17, 2009. The returned rate is applied against the Canadian dollar amount to
obtain the amount in US dollars.

var canadianAmount = 100;
//specify source and target currencies as well as the exchange rate date
var rate = nlapiExchangeRate('CAD', 'USD', '03/17/2009');
var usdAmount = canadianAmount * rate;

Back to Currency APIs | Back to SuiteScript Functions

nlapiFormatCurrency(str)

Formats a String into a currency field value

Parameters

• str {string} [required] - String being formatted into currency

SuiteScript Functions
Encryption APIs

505

SuiteScript Developer & Reference Guide

Returns

• String

Back to Currency APIs | Back to SuiteScript Functions

Encryption APIs

nlapiEncrypt(s, algorithm, key)

Encodes, encrypts, or obfuscates a clear text string.

Parameters

• s {string} [required] - The string to encode, obfuscate or encrypt.

• algorithm {string} [required] - The algorithm to use. See table for options.

Algorithm Description

sha1 This option has been deprecated.

aes Symmetric AES encryption

base64 Base-64 encoding

xor Exclusive-OR obfuscation

Important: base64 encoding and XOR obfuscation are not forms of encryption.

• key {string} [optional] - The secret key that is used for AES encryption. Only applicable
when using the aes algorithm. This string can be a 128–bit, 192–bit, or 256–bit hex key.

Returns

• String

Back to Encryption APIs | Back to SuiteScript Functions

XML APIs
Use these APIs when working with XML documents.

All APIs listed below are in alphabetical order.

• nlapiEscapeXML(text)

• nlapiSelectNode(node, xpath)

SuiteScript Functions
XML APIs

506

SuiteScript Developer & Reference Guide

• nlapiSelectNodes(node, xpath)

• nlapiSelectValue(node, xpath)

• nlapiSelectValues(node, path)

• nlapiStringToXML(text)

• nlapiValidateXML(xmlDocument, schemaDocument, schemaFolderId)

• nlapiXMLToString(xml)

• nlapiXMLToPDF(xmlstring)

nlapiEscapeXML(text)

Prepares a String for use in XML by escaping XML markup (for example, angle brackets,
quotation marks, and ampersands)

Parameters

• text {string} [required] - String being escaped

Returns

• String

Example

In this line, nlapiEscapeXML is being used to escape special characters, such as an
ampersand (&), that may appear in the names of items that are returned in an Item
search. For the complete code sample, see Example 2 in the API documentation for
nlapiXMLToPDF.

strName += nlapiEscapeXML(searchresult.getValue('name'));

Back to XML APIs | Back to SuiteScript Functions

nlapiSelectNode(node, xpath)

Selects a node from an XML document using an XPath expression

Parameters

• node {node} [required] - XML node being queried

• xpath {string} [required] - XPath expression used to query node

SuiteScript Functions
XML APIs

507

SuiteScript Developer & Reference Guide

Returns

• Node

Back to XML APIs | Back to SuiteScript Functions

nlapiSelectNodes(node, xpath)

Selects an array of nodes from an XML document using an XPath expression

Parameters

• node {node} [required] - XML node being queried

• xpath {string} [required] - XPath expression used to query node

Returns

• Node[]

Back to XML APIs | Back to SuiteScript Functions

nlapiSelectValue(node, xpath)

Selects a value from an XML document using an XPath expression

Parameters

• node {node} [required] - XML node being queried

• xpath {string} [required] - XPath expression used to query node

Returns

• String

Back to XML APIs | Back to SuiteScript Functions

nlapiSelectValues(node, path)

Selects an array of values from an XML document using an XPath expression

Parameters

• node {node} [required] - XML node being queried

• path {string} [required] - XPath expression used to query node

SuiteScript Functions
XML APIs

508

SuiteScript Developer & Reference Guide

Returns

• String[]

Back to XML APIs | Back to SuiteScript Functions

nlapiStringToXML(text)

Parses a String into a W3C XML document. This API is useful if you want to navigate/query a
structured XML document more effectively using either the Document API or NetSuite built-in
XPath functions.

Parameters

• text {string} [required] - String being converted

Returns

• W3C Document object

Back to XML APIs | Back to SuiteScript Functions

nlapiValidateXML(xmlDocument, schemaDocument, schemaFolderId)

Validates a supplied XML document against a supplied XML Schema (XSD Document).

Important: nlapiValidateXML only validates XML Schema (XSD); validation of other XML
schema languages is not supported.

The supplied XML Document and XSD Document must be passed in the form of a W3C
Document object. Use nlapiStringToXML(text) to convert both documents before calling
nlapiValidateXML. The location of your source XML Document and XDS Document does not
matter; the validation is performed with the Document objects stored in memory.

XML Validation Output

If the validation is successful, nlapiValidateXML returns void. If the validation is not successful,
nlapiValidateXML throws the error code SSS_XML_DOES_NOT_CONFORM_TO_SCHEMA
and an nlobjError object containing error messages for the first 10 errors encountered.
Use nlapiLogExecution(type, title, details) within a try catch statement to view these error
messages; they are not automatically listed in the Execution Log.

try {
 nlapiValidateXML(xmlDocument, xsdDocument, '1234');
}
catch(e) {
 nlapiLogExecution('ERROR', 'XML Validation Failed: ' + e.getCode(), e.getDetails());

SuiteScript Functions
XML APIs

509

SuiteScript Developer & Reference Guide

The log output will include up to three types of error messages: fatal errors, errors, and
warnings.

Fatal Error: cvc-pattern-valid: Value '8812312319923' is not facet-valid with respect to
pattern '[0-9]{6}' for type 'orderidtype'.
Error: cvc-complex-type.3.2.2: Attribute 'bak' is not allowed to appear in element 'shiporder'.

Error: cvc-complex-type.3.2.2: Attribute 'ban' is not allowed to appear in element 'shiporder'.

Error: cvc-complex-type.3.2.2: Attribute 'binn' is not allowed to appear in element 'shiporder'
.
Error: cvc-complex-type.3.2.2: Attribute 'dat' is not allowed to appear in element 'shiporder'.

Error: cvc-attribute.3: The value '8812312319923' of attribute 'orderid' on element 'shiporder'

is not valid with respect to its type, 'orderidtype'.
Error cvc-complex-type.2.2: Element 'option' must have no element [children], and the value
must be valid.
Error: cvc-complex-type.2.4.a: Invalid content was found starting with element 'property'. One

of '{property_id}'is expected.
Error: cvc-complex-type.3.2.2: Attribute 'title' is not allowed to appear in element
'shiporder'.
Warning: cvc-complex-type.3.2.2: Attribute 'expire' is not allowed to appear in element
'shiporder'.

Note that nlapiLogExecution(type, title, details) only logs warnings if errors are also logged. If
nlapiValidateXML(xmlDocument, schemaDocument, schemaFolderId) encounters warnings
and no errors, the validation passes.

Parameters

• xmlDocument {document} [required] — XML Document being validated.

• schemaDocument {document} [required] — XML Schema (in the form of an XSD
Document) being validated against.

• schemaFolderId {string} [optional] — Only required if the passed XML Schema uses
<import> or <include> tags that reference child schemas by file path (as opposed to
references by URL. To use this parameter, upload the child schema(s) to a folder in the
NetSuite file cabinet. Then pass the folder internal ID as the schemaFolderId argument.
Note that SuiteScript ignores this argument if it is passed, but not needed.

Returns

• Void

Throws

• SSS_XML_DOES_NOT_CONFORM_TO_SCHEMA — Thrown when the validation
fails. See XML Validation Output for additional information.

SuiteScript Functions
XML APIs

510

SuiteScript Developer & Reference Guide

• SSS_XML_SCHEMA_MISSING_DEPENDECY_FOLDER_ID — Thrown when an
invalid schemaFolderId argument is passed; also thrown when schemaFolderId is required
but missing.

Since

• Version 2014 Release 1

Example

//load an XML document from the file cabinet
var xmlFile = nlapiLoadFile('1234');
var xmlDocument = nlapiStringToXML(xmlFile.getValue());

//load an XSD document from the file cabinet
var xsdFile = nlapiLoadFile('4321');
var xsdDocument = nlapiStringToXML(xsdFile.getValue());

//validate that the XML document conforms to the schema
try {
 nlapiValidateXML(xmlDocument, xsdDocument, '1234');
}
catch(e) {
 nlapiLogExecution('ERROR', 'XML Validation Failed: ' + e.getCode(), e.getDetails());
}
nlapiLogExecution('ERROR', 'XML Validation Succeeded', xmlFile.getName());

nlapiXMLToString(xml)

Converts (serializes) an XML document into a String. This API is useful if you want to serialize
and store a Document in a custom field (for example).

Parameters

• xml {W3C Document} [required] - XML document being serialized

Returns

• String

Back to XML APIs | Back to SuiteScript Functions

nlapiXMLToPDF(xmlstring)

Use this API in conjunction with the Big Faceless Report Generator built by Big Faceless
Organization (BFO). The BFO Report Generator is a third-party library used for converting
XML to PDF documents. Using nlapiXMLToPDF in combination with the BFO report library,
SuiteScript developers can now generate PDF reports from Suitelets.

SuiteScript Functions
XML APIs

511

SuiteScript Developer & Reference Guide

Note: SuiteScript developers do not need to install any BFO-related files or components to
use the Report Generator functionality.

The nlapiXMLToPDF API passes XML to the BFO tag library (which is stored by NetSuite), and
returns a PDF nlobjFile object. Note that there is a 5MB limitation to the size of the file that can
be created.

The following list includes some of the output styles that can be generated using nlapiXMLToPDF
and BFO tags:

• Consolidated data from multiple transactions into one (for example, a virtual consolidated
invoice)

• Highly tailored transaction output with images

• Product labels with bar codes

• Pallet labels with bar codes (custom records)

• Custom-formatted product catalogs with images

• Proposals

For details on BFO, available tags, and BFO examples, see the following links:

• http://faceless.org/products/report/docs/userguide.pdf

• http://faceless.org/products/report/docs/tags/

Parameters

• xmlstring {string} [required] – XML

Returns

• PDF nlobjFile object

Throws

• Error: ERROR_PARSING_XML (thrown as a user error when XML is badly formed)

Since

• Version 2009.1

Example 1

This sample shows how to generate a PDF from a Suitelet. The output is a PDF that reads Hello
World! See also, Working with BFO (the Basics).

http://faceless.org/products/report/docs/userguide.pdf
http://faceless.org/products/report/docs/tags/

SuiteScript Functions
XML APIs

512

SuiteScript Developer & Reference Guide

function helloWorld()
{
var xml = "<?xml version=\"1.0\"?>\n<!DOCTYPE pdf PUBLIC \"-//big.faceless.org//report\" \"repo
rt-1.1.dtd\">\n<pdf>\n<body font-size=\"18\">\nHello World!\n</body>\n</pdf>";
var file = nlapiXMLToPDF(xml);
response.setContentType('PDF','helloworld.pdf');
response.write(file.getValue());
}

Example 2

This sample shows how to create a PDF of a pricing list. All data for the pricing list is pulled
from NetSuite, organized into tables, and then transformed into a PDF.

function priceListPDF(request, response)
{
// set search filters for pricing list search
var filters = new Array();

// against pricing lists, search for a specific customer
filters [0] = new nlobjSearchFilter('customer', 'pricing', 'is', '121');

// against pricing lists, look for lists that have currency defined as USA
filters [1] = new nlobjSearchFilter('currency', 'pricing', 'is', '1');

// set search return columns for pricing list search
var columns = new Array();
columns[0] = new nlobjSearchColumn('pricelevel', 'pricing');
columns[1] = new nlobjSearchColumn('unitprice', 'pricing');
columns[2] = new nlobjSearchColumn('name');

// when doing a pricing list search you must specify ‘item' as the search type
var searchresults = nlapiSearchRecord('item', null, null, columns);

// create a table to present the results of the search
var strName = "<table>";

// iterate through the results
for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 searchresult = searchresults[i];
 strName += "<tr><td>";
 // note the use of nlapiEscapeXML to escape any special characters,
 // such as an ampersand (&) in any of the item names
 strName += nlapiEscapeXML(searchresult.getValue('name'));
 strName += "</td>";
 strName += "<td>";
 strName += searchresult.getValue('unitprice', 'pricing');
 strName += "</td>";
 strName += "<td>";
 strName += "<barcode codetype=\"code128\" showtext=\"true\" value=\"";
 strName += searchresult.getValue('unitprice', 'pricing');
 strName += "\"/>";
 strName += "</td></tr>";
 }
strName += "</table>";

// build up BFO-compliant XML using well-formed HTML

SuiteScript Functions
XML APIs

513

SuiteScript Developer & Reference Guide

var xml = "<?xml version=\"1.0\"?>\n<!DOCTYPE pdf PUBLIC \"-//big.faceless.org//
 report\" \"report-1.1.dtd\">\n";
xml += "<pdf>\n<body font-size=\"12\">\n<h3>My Pricing List</h3>\n";
xml += "<p></p>";
xml += strName;
xml += "</body>\n</pdf>";

// run the BFO library to convert the xml document to a PDF
var file = nlapiXMLToPDF(xml);

// set content type, file name, and content-disposition (inline means display in browser)
response.setContentType('PDF','Pricing List.pdf', 'inline');

// write response to the client
response.write(file.getValue());
}

Example 3

For NetSuite customers who want to print a PDF that includes Cyrillic characters (Russian
text), this sample shows how to point to a Russian font set hosted by NetSuite. To print Russian
text, you must include the <link> tag within the <head>. The path in your <link> tag must be
the exact path that is specified here in this sample.

function main(Request, Response)
{
 var xml = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" +
 "<!DOCTYPE pdf PUBLIC \"-//big.faceless.org//report\" \"report-1.1.dtd\">\n" +
 "<pdf lang=\"ru-RU\" xml:lang=\"ru-RU\">\n" +
 "<head>\n" +
 "<link name=\"russianfont\" type=\"font\" subtype=\"opentype\" " +
 "src=\"NetSuiteFonts/verdana.ttf\" " +
 "src-bold=\"NetSuiteFonts/verdanab.ttf\" " +
 "src-italic=\"NetSuiteFonts/verdanai.ttf\" " +
 "src-bolditalic=\"NetSuiteFonts/verdanabi.ttf\" " +
 "bytes=\"2\"/>\n" +
 "</head>\n" +
 "<body font-family=\"russianfont\" font-size=\"18\">\n" +
 "<p>Russian: Русский текст</p>\n" +
 "<p>Russian Italic: <i>Русский текст</i></p>\n" +
 "<p>Russian Bold: Русский текст</p>\n" +

SuiteScript Functions
File APIs

514

SuiteScript Developer & Reference Guide

 "<p>Russian Bold Italic: <i>Русский текст</i></p>\n" +
 "</body>\n" +
 "</pdf>";
 var file = nlapiXMLToPDF(xml);
 Response.setContentType('PDF','helloworld.pdf', 'inline');
 Response.write(file.getValue());
}

Working with BFO (the Basics)

For convenience, the following basic coding details regarding BFO are here for SuiteScript
developers. For more detailed explanations, see the section called “Creating the XML -
A Simple Example” in the BFO User Guide (http://faceless.org/products/report/docs/
userguide.pdf).

1. The XML declaration <?xml version="1.0"?> must always be included as the very first
line of the file.

2. The DOCTYPE declaration tells the XML parser which DTD to use to validate the XML
against.

3. The top level element of the XML document must always be <pdf>.

4. Like HTML, the document consists of a “head”, containing information about the
document, and a “body” containing the contents of the document.

5. In XML an element must always be “closed” - this means that <pdf> must always be
matched by </pdf>, by and so on. When an element has no content, like
,
 or <meta>, it may close itself.

6. The <body> element can have some attributes set - background-color and font-size. In
XML, every attribute value must be quoted - this can be frustrating for HTML authors
used to typing <table width=100%>.

Back to XML APIs | Back to SuiteScript Functions

File APIs
Use these APIs to work with files that currently exist in the NetSuite file cabinet. These APIs
can also be used to create files to load into NetSuite or to send as attachments in email.

All APIs listed below are in alphabetical order.

• nlapiCreateFile(name, type, contents)

• nlapiDeleteFile(id)

• nlapiLoadFile(id)

• nlapiSubmitFile(file)

http://faceless.org/products/report/docs/userguide.pdf
http://faceless.org/products/report/docs/userguide.pdf

SuiteScript Functions
File APIs

515

SuiteScript Developer & Reference Guide

• nlobjFile

nlapiCreateFile(name, type, contents)

Instantiates and returns an nlobjFile object. The file object can be used as an email or fax
attachement. The file object can also be saved to the file cabinet using nlapiSubmitFile(file).

Note: There is a 5MB limitation to the size of the document that can be created using this
API.

The nlapiCreateFile API can also be used for streaming to clients (via Suitelets). For
streaming or attaching binary content, you can call the following. Note that each of these APIs
can load or generate binary content, provided that the contents argument is base-64 encoded.

• nlapiLoadFile(id)

• nlapiPrintRecord(type, id, mode, properties)

• nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

This API is supported in user event, scheduled, portlet, mass update, and Suitelet scripts.

Important: Be aware that the nlapiCreateFile function does not support the creation
of non-text file types such as PDFs, unless the contents argument is base-64
encoded.

Parameters

• name {string} [required] - The name of the file

• type {string} [required] - The file type. For a list of supported file types, see Supported
File Types in the NetSuite Help Center. Note that when specifiying the type for an ad-hoc
email or fax attachment, only non-binary types are supported (for example, PLAINTEXT,
HTMLDOC, XMLDOC), unless the contents argument is base-64 encoded.

• contents {string} [required] - The contents of the file

Returns

• An nlobjFile object

Since

• Version 2008.1

Example 1

This example shows how to create a basic text file to use as an email attachment. Note that once
created, the file object will not be stored in the file cabinet.

SuiteScript Functions
File APIs

516

SuiteScript Developer & Reference Guide

function sendAttachment()
{
var newAttachment = nlapiCreateFile('helloworld.txt', 'PLAINTEXT', 'Hello World\nHello World');

var newEmail = nlapiSendEmail(210, 'kwolfe@netsuite.com', 'Sample email and attachment',
 'Please see the attached file', null, null, null, newAttachment);
}

Example 2

This example shows how to turn a file merge into a PDF document object. The PDF can then
be used as an email attachment.

var pdfcontents = nlapiMergeRecord(.....)
var fileObj = nlapiCreateFile('mypdf.pdf', 'PDF', pdfcontents)

Back to File APIs | Back to SuiteScript Functions

nlapiDeleteFile(id)

Deletes a file and returns the internal ID of the file that was deleted. Usage metering allowed for
this function is 20 units. This API is supported in user event, scheduled, portlet, and Suitelet
scripts.

Parameters

• id {int} [required] - The internal ID for the file you want to delete

Returns

• The internal ID for the file that was deleted as an integer

Since

• Version 2009.1

Back to File APIs | Back to SuiteScript Functions

nlapiLoadFile(id)

Loads a file from the NetSuite file cabinet (using the file's internal ID or path). Returns an
nlobjFile object that encapsulates the file's metadata (name and type) and contents in the form
of a String (base-64 encoded if the file's type is binary). The script context must have privileges
to the file (based on folder permissions), and the file cannot be a hidden (bundled) file.

Usage metering allowed for nlapiLoadFile is 10 units. This API is supported in server-side
scripts.

SuiteScript Functions
File APIs

517

SuiteScript Developer & Reference Guide

Note: nlapiLoadFile can load nlobjFile objects of any size, as long as the file size is
permitted by the file cabinet.

Parameters

• id {string | int} [required] - The internal id of the file in the file cabinet. Can also be a
relative path to the file in the file cabinet (for example: SuiteScript/myfile.js).

Returns

• An nlobjFile object

Example

This example shows how to load a jpeg that is currently in the Images folder in the File Cabinet.
The script will return the file as a NetSuite nlobjFile object, which allows you to use nlobjFile
methods to interact with the file.

function logEvent(type)
{
 var f = nlapiLoadFile('Images/logo_goat.jpg');
 if (f)
 {
 nlapiLogExecution('AUDIT', 'Event', 'Type:'+type+' file;'+f.getId());
 }
 else
 nlapiLogExecution('AUDIT', 'Event', 'No file;');
}

Back to File APIs | Back to SuiteScript Functions

nlapiSubmitFile(file)

Submits a file and returns the internal ID to the file that was added to (or updated in) the
NetSuite file cabinet. Note that if a file with the same name exists in the folder that this file is
added to, then that file will be updated.

Note: nlapiSubmitFile can submit nlobjFile objects of any size, as long as the file size is
permitted by the file cabinet .

Usage metering allowed for this function is 20 units. This API is supported in user event,
scheduled, portlet, and Suitelet scripts.

Parameters

• file {nlobjFile} [required] - The nlobjFile that will be updated

Returns

• The integer value of the file ID.

SuiteScript Functions
Error Handling APIs

518

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Example

• See the code sample in Uploading Files to the File Cabinet Using SuiteScript.

Back to File APIs | Back to SuiteScript Functions

nlobjFile
See nlobjFile - defined in the section on Standard Objects.

Back to File APIs | Back to SuiteScript Functions

Error Handling APIs
All APIs listed below are in alphabetical order.

• nlapiCreateError(code, details, suppressNotification)

• nlobjError

nlapiCreateError(code, details, suppressNotification)
Creates an nlobjError (complete with stacktrace) that can be thrown to abort script execution.
This API is supported in user event, scheduled, portlet, and Suitelet scripts.

Parameters

• code {string} [required] - A user-defined error code

• details {string} [required] - The error details

• suppressNotification {boolean true || false} [optional] - If not set, defaults to false and
an email notification with error details is sent after script execution. If set to true, the
error email notification is suppressed.

Returns

• An nlobjError object

Back to Error Handling APIs | Back to SuiteScript Functions

nlobjError
See nlobjError - defined in the section on Standard Objects.

SuiteScript Functions
Communication APIs

519

SuiteScript Developer & Reference Guide

Back to Error Handling APIs | Back to SuiteScript Functions

Communication APIs
Use these APIs to communicate to external systems from within NetSuite.

All APIs listed below are in alphabetical order.

• nlapiSendCampaignEmail(campaigneventid, recipientid)

• nlapiSendEmail(author, recipient, subject, body, cc, bcc, records, attachments,
notifySenderOnBounce, internalOnly, replyTo)

• nlapiSendFax(author, recipient, subject, body, records, attachments)

• nlapiOutboundSSO(id)

nlapiSendCampaignEmail(campaigneventid, recipientid)

Use this function to send a single “on-demand” campaign email to a specified recipient and
return a campaign response ID to track the email. This function works in conjunction with the
Lead Nurturing (campaigndrip) sublist only; it does not work with the E-mail (campaignemail)
sublist.

Campaign Email Volume provisioning is used for the account. 10 units of usage metering is
allowed. This API is supported in user event, scheduled, Suitelet, mass update, and workflow
action scripts.

Parameters

• campaigneventid {int} [required] - The internal ID of the campaign event. The campaign
must be of type campaigndrip, which is referred to as Lead Nurturing in the UI.

• recipientid {int} [required] - The internal ID of the recipient. Note that the recipient
must have an email.

Returns

• A campaign response ID (tracking code) as an integer, or -1 if the send fails.

Since

• Version 2010.1

Example

This sample shows how to create a new campaign event and email the event to a specified
recipient. Once the email is sent, the sender can use the campaign response ID that is returned
for tracking purposes.

SuiteScript Functions
Communication APIs

520

SuiteScript Developer & Reference Guide

// Create the new campaign record in dynamic mode so all field values can be dynamically source
d.
// For information on dynamic scripting, see
Working with Records in Dynamic Mode.
var campaign1 = nlapiCreateRecord('campaign', {recordmode: ‘dynamic'});
campaign1.setFieldValue('title', 'Sample Lead Nurturing Campaign');

//Set values on the Lead Nurturing (campaigndrip) sublist
campaign1.selectNewLineItem('campaigndrip');

// 4 is a sample ID representing an existing marketing campaign
campaign1.setCurrentLineItemValue('campaigndrip', 'template', 4);
campaign1.setCurrentLineItemValue('campaigndrip', 'title', 'Sample Lead Nurturing Event');

// 1 is a sample ID representing an existing subscription
campaign1.setCurrentLineItemValue('campaigndrip', 'subscription', 1);

// 2 is a sample ID representing an existing channel
campaign1.setCurrentLineItemValue('campaigndrip', 'channel', 2);

// 1 is a sample ID representing an existing promocode
campaign1.setCurrentLineItemValue('campaigndrip', 'promocode', 1);
campaign1.commitLineItem('campaigndrip');

// Submit the record
var campaign1Key = nlapiSubmitRecord(campaign1);

// Load the campaign record you just created. Determine the internal ID of the campaign event
// to the variable campaign2_campaigndrip_internalid_1.
var campaign2 = nlapiLoadRecord('campaign', campaign1Key, {recordmode: ‘dynamic'});
var campaign2_campaigndrip_internalid_1 = campaign2.getLineItemValue('campaigndrip', 'internali
d', 1);

// 142 is a sample ID representing the ID of a recipient with a valid email address
var campaignResponseId = nlapiSendCampaignEmail(campaign2_campaigndrip_internalid_1, 142);

Back to Communication APIs | Back to SuiteScript Functions

nlapiSendEmail(author, recipient, subject, body, cc, bcc, records,
attachments, notifySenderOnBounce, internalOnly, replyTo)

nlapiSendEmail sends and records outgoing email to an individual or to a group of individuals.
You can use nlapiSendEmail in the following ways:

• To send bulk email.

• To send important email, for which you need bounceback notifications when the email is
not successfully delivered. To do this, set notifySenderOnBounce to true. Note that when
this parameter is used, the maximum number of total recipients (recipient + cc + bcc)
allowed is 10. In addition, the governance is increased to 20 usage units..

• To attach emails to custom records. To do this, reference the custom record by either its
internalId or scriptId. You can send multiple attachments of any media type with this

SuiteScript Functions
Communication APIs

521

SuiteScript Developer & Reference Guide

function. Email messages have a 15MB size limit. The total size of the message plus any
attachments must be 15MB or less. The size of any individual attachment may not exceed
5MB.

• To send an email message from one address and to receive replies at another address. To
do this, use the replyTo parameter.

Note: This API normally uses a bulk email server to send emails. When
notifySenderOnBounce is set to true though, nlapiSendEmail uses a different,
transactional, email server with a higher successful delivery rate. If you need to
increase the successful delivery rate of an email, set notifySenderOnBounce to true
even if you do not need bounceback notifications.

You can use NetSuite email templates to construct the body of the email using a
set of APIs supporting scriptable templates. For information on these APIs, see
nlapiCreateEmailMerger(templateId). Version 2014 Release 1 introduced scriptable templates
as a replacement for CRMSDK templates. CRMSDK templates were deprecated with Version
2015 Release 1 and will no longer be supported as of Version 2016 Release 1. To facilitate this
final transition to scriptable templates, Version 2015 Release 1 also deprecated the SuiteScript
function nlapiMergeRecord(id, baseType, baseId, altType, altId, fields), used to perform mail
merges with CRMSDK templates. This function will no longer be supported as of Version 2016
Release 1.

Note: If your body argument contains XML tags and you want SuiteScript to format the
body as plain text, wrap the XML in an HTML <pre> tag (<pre> XML goes here
</pre>). The <pre> tag tells the email client that the body is pre-formatted and
instructs the client to ignore any control characters. When the email is opened, the
XML displays as plain XML source.

This API is supported in all client and server-side script types. When notifySenderOnBounce is
not used, the governance for this function is 10 usage units. When notifySenderOnBounce is set
to true, the governance for nlapiSendEmail increases from 10 to 20 usage units.

Parameters

• author {int} [required] - The internalId of an employee record (this is the sender). To get
the internal ID for an employee, go to Lists > Employees > Employees (you must have
admin access to the account to access the Employees list page). The employee's ID will
appear in the Internal ID column on the list page. Note that you must have the Show
Internal IDs preference enabled in your account. To enable this preference, go to Home >
Set Preferences > General tab > under Defaults > click Show Internal IDs > click Save.

• recipient {string | int} [required] - Set one of the following for this parameter:

• A single external email address

SuiteScript Functions
Communication APIs

522

SuiteScript Developer & Reference Guide

• A list of external addresses (comma separated)

Note: If multiple recipients are passed, only the first recipient displays on the
Communication tab (under the Recipient column). This is due to the
design of the UI. To view all recipients, click View to open the Message
record. The complete list of recipients displays on the Recipients tab.

Important: When notifySenderOnBounce is true, the maximum number of total
recipients (recipient + cc + bcc) allowed is 10.

• The internal ID of a single entity in NetSuite. Note that if the internal ID of the
recipient entity record is used, the email message is automatically attached to the
entity record.

• subject {string} [required] - Subject of the outgoing mail. A JavaScript exception is
thrown if this argument is left blank, set to null, or set to an empty string.

• body {string | nlobjFile[]} object returned from nlapiMergeRecord(id, baseType, baseId,
altType, altId, fields)} [required] - Body of the outgoing email. A JavaScript exception is
thrown if this argument is left blank, set to null, or set to an empty string.

• cc {string | string[]} [optional] - An array of email addresses or a single email address to
copy

Important: When notifySenderOnBounce is true, the maximum number of total
recipients (recipient + cc + bcc) allowed is 10.

• bcc {string | string[]} [optional] - An array of email addresses or a single email address to
blind copy.

Important: When notifySenderOnBounce is true, the maximum number of total
recipients (recipient + cc + bcc) allowed is 10.

• records {hashtable} [optional] - An associative array of internal records to associate/attach
this email with. The following table lists valid keys -> values.

Key Value (examples)

transaction

(use for transaction and opportunity record types)

records[' transaction '] = ' 1000 ';

activity

(use for Case and Campaign record types)

records[' activity '] = ' 50 ';

entity

(use for all Entity record types, for example, customer,
contact, etc.)

records[' entity '] = ' 555 ';

record records['record'] = '3';

SuiteScript Functions
Communication APIs

523

SuiteScript Developer & Reference Guide

Key Value (examples)

(custom record internalId - for custom records you must
also specify both the record ID and the record type ID)

recordtype

(custom recordtype internalId or scriptId)

records[' recordtype '] = '
customrecord11 ';

• attachments {nlobjFile | nlobjFile[]} [optional] - A single nlobjFile object - or - an array of
nlobjFile objects to attach to outgoing email (not supported in Client SuiteScript).

• notifySenderOnBounce {Boolean true | false} [optional] — A value of true causes
bounceback notifications to be sent to the original sender for each supplied recipient.
Note that bounceback notification support is dependent upon the recipient’s email server
settings.

Important: When notifySenderOnBounce is true, the maximum number of
total recipients (recipient + cc + bcc) allowed is 10. In addition, the
governance for nlapiSendEmail increases from 10 to 20 usage units per
execution.

• internalOnly {Boolean true | false} [optional] — A value of true sets a new message
record as internal only. When a message record is set to internal only, customers do not see
the message from the customer center.

• replyTo {string} [optional] — The email address that appears in the reply-to header when
an email is sent out. If the recipient replies to the email, the value passed to replyTo is
prepopulated in the To: field of the recipient's response.

Set one of the following for this parameter:

• A single external email address

• A generic email address created by the plug-in. For more information about the
Email Capture Plug-in, see the help topic Email Capture Plug-in Overview.

Returns

• void

Throws

• SSS_AUTHOR_MUST_BE_EMPLOYEE — Thrown when an invalid internal ID is passed
for the author parameter.

• SSS_AUTHOR_REQD — Thrown when the author argument is left blank, set to null, or
set to an empty string.

• SSS_INVALID_BCC_EMAIL — Thrown when an invalid email address is passed for the
bcc parameter.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4235218166.html

SuiteScript Functions
Communication APIs

524

SuiteScript Developer & Reference Guide

• SSS_INVALID_CC_EMAIL — Thrown when an invalid email address is passed for the cc
parameter.

• SSS_INVALID_RECIPIENT_ID — Thrown when an invalid internal ID is passed for the
recipient parameter.

• SSS_INVALID_REPLYTO_EMAIL — Thrown when an invalid email address is passed for
the replyTo parameter.

• SSS_INVALID_TO_EMAIL — Thrown when an invalid email address is passed for the
recipient parameter.

• SSS_MAXIMUM_NUMBER_RECIPIENTS_EXCEEDED — Thrown when
notifySenderOnBounce is true and the total number of recipients (recipient + cc + bcc)
exceeds 10.

• SSS_MISSING_REQD_ARG — Thrown when a required argument is left blank, set to
null, or set to an empty string.

• SSS_RECIPIENT_REQD — Thrown when the recipient argument is left blank, set to null,
or set to an empty string.

Example 1

// Merge, send, and associate an email with an opportunity record (id=1000)
function testMergeAndSendEmail()
{
 var records = new Object();
 records['transaction'] = '1000';

 var emailBody = nlapiMergeRecord(25, 'customer', '100').getValue();
 nlapiSendEmail(-5, 'customer@customer.com', 'Promotion Notification',
 emailBody , null, null, records);
}

Example 2

This example shows how to send an email that includes an attachment.

var newAttachment = nlapiLoadFile(67);

nlapiSendEmail(author, recipient, subject, body, null, null, records, newAttachment);

Example 3

This example shows how to associate an outgoing email with a custom record.

var records = new Object();
records['recordtype'] = InternalIdOfCustomRecordType; // for example 55
records['record'] = InternalIdOfCustomRecord;

SuiteScript Functions
Communication APIs

525

SuiteScript Developer & Reference Guide

nlapiSendEmail(1, custemail, emailsubj, emailtext, null, null, records);

Example 4

This example shows the notifySenderOnBounce argument set to true. The original sender,
jwolfe@netsuite.com, receives a bounceback notification for each recipient email not
successfully delivered.

nlapiSendEmail('jwolfe@netsuite.com', ['msample@netsuite.com', 'jdoe@netsuite.com'],
 'hello world', 'your order has been completed',
 ['sales@netsuite.com', account-management@netsuite.com'], mySalesOrder, myPdf, t
rue);

Example 5

This example shows how to send an email from the original sender, jwolfe@netsuite.com,
to a recipient, customer@customer.com. The reply-to field of the email will be set to
accounts@netsuite.com.

nlapiSendEmail('jwolfe@netsuite.com', 'customer@customer.com',
 'Invoice Receipt', 'your order has been completed',
 null, null, null, null, true, null, 'accounts@netsuite.com');

Back to Communication APIs | Back to SuiteScript Functions

nlapiSendFax(author, recipient, subject, body, records, attachments)

Sends and records an outgoing fax using the fax settings already defined in the user's account.
This API is supported in client, user event, scheduled, portlet, and Suitelet scripts.

Parameters

• author {int} [required] - InternalId of an employee record (this is the sender)

• recipient {string} [required] - InternalId of the recipient entity -or- a free-form fax (if set
to an internalId the fax will be saved)

• subject {string} [required] - Subject of the outgoing fax

• body {string} [optional] - Body of the outgoing fax

• records {hashtable} [optional] - Name/value pairs of internal records to associate this fax
with (if set, fax will be saved)

• transaction - transaction/opportunity internalid

• activity - case/campaign internalid

• entity - entity internalid

SuiteScript Functions
Communication APIs

526

SuiteScript Developer & Reference Guide

• record - custom record internalId

• recordtype - custom recordType internalId (or script id)

• attachments {nlobjFile} [optional] - array of nlobjFile objects or a single nlobjFile object to
attach to outgoing fax (not supported in Client SuiteScript)

Returns

• void

Since

• Version 2008.1

Example

// Merge, send, and associate a fax with an customer record (id=1000)
function testMergeAndSendFax()
{
 var records = new Object();
 records['entity'] = '1000';

 var faxBody = nlapiMergeRecord(25, 'customer', '100').getValue();
 nlapiSendFax(-5, '650.555.4455', 'Promotion Notification', faxBody, records);
}

Back to Communication APIs | Back to SuiteScript Functions

nlapiOutboundSSO(id)

Use this API to generate a new OAuth token for a user. Currently this API can be called from
portlet scripts, user event scripts, and Suitelets only. This API consumes 20 usage units per call.

Note that you must have the SuiteSignOn feature enabled in your account before you can use
SuiteSignOn functionality. (To enable these features, go to Setup > Company > Enable Features.
On the SuiteCloud tab, select the web services check box and the SuiteSignOn check box, then
click Save.)

Important: For complete details on NetSuite's SuiteSignOn feature, see the SuiteSignOn
Guide in the NetSuite Help Center.

Parameters

• id {string} [required] - The custom scriptId specified on the SuiteSignOn record (see
figure). NetSuite recommends you create a custom scriptId for each SuiteSignOn record
to avoid naming conflicts should you decide use SuiteBundler to deploy your scripts into
other accounts.

SuiteScript Functions
Communication APIs

527

SuiteScript Developer & Reference Guide

If you do not create a custom scriptId, a system-generated ID will be generated for you
once the SuiteSignOn record is saved. You can also use the system-generated ID as the id
value.

Note: Once the SuiteSignOn record is saved, both the scriptId and system-generated
ID are prefixed with customsso.

To see a list of IDs for all SuiteSignOn records, go to the SuiteSignOn list page (Setup >
Integration > SuiteSignOn).

Returns

• URL, OAuth token, and any integration variables as a string

Throws

• SSS_SUITESIGNON_NOT_CONFIGURED

• SSS_INVALID_SUITESIGNON

Since

• Version 2009.2

Example 1

This sample shows how to use nlapiOutboundSSO(id) in a portlet script to create a reference to
the SuiteSignOn record. Once the portlet is added to the dashboard, the script is executed. The
value of the nlapiOutboundSSO variable is passed to an iframe, which makes the http request to
load the source.

// create a portlet object
function buildPortlet(portlet, column)
{

SuiteScript Functions
Communication APIs

528

SuiteScript Developer & Reference Guide

// set a portlet title
title = 'My Custom SSO Portlet!'
portlet.setTitle(title)

// pass the scriptId of the SuiteSignOn record
var url = nlapiOutboundSSO('customsso_wlf_sso_partner_portlet');

// create an iframe. It is the iframe that makes the http request to
// load the content of the portlet.
var content = '<iframe src="'+url+'" align="center" style="width: 100%; height: 600px;
 margin:0; border:0; padding:0"></iframe>';

// render the content in your portlet
portlet.setHtml(content);
}

Example 2

This sample shows how to use nlapiOutboundSSO(id) in a Suitelet to create a reference to the
SuiteSignOn record. When the Suitelet opens and the content of the iframe is generated, the
URL specified on the SignSignOn record will render.

function buildSuitelet(request, response)
{
 if (request.getMethod() == 'GET')
 {
 //create a form
 var form = nlapiCreateForm('SSO Suitelet');
 var label = form.addField('custpage_label', 'inlinehtml', 'SSO1');
 label.setDefaultValue ('Check out my SSO Suitelet!!');

 var url = nlapiOutboundSSO('customsso_wlf_sso_partner_suitelet');
 var content = '<iframe src="'+url+'" align="center" style="width: 1000px; height: 800px;
 margin:0; border:0; padding:0"></iframe>';

 var iFrame = form.addField('custpage_sso', 'inlinehtml', 'SSO2');
 iFrame.setDefaultValue (content);
 iFrame.setLayoutType('outsidebelow', 'startcol');

 response.writePage(form);
 }
}

Example 3

This sample shows how to use nlapiOutboundSSO(id) in a user event script to integrate with an
external application. At the point indicated by the user event script record (Before Load, Before
Submit, or After Submit), the script gets the SuiteSignOn record that has this script defined as a
connection point. The script returns the external application URL and any integration variables
associated with this SuiteSignOn record and sends an http request to this URL. The external
application can respond.

The most common usage of this type of script is to save a record in an external application
when a record is saved in NetSuite.

SuiteScript Functions
Configuration APIs

529

SuiteScript Developer & Reference Guide

function syncWithExternalApp(type)
{
 var url = nlapiOutboundSSO('customsso_my_external_app');
 nlapiRequestURL(url);
}

Back to Communication APIs | Back to SuiteScript Functions

Configuration APIs
NetSuite allows developers to programmatically obtain, and in some cases, change the values on
certain account configuration pages. The internal IDs for SuiteScript-supported configuration
pages are provided below. For the IDs that represent specific preferences on a configuration
page, see Preference Names and IDs in the NetSuite Help Center.

All APIs listed below are in alphabetical order.

• nlapiLoadConfiguration(type)

• nlapiSubmitConfiguration(name)

• nlobjConfiguration

nlapiLoadConfiguration(type)

Use this API to load a NetSuite configuration page. The following configuration pages support
SuiteScript: Company Information, General Preferences, User Preferences, Accounting
Preferences, Accounting Periods, Tax Periods.

Once a page is loaded, you can set configuration values using
nlobjConfiguration.setFieldValue(name, value).

Important: In most server-side scripts, addresses are accessed with the subrecord APIs
(see Scripting the Address Subrecord for more information). Scripts that
access addresses on the Company Information page are an exception to this
rule. You must access address fields on the Company Information page the
same way you access other fields. See Example 1 for a code sample.

The nlapiLoadConfiguration function is available in scheduled scripts, user event scripts, and
Suitelets. It consumes 10 usage units per call.

Parameters

• type - {string} [required] - The internal ID of the configuration page. Available IDs are:

• companyinformation - The internal ID for the Company Information page (Setup >
Company > Company Information).

SuiteScript Functions
Configuration APIs

530

SuiteScript Developer & Reference Guide

• companypreferences - The internal ID for the General Preferences page
(Setup > Company > General Preferences).

• userpreferences - The internal ID for the Set Preferences page (Home > Set
Preferences).

• accountingpreferences - The internal ID for the Accounting Preferences page (Setup
> Accounting > Accounting Preferences).

• accountingperiods - The internal ID for the Accounting Periods page (Setup >
Accounting > Manage Accounting Periods).

• taxperiods - The internal ID for the Tax Periods page (Setup > Accounting > Manage
Tax Periods).

• companyfeatures - The internal ID for looking up which features are enabled in an
account.

Returns

• nlobjConfiguration object

Since

• Version 2009.2

Example 1

This example loads the Company Information page and then accesses the shipping address.
Note that you cannot use the subrecord APIs to access address fields on the Company
Information page. Access these fields with nlapiLoadConfiguration in the same way you access
other fields.

//load Netsuite configuration page
var companyInfo = nlapiLoadConfiguration('companyinformation');

//get field values
var ShipAddr1 = companyInfo.getFieldValue('shippingaddress1');
var shipCity = companyInfo.getFieldValue('shippingcity');
var shipState = companyInfo.getFieldValue('shippingstate');
var shipZip = companyInfo.getFieldValue('shippingzip');
var shipCountry = companyInfo.getFieldValue('shippingcountry');

Example 2

This example shows how to load the Company Information configuration page and then set the
values for the Employer Identification Number (EIN) (employerid) field and the SSN or TIN
(Social Security Number, Tax ID Number) (taxid) field.

//load the NetSuite configuration page
var companyInfo = nlapiLoadConfiguration('companyinformation');

SuiteScript Functions
Configuration APIs

531

SuiteScript Developer & Reference Guide

//set field values
companyInfo.setFieldValue('employerid', '123456789');
companyInfo.setFieldValue('taxid', '1122334455');

//save changes to the configuration page
nlapiSubmitConfiguration(companyInfo);

Back to Configuration APIs | Back to SuiteScript Functions

nlapiSubmitConfiguration(name)

Use this API to submit changes to a configuration page that was loaded into the system
using nlapiLoadConfiguration(type). The following configuration pages support SuiteScript:
Company Information, General Preferences, Enable Features, Accounting Preferences,
Accounting Periods, Tax Periods.

The nlapiSubmitConfiguration function is available in scheduled and Suitelet scripts only. It
consumes 20 usage units per call.

Parameters

• name - {nlobjConfiguration} [required] - nlobjConfiguration object containing the data
record

Returns

• void

Since

• Version 2009.2

Example

This example shows how to load the Company Information configuration page and then set the
values for the Employer Identification Number (EIN) (employerid) field and the SSN or TIN
(Social Security Number, Tax ID Number) (taxid) field.

// load the NetSuite configuration page
var companyInfo = nlapiLoadConfiguration('companyinformation');

// set field values
companyInfo.setFieldValue('employerid', '123456789');
companyInfo.setFieldValue('taxid', '1122334455');

// save changes to the configuration page
nlapiSubmitConfiguration(companyInfo);

Back to Configuration APIs | Back to SuiteScript Functions

SuiteScript Functions
SuiteFlow APIs

532

SuiteScript Developer & Reference Guide

nlobjConfiguration
See nlobjConfiguration - defined in the section on Standard Objects.

Back to Configuration APIs | Back to SuiteScript Functions

SuiteFlow APIs
Use these APIs to interact with the NetSuite SuiteFlow Manager.

All APIs listed below are in alphabetical order.

• nlapiInitiateWorkflow(recordtype, id, workflowid, initialvalues)

• nlapiTriggerWorkflow(recordtype, id, workflowid, actionid, stateid)

nlapiInitiateWorkflow(recordtype, id, workflowid, initialvalues)
Use this function to initiate a workflow on-demand. This function is the programmatic
equivalent of the Initiate Workflow Action action in the SuiteFlow Manager. The function
returns the workflow instance ID for the workflow-record combination. A user error is thrown
if the record in the workflow is invalid or not supported for that workflow.

Usage metering allowed is 20 units. This API is supported in user event, scheduled, portlet,
Suitelet, mass update, and workflow action scripts.

Parameters

• recordtype {string} [required] - The record type ID of the workflow base record (for
example, 'customer', 'salesorder', 'lead'). In the Workflow Manager this is the record type
that is specified in the Record Type field.

• id {int} [required] - The internal ID of the base record (for example 55 or 124).

• workflowid {int | string} [required] - The internal ID (int) or script ID (string) for the
workflow definition. This is the ID that appears in the ID field on the Workflow Definition
Page.

• initialvalues {object} [optional] – Name/value pairs representing defaults used during
workflow initialization.

Returns

• The internal ID (int) of the workflow instance used to track the workflow against the
record.

Since

• Version 2010.1

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2743465.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html

SuiteScript Functions
SuiteFlow APIs

533

SuiteScript Developer & Reference Guide

Back to SuiteFlow APIs | Back to SuiteScript Functions

nlapiInitiateWorkflowAsync(recordType, id, workflowId, initialValues)

Use this function to asynchronously initiate a workflow. When you call
nlapiInitiateWorkflowAsync, a job is created to initiate an instance of the specified workflow.
The job is placed in the scheduling queue, and the workflow instance is initiated once the job
reaches the top of the queue.

Note: nlapiInitiateWorkflowAsync does not successfully place a workflow job in queue
if an identical instance of that workflow (with the same recordType, id, and
workflowId) is currently executing or already in the scheduling queue.

The return value of nlapiInitiateWorkflowAsync is a string representing the workflow status.
See Returns for additional information. An error is thrown if the record in the workflow is
invalid or not supported for that workflow.

Usage metering allowed is 20 units. This API is supported in all server-side scripts.

Parameters

• recordType {string} [required] – The record type of the workflow base record (for
example, 'customer', 'salesorder', 'lead'). In the Workflow Manager, this is the record type
that is specified in the Record Type field.

• id {int} [required] – The internal ID of the base record (for example 55 or 124).

• workflowId {int | string} [required] – The internal ID (int) or script ID (string) for the
workflow definition. This is the ID that appears in the ID field on the Workflow Definition
Page.

• initialValues {object} [optional] – Name/value pairs representing defaults used during
workflow initialization.

Returns

• A string value that indicates whether the workflow was successfully placed in the
scheduling queue:

• If the workflow job is successfully placed in queue, the return value is QUEUED.

• If the workflow job is not successfully placed in queue, one of the following values is
returned::

• INQUEUE — Returned if the workflow is already in queue and waiting to run.
If this status is returned, you must wait until the workflow job is finished before
attempting to place another instance of the workflow in the queue.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html

SuiteScript Functions
SuiteFlow APIs

534

SuiteScript Developer & Reference Guide

• INPROGRESS - Returned if the workflow is currently running.

Throws

Since

• Version 2014 Release 2

Example

nlapiTriggerWorkflow(recordtype, id, workflowid, actionid, stateid)

Use this API to trigger a workflow on a record. The actions and transitions of the workflow will
be evaluated for the record based on the current state that it is in.

Usage metering allowed is 20 units. This API is supported in user event, scheduled, portlet,
Suitelet, mass update, and workflow action scripts.

Beginning in Version 2015 Release 2, workflow action script ids are no longer guaranteed to be
unique per workflow. Script ids may be the same for one or more actions and are identified by
the parent workflow state. To support this new behavior, a parameter, stateid, has been added
for nlapiTriggerWorkflow. The new parameter does not affect existing code and is not required
in new code. However, if the stateid parameter is used, the actionid parameter is required. For
example,

nlapiTriggerWorkflow(‘recordname’, 123, ‘workflow_id’, ‘workflowaction_id’,
‘state_id’)

Parameters

• recordtype {string} [required] - The record type ID of the workflow base record (for
example, 'customer', 'salesorder', 'lead'). In the Workflow Manager this is the record type
that is specified in the Record Type field.

• id {int} [required] - The internal ID of the base record (for example 55 or 124).

• workflowid {int | string } [required] - The internal ID (int) or script ID (string) for the
workflow definition. This is the ID that appears in the ID field on the Workflow Definition
Page.

• actionid {string | int} [optional] - The internal ID of a button that appears on the record
in the workflow. Using this parameter triggers the workflow as if the specified button were
pressed.

• workflowstateid{string | int} [optional] - The internal ID (int) or script ID (string) of
the state the action is in. This parameter can identify actions when a script id is used by
more than one action in the same workflow. Requires use of the actionid parameter. If you
choose not to use this parameter, NetSuite uses the action with the lowest internal ID.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2728168.html

SuiteScript Functions
Portlet APIs

535

SuiteScript Developer & Reference Guide

Returns

• The internal ID (int) of the workflow instance used to track the workflow against the
record.

Since

• Version 2010.1

Back to SuiteFlow APIs | Back to SuiteScript Functions

Portlet APIs
Use these APIs to work with NetSuite dashboard portlets.

All APIs listed below are in alphabetical order.

• nlapiRefreshPortlet()

• nlapiResizePortlet()

nlapiRefreshPortlet()

Causes a FORM type nlobjPortlet to immediately reload.

This API is available within a client SuiteScript associated with a custom FORM portlet, or
from JavaScript event handlers attached to portlet elements. This API cannot be called directly
from within a FORM portlet script.

Parameters

• None

Returns

• Void

Since

• Version 2011.1

Example

The following code adds a link that can be clicked to refresh a portlet on demand:

fld = portlet.addField('refrfield','inlinehtml','Refresh');
fld.setDefaultValue("Refresh Now!");

Back to Portlet APIs | Back to SuiteScript Functions

SuiteScript Functions
Portlet APIs

536

SuiteScript Developer & Reference Guide

nlapiResizePortlet()
Causes a custom form portlet (nlobjPortlet) to be resized.

Custom form portlets are embedded in <iframe> elements (most other portlets are embedded
in <div> elements. Browsers do not automatically resize <iframe> elements to fit their contents.
If you change your custom form portlet content so that it no longer fits inside the portlet
borders (whether the border is too small or too large), use the nlapiResizePortlet API to
resize the portlet to fit your content.

This API is supported in client SuiteScripts associated with custom form portlets, or in
JavaScript event handlers attached to portlet elements. This API cannot be called directly from
within a FORM portlet script.

Parameters

• None

Returns

• Void

Since

• Version 2011.1

Example

The following example creates a small custom form portlet with a "Mutate!" link. When this
link is clicked, a div element in the portlet is randomly resized and nlapiResizePortlet is
called to adjust the portlet to match.

function demoSimpleFormPortlet(portlet, column)
{
 portlet.setTitle('nlapiResizePortlet demo');
 var txtField = portlet.addField('text','text','Random text field');
 txtField.setLayoutType('normal','startcol');

 var fld = portlet.addField('divfield','inlinehtml');
 fld.setDefaultValue("<div id='divfield_elem' style='border: 1px dotted red; height: 32px; w
idth: 32px'></div>");

 fld = portlet.addField('growlink','inlinehtml');
 fld.setDefaultValue("Mutate!");

 portlet.setScript('customscriptclienta');
}

function mutate()
{
 var div = document.getElementById('divfield_elem');
 var h = 32 + Math.floor(Math.random() * 128);
 div.style.height = h + 'px';

SuiteScript Functions
SuiteAnalytics APIs

537

SuiteScript Developer & Reference Guide

 nlapiResizePortlet();
}

Back to Portlet APIs | Back to SuiteScript Functions

SuiteAnalytics APIs
Use these APIs to work with NetSuite Analytics.

All APIs listed below are in alphabetical order.

• nlapiCreateReportDefinition()

• nlapiCreateReportForm(title)

• nlobjPivotColumn

• nlobjPivotRow

• nlobjPivotTable

• nlobjPivotTableHandle

• nlobjReportColumn

• nlobjReportColumnHierarchy

• nlobjReportDefinition

• nlobjReportForm

• nlobjReportRowHierarchy

nlapiCreateReportDefinition()

Creates an instance of a report definition object. The report is built on this object using
subsequent methods. The report definition can be used to create a form for rendering the
pivot table report in a browser, or the pivot table APIs can be used to extract the values of the
individual rows and columns of the pivot table.

Returns

• nlobjReportDefinition

Since

• Version 2012.2

Example

• See the code sample in Building a Pivot Report Using SuiteScript.

SuiteScript Functions
SuiteAnalytics APIs

538

SuiteScript Developer & Reference Guide

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlapiCreateReportForm(title)

Creates an nlobjReportForm object to render the report definition.

Parameters

• title {string} [required] - The title of the form.

Returns

• nlobjReportForm

Since

• Version 2012.2

Example

• See the code sample in Building a Pivot Report Using SuiteScript.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjPivotColumn

See nlobjPivotColumn - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjPivotRow

See nlobjPivotRow - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjPivotTable

See nlobjPivotTable - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjPivotTableHandle

See nlobjPivotTableHandle - defined in the section on Standard Objects.

SuiteScript Functions
User Credentials APIs

539

SuiteScript Developer & Reference Guide

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjReportColumn

See nlobjReportColumn - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjReportColumnHierarchy

See nlobjReportColumnHierarchy - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjReportDefinition

See nlobjReportDefinition - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjReportForm

See nlobjReportForm - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

nlobjReportRowHierarchy

See nlobjReportRowHierarchy - defined in the section on Standard Objects.

Back to SuiteAnalytics APIs | Back to SuiteScript Functions

User Credentials APIs
Use these APIs to change the NetSuite login credentials of the currently logged-in user. In
NetSuite, a user's login credentials consists of a user's email address and a password.

Important: When building a custom UI outside of the standard NetSuite UI (such as
building a custom mobile page using Suitelet or building E-Commerce pages
using SSP), use these APIs to help users manage their credentials within the
custom UI.

All APIs listed below are in alphabetical order.

SuiteScript Functions
Job Manager APIs

540

SuiteScript Developer & Reference Guide

• nlapiGetLogin()

• nlobjLogin

nlapiGetLogin()

Returns the NetSuite login credentials of currently logged-in user.

This API is supported in user event, portlet, Suitelet, RESTlet, and SSP scripts. For information
about the unit cost associated with this API, see API Governance.

Returns

• nlobjLogin

Since

• Version 2012.2

Example

This example shows how to get the credentials of the currently logged-in user.

//Get credentials of currently logged-in user
var login = nlapiGetLogin();

Back to User Credentials APIs | Back to SuiteScript Functions

nlobjLogin

See nlobjLogin - defined in the section on Standard Objects.

Back to User Credentials APIs | Back to SuiteScript Functions

Job Manager APIs
Use these APIs to send jobs to NetSuite's internal job manager. Currently the job manager that
is exposed to SuiteScript is the job manager that manages merging duplicate records.

When submitting a “merge duplicate record” job to NetSuite, SuiteScript allows you to use all
of the same functionality available through the UI. Using SuiteScript you can use NetSuite's
predefined duplicate detection rules, or you can define your own. Note that the merge duplicate
API runs in server scripts, such as user event scripts, Suitelets, and RESTLets. You cannot write
client scripts using this API.

SuiteScript Functions
Job Manager APIs

541

SuiteScript Developer & Reference Guide

Important: The merge duplicate functionality of non-entity records is not supported in
SuiteScript.

Once your records are merged/deleted, these records no longer appear as duplicates accessible
through nlapiSearchDuplicateor the UI (by going to Lists > Mass Update > Mass Duplicate
Record Merge.

Finally, be aware that when you submit a merge duplicate job, the maximum number
of records you can submit in your request is 200. Also be aware that then you call
nlobjJobManager.submit to submit your job request, you are charged 100 goverance units.

All APIs listed below are in alphabetical order.

• nlapiGetJobManager(jobType)

• nlobjJobManager

• nlobjDuplicateJobRequest

• nlobjFuture

nlapiGetJobManager(jobType)
Returns a job manager instance (nlobjJobManager). You then use the methods on
nlobjJobManager to create and submit your merge duplicate records request. This API is
supported in script types that run on the server. You cannot use this function in a client script.

This API costs no governance units.

Parameters

• jobType {string} [required] - Set to DUPLICATERECORDS.

Returns

• nlobjJobManager

Since

• Version 2013.1

Example - Using the Job Manager APIs to Merge Duplicate Records

function mergeLeads() {

// Get all duplicate lead records that have the same email address
var fldMap = new Array();
fldMap['email'] = 'user@testing123.com'
var duplicateRecords = nlapiSearchDuplicate('lead', fldMap);
var arrID = new Array();
var record;

SuiteScript Functions
Job Manager APIs

542

SuiteScript Developer & Reference Guide

for (var i = 0; i < duplicateRecords.length; i++)
 {
 var duplicateRecord = duplicateRecords[i];
 arrID[i] = duplicateRecord.getId();
 }

// Get a job manager instance.
var manager = nlapiGetJobManager('DUPLICATERECORDS');

// Create the merge job object.
var mergeJobRequest = manager.createJobRequest();

// Set the entity type.
mergeJobRequest.setEntityType(mergeJobRequest.ENTITY_LEAD);

// Set the master. The master can be manually indicated or found by criteria.
mergeJobRequest.setMasterSelectionMode(mergeJobRequest.MASTERSELECTIONMODE_CREATED_
 EARLIEST);

// Set duplicate records. Pass in parameter is an array of duplicate record IDs
mergeJobRequest.setRecords(duplicateRecords);

// Set the merge operation type.
mergeJobRequest.setOperation(mergeJobRequest.OPERATION_MERGE);

// Submit a job to process asynchronously. Submitting the job does not execute the job.
// Submitting the job places the job in the queue.
jobId = manager.submit(mergeJobRequest);

// Check the job status
var future = manager.getFuture(jobId);

// See if job has completed.
future.isDone();

// See if job has been cancelled. Note, for merge duplicate records, this method will always re
turn false
future.isCancelled();

}

For more details about the methods used in this example, see nlobjJobManager,
nlobjDuplicateJobRequest, and nlobjFuture.

Back to Job Manager APIs | Back to SuiteScript Functions

nlobjJobManager

See nlobjJobManager - defined in the section on Standard Objects.

Back to Job Manager APIs | Back to SuiteScript Functions

nlobjDuplicateJobRequest

See nlobjDuplicateJobRequest - defined in the section on Standard Objects.

SuiteScript Functions
Job Manager APIs

543

SuiteScript Developer & Reference Guide

Back to Job Manager APIs | Back to SuiteScript Functions

nlobjFuture

See nlobjFuture - defined in the section on Standard Objects.

Back to Job Manager APIs | Back to SuiteScript Functions

SuiteScript Objects
SuiteScript Objects Overview

544

SuiteScript Developer & Reference Guide

Chapter 59 SuiteScript Objects

SuiteScript Objects Overview
SuiteScript objects are classified into the following two categories. Click the links below to see
which objects are assigned to each category. From there you can also access API documentation
for each method on the object.

• Standard Objects

• UI Objects

Standard Objects
The objects in this list are standard objects. Unlike UI Objects, they are not used to build
NetSuite UI components such as buttons, forms, fields, sublists, etc. Standard objects are used
more for manipulating backend data and to handle form GET and POST processing.

Each standard object has methods that can be performed against it once it is returned in the
script. The following is a list of all standard NetSuite objects.

• nlobjConfiguration

• nlobjContext

• nlobjCredentialBuilder(string, domainString)

• nlobjCSVImport

• nlobjDuplicateJobRequest

• nlobjEmailMerger

• nlobjError

• nlobjFile

• nlobjFuture

• nlobjJobManager

• nlobjLogin

• nlobjMergeResult

• nlobjPivotColumn

• nlobjPivotRow

• nlobjPivotTable

SuiteScript Objects
nlobjConfiguration

545

SuiteScript Developer & Reference Guide

• nlobjPivotTableHandle

• nlobjRecord

• nlobjReportColumn

• nlobjReportColumnHierarchy

• nlobjReportDefinition

• nlobjReportForm

• nlobjReportRowHierarchy

• nlobjRequest

• nlobjResponse

• nlobjSearch

• nlobjSearchColumn(name, join, summary)

• nlobjSearchFilter

• nlobjSearchResult

• nlobjSearchResultSet

• nlobjSelectOption

• nlobjSubrecord

nlobjConfiguration
Primary object used to encapsulate a NetSuite configuration/setup page. Note
that nlapiLoadConfiguration(type) returns a reference to this object. Once the
nlobjConfiguration object has been modified, changes can be submitted to the database using
nlapiSubmitConfiguration(name).

For a list of configuration pages that support SuiteScript, see Preference Names and IDs in the
NetSuite Help Center.

nlobjConfiguration Methods

• getAllFields()

• getField(fldnam)

• getFieldText(name)

• getFieldTexts(name)

• getFieldValue(name)

SuiteScript Objects
nlobjConfiguration

546

SuiteScript Developer & Reference Guide

• getFieldValues(name)

• getType()

• setFieldText(name, text)

• setFieldTexts(name, text)

• setFieldValue(name, value)

• setFieldValues(name, value)

getAllFields()

Use this method to return a normal keyed array of all the field names on a configuration page.

Returns

• String[] of field names

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getField(fldnam)

Use the method to return field metadata for a field

Parameters

• fldnam {string} [required] - The internal ID of the field

Returns

• The nlobjField object

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getFieldText(name)

Use this method to return the UI display value for a select field. This API is supported in select
fields only.

SuiteScript Objects
nlobjConfiguration

547

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID of the field

Returns

• String - The UI display value corresponding to the current selection for a select field.
Returns null if field does not exist on the configuration page or if the field is restricted.

Since

• Version 2009.2

Example

This sample shows how to use getFieldText(name) to return the UI display value for the
First Day of Week configuration preference. In this account, First Day of Week has been
set to Sunday. This is the value that will be returned.

var configpage = nlapiLoadConfiguration('companypreferences');
var valtext = configpage.getFieldText('firstdayofweek'); // returns Sunday

Standard Objects | UI Objects | SuiteScript Functions

getFieldTexts(name)

Use this method to return the UI display values for a multiselect field

Parameters

• name {string} [required] - The name of the multiselect field whose field display values are
being returned

Returns

• Returns the selected text values of a multiselect field as an Array

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getFieldValue(name)

Use this method to return the internal ID value of a field

SuiteScript Objects
nlobjConfiguration

548

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID of the field

Returns

• The internal ID (string) value for the field

Since

• Version 2009.2

Example

// load an Accounting Periods configuration page
var configpage = nlapiLoadConfiguration('accountingpreferences');

// get value of the Cash Basis field. The value F will be returned since this is a
//check box field that is not selected.
var value = configpage.getFieldValue('cashbasis');

Standard Objects | UI Objects | SuiteScript Functions

getFieldValues(name)

Returns a read-only array of multi-select field values. This API is supported on multi-select
fields only.

Parameters

• name {string} [required]- The internal ID of the field

Returns

• String[] of field IDs. Returns null if field is not on the configuration page.

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getType()

Use this method to return the internal ID of a configuration page, for example,
accountingpreferences or taxperiods.

SuiteScript Objects
nlobjConfiguration

549

SuiteScript Developer & Reference Guide

Returns

• The internal ID of the configuration page as a string

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setFieldText(name, text)

Use this method to set the value of a select field using its corresponding display value. This API
is supported on select fields only.

Parameters

• name {string} [required] - The internal ID of the field being set

• text {string} [required] - The field display name as it appears in the UI

Returns

• void

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setFieldTexts(name, text)

Use this method to set the values (via the UI display values) of a multi-select field. This API is
supported on multi-select fields only.

Parameters

• name {string} [required] - The internal ID of the field being set

• texts {string[]} [required] - Array of field display values

Returns

• void

Since

• Version 2009.2

SuiteScript Objects
nlobjConfiguration

550

SuiteScript Developer & Reference Guide

Example

var values = new Array(); // create an array of customers who are currently in NetSuite
values[0] = 'Abe Lincoln'; // add the first customer
values[1] = 'Abe Simpson'; // add the second customer
var record = nlapiLoadRecord('salesorder', 447); // load the sales order

// set the field display values for the custom multiselect field
// called Customers Multiselect Field
record.setFieldTexts('custbody16', values);

// submit the record
var submit = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

setFieldValue(name, value)

Use this method to set the value of a field

Parameters

• name {string} [required] - The internal ID of the field being set

• value {string} [required] - The value the field is being set to

Returns

• void

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setFieldValues(name, value)

Use this method to set the value of a multi-select field. This API is supported on multi-select
fields only.

SuiteScript Objects
nlobjContext

551

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID of the field being set

• value {string[]} [required]- The value the field is being set to

Returns

• void

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjContext
Encapsulates user information as well as script execution context at runtime. Note that the
nlapiGetContext() function returns a reference to this object.

nlobjContext Methods

• getColorPreferences() (Deprecated as of Version 2014 Release 2)

• getCompany()

• getDepartment()

• getDeploymentId()

• getEmail()

• getEnvironment()

• getExecutionContext()

• getFeature(name)

• getLocation()

• getLogLevel()

• getName()

• getPercentComplete()

• getPermission(name)

• getPreference(name)

SuiteScript Objects
nlobjContext

552

SuiteScript Developer & Reference Guide

• getQueueCount()

• getRemainingUsage()

• getRole()

• getRoleCenter()

• getRoleId()

• getScriptId()

• getSessionObject(name)

• getSetting(type, name)

• getSubsidiary()

• getUser()

• getVersion()

• setPercentComplete(pct)

• setSessionObject(name, value)

• setSetting(type, name, value)

getColorPreferences()

Note: This method is deprecated as of Version 2014 Release 2

Standard Objects | UI Objects | SuiteScript Functions

getCompany()

Returns the currently logged in user's account ID

Returns

• The string value of user's account ID, for example NL555ABC

Since

• Version 2007.0

Example

var context = nlapiGetContext();

SuiteScript Objects
nlobjContext

553

SuiteScript Developer & Reference Guide

var userAccountId = context.getCompany();

Standard Objects | UI Objects | SuiteScript Functions

getDepartment()

Returns the internal ID of the currently logged in user's department

Returns

• The logged in user's department ID as an integer

Since

• Version 2007.0

Example

var context = nlapiGetContext();
var userDeptId = context.getDepartment();

Standard Objects | UI Objects | SuiteScript Functions

getDeploymentId()

Returns the deploymentId for the current script deployment (ie., the currently executing script)

Returns

• The deploymentId as a string

Since

• Version 2009.1

Example

• In the API documentation for nlapiScheduleScript(scriptId, deployId, params), see
Example 1 - Rescheduling a Script.

Standard Objects | UI Objects | SuiteScript Functions

getEmail()

Returns the currently logged in user's e-mail address. The email field on the user's employee
record must contain an email address.

SuiteScript Objects
nlobjContext

554

SuiteScript Developer & Reference Guide

Note: In a shopping context where the shopper is recognized but not logged in, this
method can be used to return the shopper's email, instead of getting it from the
customer record.

Returns

• An email address as a string

Since

• Version 2007.0

Example

var context = nlapiGetContext();
var userEmail = context.getEmail();

Standard Objects | UI Objects | SuiteScript Functions

getEnvironment()

Returns the environment in which the current script is being executed. Valid values are
SANDBOX | PRODUCTION | BETA | INTERNAL.

Returns

• The name of the environment as a string

Standard Objects | UI Objects | SuiteScript Functions

getExecutionContext()

Returns context information about what triggered the current script. Possible return values are:

• userinterface - Client SuiteScript or user event triggers invoked from the UI

• webservices - User event triggers invoked from webservice calls

• csvimport - User event triggers invoked during CSV imports

• portlet - Portlet script or user event triggers invoked via portlet scripts

• scheduled - Scheduled script or user event triggers invoked via scheduled scripts

• suitelet - Suitelet or user event triggers invoked via suitelets

• custommassupdate - Mass update script triggers invoked via custom Mass Update scripts

• workflow - Workflow action script triggers invoked via Workflow Action scripts

SuiteScript Objects
nlobjContext

555

SuiteScript Developer & Reference Guide

• webstore - User event triggers invoked from the web store (for example to determine if
sales orders or customers were created in the web store).

• userevent - This context type represents cases in which records are generated in the
backend (as opposed to being generated by the UI). For example, the 'userevent' context
distinguishes the case wherein a Bill Payment is submitted as part of a non-record
page. Whereas the 'userinterface' context identifies when a single Bill Payment record is
submitted from the UI.

Returns

• The execution context as a string

Since

• Version 2007.0

Example

This is a beforeLoad user event script deployed on the Case record. When
getExecutionContext returns userinterface and type is ‘edit’ or view’, a tab is added to the
Case record.

function caseBeforeLoad(type, form)
{
var currentContext = nlapiGetContext();
if((currentContext.getExecutionContext() == 'userinterface') && (type == 'edit' | type == 'vie
w'))
 {
 var SampleTab = form.addTab('custpage_sample_tab', 'SampleTab123');
 }
}

Standard Objects | UI Objects | SuiteScript Functions

getFeature(name)

Use this method to determine if a particular feature is enabled in a NetSuite account. These are
the features that appear on the Enable Features page (Setup > Company > Enable Features).

Parameters

• name {string} [required] - The internal ID of the feature. For a list of feature IDs, see
Feature Names and IDs in the NetSuite Help Center.

Returns

• Returns true if a feature is enabled in the current account

SuiteScript Objects
nlobjContext

556

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

This sample shows how to determine whether the Advanced Billing feature is enabled in your
account.

var context = nlapiGetContext();
context.getFeature('ADVBILLING');

Standard Objects | UI Objects | SuiteScript Functions

getLocation()

Returns the internal ID of the currently logged in user's location

Returns

• The logged in user's location ID as an integer

Since

• Version 2007.0

Standard Objects | UI Objects | SuiteScript Functions

getLogLevel()

Returns the script logging level for the current script execution. This method is not supported
on client scripts.

Returns

• The string value of the script log level. Possible values are DEBUG, AUDIT, ERROR,
EMERGENCY

Since

• Version 2008.2

See also

• nlapiLogExecution(type, title, details)

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjContext

557

SuiteScript Developer & Reference Guide

getName()

Returns the currently logged in user's name

Note: In a shopping context where the shopper is recognized but not logged in, this
method can be used to return the shopper's name, instead of getting it from the
customer record.

Returns

• The logged in user's name as a string

Since

• Version 2007.0

Standard Objects | UI Objects | SuiteScript Functions

getPercentComplete()

Return the % complete specified for the current scheduled script execution. The return value
will appear in the %Complete column in the Scheduled Script Status page. Note that this
method can only be called from scheduled scripts.

Returns

• The integer value of the percent complete field

Since

• Version 2009.1

Example

The following script is a scheduled script that performs a customer search. Use the
setPercentComplete and getPercentComplete methods to define percentage complete
values and then get the values. When getPercentComplete is called, the value appears in
the %Complete column in the Scheduled Script Status page. Access this page by going to
Customization > Scripting > Script Deployments > Status.

function customerSearch(type)
{
var ctx = nlapiGetContext(); // instantiate the nlobjContext object
var searchresults = nlapiSearchRecord('customer', 21); // execute a specific saved search
ctx.setPercentComplete(0.00); // set the percent complete parameter to 0.00

for (i = 0; i < searchresults.length; i++) // loop through the search results
 {

SuiteScript Objects
nlobjContext

558

SuiteScript Developer & Reference Guide

 // get the internal ID of each returned record, otherwise you cannot update the results
 var recid = searchresults[i].getValue('internalid');

 var record = nlapiLoadRecord('customer', recid); // load each record from the search
 record.setFieldText('salesrep', 'John Doe'); // set a field display value for Sales Rep
 var id = nlapiSubmitRecord(record, true); // submit the record
 ctx.setPercentComplete((100* i)/ searchresults.length); // calculate the results

 // displays the percentage complete in the %Complete column on
 // the Scheduled Script Status page
 ctx.getPercentComplete(); // displays percentage complete
 }
}

Standard Objects | UI Objects | SuiteScript Functions

getPermission(name)

Use this method to get a user's permission level for a given permission. For information on
working with NetSuite permissions, see the topic Understanding NetSuite Permissions in the
NetSuite Help Center.

Parameters

• name {string} [required] - The internal ID of a permission. For a list of permission IDs, see
Permission Names and IDs in the SuiteScript Reference Guide.

Returns

• The integer value of user's permission level for a given permission. Values 4 through 0 can
be returned:

• 4 (FULL)

• 3 (EDIT)

• 2 (CREATE)

• 1 (VIEW)

• 0 (NONE)

Since

• Version 2009.2

Example

This sample shows how to determine a user's permission level for the Set Up Accounting
permission.

var context = nlapiGetContext();

SuiteScript Objects
nlobjContext

559

SuiteScript Developer & Reference Guide

context.getPermission('ADMI_ACCOUNTING ');

Standard Objects | UI Objects | SuiteScript Functions

getPreference(name)

Use this method to get the value of a NetSuite preference. Currently only General Preferences
and Accounting Preferences are exposed in SuiteScript. (You can view General Preferences by
going to Setup > Company > General Preferences. View Accounting Preferences by going to
Setup > Accounting > Accounting Preferences.)

If you want to change the value of a General or Accounting preference using SuiteScript, you
must load each preference page using nlapiLoadConfiguration(type), where name is either
'companypreferences' (for the General Preferences page) or 'accountingpreferences' (for the
Accounting Preferences page). The nlapiLoadConfiguration API returns an nlobjRecord
object, which lets you change preference values using the setFieldValuemethod. For additional
details, see nlapiLoadConfiguration.

Note: The permission level will be 4 if the script is configured to execute as admin. You can
configure a script to execute as admin by selecting “administrator” from the Execute
as Role field on Script Deployment page.

Parameters

• name {string} [required] - The internal ID of the preference. For a list of preference IDs, see
Preference Names and IDs in the NetSuite Help Center.

Returns

• The value of a system or script preference for the current user. The value can be T or F if
the preference is a NetSuite check box field. The value can also be a string if the preference
is a NetSuite dropdown field.

Since

• Version 2009.2

Example

This sample shows how to get the value of a NetSuite preference called Email Employee on
Approvals.

var context = nlapiGetContext();
context.getPreference('emailemployeeonapproval');

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjContext

560

SuiteScript Developer & Reference Guide

getQueueCount()

Returns the number of scheduled script queues in a given account.

This method is helpful for SuiteApp developers who want to check for the number of queues
in an account. If the consumer of the SuiteApp has purchased a SuiteCloud Plus license, a call
to getQueueCount will return 5, meaning that the account has 5 scheduled script queues. A call
to getQueueCount in accounts that do not have a SuiteCloud Plus licence will return 1, meaning
the account has only 1 scheduled script queue. (Note that in some cases, an account may have
two licenses supporting 10 queues, or three licenses supporting 15 queues.)

Once you get the number back in script, you can make business logic decisions based on that
number. For example, if you know an account has 5 queues, you can have more than 1 script
deployment and distribute the processing load to more than 1 queue.

Returns

• The number of queues

Since

• Version 2013.1

Example

var queues = nlobjContext.getQueueCount();

if (queues == 5){

 // optimize for 5 queues

} else {

 // optimize for 1 queue

}

Standard Objects | UI Objects | SuiteScript Functions

getRemainingUsage()

Returns the remaining amount of unit usage for the current script

Returns

• The integer value of the remaining unit count

Since

• Version 2007.0

SuiteScript Objects
nlobjContext

561

SuiteScript Developer & Reference Guide

Example

var context = nlapiGetContext();
var usageRemaining = context.getRemainingUsage();

See also

• SuiteScript Governance in the NetSuite Help Center

• nlapiGetContext()

Standard Objects | UI Objects | SuiteScript Functions

getRole()

Returns the internal ID of the currently logged in user's role

Returns

• The logged in user's role ID as a string

Since

• Version 2007.1

Standard Objects | UI Objects | SuiteScript Functions

getRoleCenter()

Returns the internal ID of the currently logged in user's center type (role center)

Returns

• The string value of the logged in user's center - for example, SALES, ACCOUNTING,
CLASSIC. Note that the string value of a custom center can also be returned.

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getRoleId()

Returns the custom scriptId of the role (as opposed to the internal numerical ID).

SuiteScript Objects
nlobjContext

562

SuiteScript Developer & Reference Guide

When bundling a custom role, the internal ID number of the role in the target account can
change after the bundle is installed. Therefore, in the target account you can use getRoleId to
return the unique/custom scriptId assigned to the role.

Returns

• Custom scriptId of a role as a string.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getScriptId()

Returns the scriptId for the currently executing script

Returns

• The scriptId as a string

Since

• Version 2009.1

Example

• In the API documentation for nlapiScheduleScript(scriptId, deployId, params), see
Example 1 - Rescheduling a Script.

Standard Objects | UI Objects | SuiteScript Functions

getSessionObject(name)

Use this method to get the value of a user-defined session object for the current user.

Parameters

• name {string} [required] - The key used to store the session object

Returns

• Returns the string value of a user-defined session object for the current user

Since

• Version 2009.2

SuiteScript Objects
nlobjContext

563

SuiteScript Developer & Reference Guide

Example

This example shows how to get the value of the current user's session, and then create a new
“Contact” session for the user to gather information about the user's scope, budget, and
business problem.

function displayContact(request, response)
{
 var ctx = nlapiGetContext();
 var step = ctx.getSessionObject('stage');

 if(step == null || step == "")
 {
 step = "create";
 ctx.setSessionObject('stage', 'Contact');
 }
 if(step == "create");
 {
 ctx.setSessionObject('scope', request.getParameter('scope'));
 ctx.setSessionObject('approved', request.getParameter('budget'));
 ctx.setSessionObject('problem', request.getParameter('businessproblem'));
 }
}

Standard Objects | UI Objects | SuiteScript Functions

getSetting(type, name)

Use this API to get a system or script setting. Note that if you want to get session, feature, or
permission settings directly, you can also use these nlobjContext methods:

• getSessionObject(name)

• getFeature(name)

• getPermission(name)

Parameters

• type {string} [required] - The type of script/system setting. Possible values include:

• SESSION - session variable (volatile setting defined per session). Supported in server
scripts only.

Important: The SESSION type value is not supported in Client SuiteScript.

• FEATURE - returns T (enabled) or F (disabled) depending on whether a feature is
enabled. Supported in client and server SuiteScript.

In the NetSuite Help Center, see Feature Names and IDs for feature names and
internal IDs.

SuiteScript Objects
nlobjContext

564

SuiteScript Developer & Reference Guide

• PERMISSION - returns permission level: 0 (none), 1 (view), 2 (create), 3 (edit), 4
(full). Supported in client and server SuiteScript.

In the NetSuite Help Center, see Permission Names and IDs for permission names
and internal IDs.

• SCRIPT - script parameter (defined per script). Supported in client and server
SuiteScript. If you do not know what script parameters are in NetSuite, see Creating
Script Parameters Overview.

• name {string} [required]- The name of the script/system setting

Important: You must use the nlobContext. getSetting method to reference script
parameters. For example, to obtain the value of a script parameter called
custscript_case_field, you use the following code:

nlapiGetContext().getSetting('SCRIPT', 'custscript_case_field')

If you do not know what script parameters are in NetSuite, see Creating Script Parameters
Overview.

Returns

• If type is specified as SCRIPT, SESSION, or FEATURE, a string value is returned. If type is
specified as PERMISSION, an integer value is returned.

Standard Objects | UI Objects | SuiteScript Functions

getSubsidiary()

Returns the internal ID of the currently logged in user's subsidiary

Returns

• The logged in user's subsidiary ID as an integer

Since

• Version 2007.1

Standard Objects | UI Objects | SuiteScript Functions

getUser()

Returns the currently logged in user's internal ID

SuiteScript Objects
nlobjContext

565

SuiteScript Developer & Reference Guide

Returns

• The logged in user's ID as a string

Since

• Version 2007.1

Standard Objects | UI Objects | SuiteScript Functions

getVersion()

Returns the version of NetSuite that the method is called in. For example, if getVersion is
executed in an account running NetSuite 2010.2, the value returned is 2010.2. If getVersion is
executed in an account running NetSuite 2010.1, the value returned is 2010.1.

This method may be helpful to those installing SuiteBundles in other NetSuite accounts, and
wish to know the version number before installing the bundle.

Returns

• The NetSuite account version as a number - for example: 2010.2

Since

• Version 2010.2

Standard Objects | UI Objects | SuiteScript Functions

setPercentComplete(pct)

Sets the percent complete for the currently executing scheduled script. Note that this method
can only be called from scheduled scripts.

Parameters

• pct {float} [required] - The percentage of records completed

Returns

• void

Since

• Version 2009.1

SuiteScript Objects
nlobjContext

566

SuiteScript Developer & Reference Guide

Example

The following script is a scheduled script that performs a customer search. Use the
setPercentComplete and getPercentComplete methods to define percentage complete
values and then get the values. When getPercentComplete is called, the value appears in
the %Complete column in the Scheduled Script Status page. Access this page by going to
Customization > Scripting > Script Deployments > Status. See Use the Status Page or Status
Links for more information about this page.

function customerSearch(type)
{
var ctx = nlapiGetContext(); // instantiate the nlobjContext object
var searchresults = nlapiSearchRecord('customer', 21); // execute a specific saved search
ctx.setPercentComplete(0.00); // set the percent complete parameter to 0.00

for (i = 0; i < searchresults.length; i++) // loop through the search results
 {

 // get the internal ID of each returned record, otherwise you cannot update the results
 var recid = searchresults[i].getValue('internalid');

 var record = nlapiLoadRecord('customer', recid); // load each record from the search
 record.setFieldText('salesrep', 'John Doe'); // set a field display value for Sales Re
p
 var id = nlapiSubmitRecord(record, true); // submit the record
 ctx.setPercentComplete((100* i)/ searchresults.length); // calculate the results

 // displays the percentage complete in the %Complete column on
 // the Scheduled Script Status page
 ctx.getPercentComplete(); // displays percentage complete
 }
}

Standard Objects | UI Objects | SuiteScript Functions

setSessionObject(name, value)

Use this method to add or set the value of a user-defined session object for the current user.
This value is valid during the current user's login.

This call allows the user to temporarily save something to the session before persisting it in a
custom record.

Parameters

• name {string} [required] - The key used to store the session object

• value {string} [required] - The value to associate with this key in the user's session

Returns

• void

SuiteScript Objects
nlobjContext

567

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

This example shows how to get the value of the current user's session, and then create a new
“Contact” session for the user to gather information about the user's scope, budget, and
business problem.

function displayContact(request, response)
{
 var ctx = nlapiGetContext();
 var step = ctx.getSessionObject('stage');

 if(step == null || step == "")
 {
 step = "create";
 ctx.setSessionObject('stage', 'Contact');
 }
 if(step == "create");
 {
 ctx.setSessionObject('scope', request.getParameter('scope'));
 ctx.setSessionObject('approved', request.getParameter('budget'));
 ctx.setSessionObject('problem', request.getParameter('businessproblem'));
 }
}

Standard Objects | UI Objects | SuiteScript Functions

setSetting(type, name, value)

Sets the value of a script or user-defined setting. Only available in server scripts.

• type {string} [required] - The type of script/system setting

• SESSION - session variable (volatile setting defined per session)

• name {string} [required]- The name of the script/system setting

• value {string} [required]- The new value for the script/system setting

Returns

• void

Important: You can also use the nlobjContext.getSessionObject(name) method to
set session variable directly.

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjCredentialBuilder(string, domainString)

568

SuiteScript Developer & Reference Guide

nlobjCredentialBuilder(string, domainString)
The nlobjCredentialBuilder object encapsulates a request string that can be passed to
nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod). Six
methods are included that perform various string transformations: three hash methods for
SHA-1, SHA-256, and MD5 hashing, two encoding methods for Base64 and UTF8 encoding, a
character replacement method, and a string appending method.

Important: If the nlobjCredentialBuilder object is passed to
nlapiRequestURLWithCredentials(credentials, url, postdata,
headers, httpsMethod) as the url argument, it must be passed
in its original state (pre-encrytion and pre-encoding). Otherwise,
nlapiRequestURLWithCredentials(credentials, url, postdata, headers,
httpsMethod) is unable to validate the URL

The nlobjCredentialBuilder object is defined with the new keyword.

var builder = new nlobjCredentialBuilder("rawtext{GUID}Hash:", 'www.netsuite.com');

Supported Script Types

• User Event

• Scheduled Script

• Portlet

• Suitelet

Parameters

• string {string} [required] – request string; can include an embedded GUID (globally
unique string).

• domainString {string} [required] – URL’s host name. Host name must exactly match
the host name in your URL. For example, if your URL is https://payment.ns.com/
process.money?passwd={GUID}, the host name passed in must be ‘payment.ns.com’.

nlobjCredentialBuilder Methods

• append(string)

• base64()

• md5()

• replace(string1, string2)

• sha1()

SuiteScript Objects
nlobjCredentialBuilder(string, domainString)

569

SuiteScript Developer & Reference Guide

• sha256()

• utf8()

Standard Objects | UI Objects | SuiteScript Functions

append(string)

Appends a passed in string to an nlobjCredentialBuilder object.

Parameter

• string {string} [required] — string to be appended.

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2013 Release 2

Standard Objects | UI Objects | SuiteScript Functions

base64()

Encodes an nlobjCredentialBuilder object per the base64 scheme.

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2013 Release 2

Example

//builder contains content that is SHA-1 encrypted and then Base64 encoded
builder = builder.sha1().base64();

Standard Objects | UI Objects | SuiteScript Functions

md5()

Hashes an nlobjCredentialBuilder object with the MD5 hash function.

SuiteScript Objects
nlobjCredentialBuilder(string, domainString)

570

SuiteScript Developer & Reference Guide

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2015 Release 1

Example

//builder contains content that is MD5 hashed and then UTF-8 encoded
builder = builder.md5().utf8();

Standard Objects | UI Objects | SuiteScript Functions

replace(string1, string2)

Replaces all instances of string1 with string2.

Parameters

• string1 {string} [required] — string to be replaced

• string2 {string} [required] — string to be replaced with

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2013 Release 2

Example

//replace all instaces of "#" with "-" within builder
builder = builder.replace('#', '-');

Standard Objects | UI Objects | SuiteScript Functions

sha1()

Hashes an nlobjCredentialBuilder object with the SHA-1 hash function.

Returns

• An nlobjCredentialBuilder object.

SuiteScript Objects
nlobjCredentialBuilder(string, domainString)

571

SuiteScript Developer & Reference Guide

Since

• Version 2013 Release 2

Example

//builder contains content that is SHA-1 hashed and then Base64 encoded
builder = builder.sha1().base64();

Standard Objects | UI Objects | SuiteScript Functions

sha256()

Hashes an nlobjCredentialBuilder object with the SHA-256 hash function.

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2013 Release 2

Example

//builder contains content that is SHA-256 hashed and then UTF-8 encoded
builder = builder.sha256().utf8();

Standard Objects | UI Objects | SuiteScript Functions

utf8()

Encodes an nlobjCredentialBuilder object per the UTF-8 scheme.

Returns

• An nlobjCredentialBuilder object.

Since

• Version 2013 Release 2

Example

//builder contains content that is SHA-256 hashed and then UTF-8 encoded

SuiteScript Objects
nlobjCSVImport

572

SuiteScript Developer & Reference Guide

builder = builder.sha256().utf8();

Standard Objects | UI Objects | SuiteScript Functions

nlobjCSVImport
Primary object used to encapsulate a CSV import job. This object is passed as a parameter to
nlapiSubmitCSVImport(nlobjCSVImport), which is used to asynchronously import record data
into NetSuite.

Note: CSV Imports performed within scripts are subject to the existing application limit of
25,000 records.

Use nlapiCreateCSVImport() to return an nlobjCSVImport object. You can then use the object's
methods to populate it with the desired information.

nlobjCSVImport Methods

• setLinkedFile(sublist, file)

• setMapping(savedImport)

• setOption(option, value)

• setPrimaryFile(file)

• setQueue(string)

Warning: You should execute setMapping(savedImport) before any of the other
methods. If you try to first execute setPrimaryFile(file), an error is returned.

setLinkedFile(sublist, file)

Sets the data to be imported in a linked file for a multi-file import job, by referencing a file in
the file cabinet using nlapiLoadFile(id), or by inputting CSV data as raw string.

If an import job requires multiple linked files, this method can be executed multiple times, once
for each linked file.

Parameters

• sublist {string} [required] — The internal ID of the record sublist for which data is being
imported. See Scriptable Sublists for a list of sublist internal IDs.

• file {string} [required] - Can be one of the following:

SuiteScript Objects
nlobjCSVImport

573

SuiteScript Developer & Reference Guide

• An nlobjFile object, encapsulating a CSV file, that contains the data to be imported.
The CSV file must be uploaded to the file cabinet before it can be used in this context.
The nlobjFile object is loaded with nlapiLoadFile(id). To load the nlobjFile object,
pass the internal ID of the specific CSV file to be loaded, as shown below. The
internal ID of the CSV file is listed in the file cabinet, under the Internal ID column.

setLinkedFile(“item”, nlapiLoadFile(74));

• Raw string of the data to be imported.

Returns

• void

Throws

• SSS_INVALID_CSV_CONTENT — Thrown when an invalid value is passed as the file
argument.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

setMapping(savedImport)

Sets the name of the saved import map to be used for an import, by referencing the internal ID
or script ID of the import map.

Parameters

• savedImport {string} [required] - The internal ID or script ID of the saved mapping to use
for the import job. The internal ID is system-defined and is displayed in the ID column at
Setup > Import/Export > Saved CSV Imports. The script ID can be defined in the Import
Assistant and is also displayed on this page.

Returns

• void

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjCSVImport

574

SuiteScript Developer & Reference Guide

setOption(option, value)

Sets the name of the import job to be shown on the status page for CSV imports.

Parameters

• option {string} [required] - The name of the option, in this case, jobName.

• value {string} [required] - The value for the jobName option, meaning the text to be
displayed in the Job Name column at Setup > Import/Export > View CSV Import Status.
The default job name format is: <import type> - <csv file name> - <email address of
logged-in user>.

Returns

• void

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

setPrimaryFile(file)

Sets the data to be imported in the primary file for an import job, by referencing a file in the file
cabinet using nlapiLoadFile, or by inputting CSV data as raw string.

Parameters

• file {string} [required] - Can be one of the following:

• The internal ID, as shown in the file cabinet, of the CSV file containing data to be
imported, referenced by nlapiLoadFile. For example:

setPrimaryFile(nlapiLoadFile(73))

• Raw string of the data to be imported.

Returns

• void

Throws

• SSS_INVALID_CSV_CONTENT — Thrown when an invalid value is passed as the file
argument.

SuiteScript Objects
nlobjCSVImport

575

SuiteScript Developer & Reference Guide

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

setQueue(string)

Overrides the CSV import queue preference. The stored queue preference is not altered;
setQueue must be called each time an override is needed.

Note: This method is intended for users with a SuiteCloud Plus license.

Parameters

• string {string} [required] — The new queue number. Valid values range from ‘1’ to ‘5’,
depending upon the SuiteCloud License.

Returns

• void

Throws

• SSS_INVALID_CSV_QUEUE — Thrown for all invalid values passed as the string
argument.

Since

• Version 2014 Release 1

Example

var import1 = nlapiCreateCSVImport();
import1.setMapping('CUSTIMPORTImport1');
import1.setPrimaryFile(nlapiLoadFile(252)); //internal id of first csv file
nlapiSubmitCSVImport(import1); // run in queue defined on CUSTIMPORTImport1

var import2 = nlapiCreateCSVImport();
import2.setMapping('CUSTIMPORTImport1');
import2.setPrimaryFile(nlapiLoadFile(253)); //internal id of first csv file
import2.setQueue('2'); // run in queue 2
nlapiSubmitCSVImport(import2);

var import3 = nlapiCreateCSVImport();
import3.setMapping('CUSTIMPORTImport1');
import3.setPrimaryFile(253); // SSS_INVALID_CSV_CONTENT expected
import3.setQueue(6); // SSS_INVALID_CSV_QUEUE expected
nlapiSubmitCSVImport(import3);

SuiteScript Objects
nlobjDuplicateJobRequest

576

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

nlobjDuplicateJobRequest
Primary object used to encapsulate all the properties of a merge duplicate record job request.
Note that nlobjJobManager.createJobRequest() returns a reference to this object.

Use the methods in nlobjDuplicateJobRequest to define the criteria of your merge duplicate
request.

For an end-to-end example that shows how the job manager APIs work together, see
Example - Using the Job Manager APIs to Merge Duplicate Records.

Note: When submitting a merge duplicate job, the maximum number of records you and
submit is 200.

nlobjDuplicateJobRequest Methods

• setEntityType(entityType)

• setMasterId(masterID)

• setMasterSelectionMode(mode)

• setOperation(operation)

• setRecords(dupeRecords)

setEntityType(entityType)

Parameters

• entityType {constant} [required] - Set to a constant value defined on the
nlobjDuplicateJobRequest object. When you pass in the constant, your code should look
like <nlobjDuplicateJobRequestInstance>.<constant>. The following are the constant
values:

• ENTITY_CUSTOMER

• ENTITY_CONTACT

• ENTITY_LEAD

• ENTITY_PROSPECT

• ENTITY_PARTNER

• ENTITY_VENDOR

SuiteScript Objects
nlobjDuplicateJobRequest

577

SuiteScript Developer & Reference Guide

Note: Note that if you set entityType to ENTITY_CUSTOMER, the system will automatically
include prospects and leads in the job request.

Returns

• void

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

setMasterId(masterID)

Parameters

• masterID {string} [required] - Required and valid only if setMasterSelectionMode(mode)
is set to MASTERSELECTIONMODE_SELECT_BY_ID

Returns

• void

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

setMasterSelectionMode(mode)

Parameters

• mode {string} [required] - Set to a constant value defined on the
nlobjDuplicateJobRequest object. When you pass in the constant, your code should look
like <nlobjDuplicateJobRequestInstance>.<constant>. The following are the constant
values:

• MASTERSELECTIONMODE_CREATED_EARLIEST

• MASTERSELECTIONMODE_MOST_RECENT_ACTIVITY

SuiteScript Objects
nlobjDuplicateJobRequest

578

SuiteScript Developer & Reference Guide

• MASTERSELECTIONMODE_MOST_POPULATED_FIELDS

• MASTERSELECTIONMODE_SELECT_BY_ID

Returns

• void

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

setOperation(operation)

Parameters

• operation {string} [required] - Set to a constant value defined on the
nlobjDuplicateJobRequest object. When you pass in the constant, your code should look
like <nlobjDuplicateJobRequestInstance>.<constant>. The following are the constant
values:

• OPERATION_MERGE

• OPERATION_DELETE

• OPERATION_MAKE_MASTER_PARENT

• OPERATION_MARK_AS_NOT_DUPES

Returns

• void

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjEmailMerger

579

SuiteScript Developer & Reference Guide

setRecords(dupeRecords)

Parameters

• dupeRecords {Array} [required] - Array of records to be merged

Returns

• void

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

nlobjEmailMerger
Encapsulates a scriptable email template, which can be merged with one of the following record
types:

• Contact

• Case

• Customer

• Employee

• Partner

• Vendor

• All transaction types

• All custom records

To create a new nlobjEmailMerger object, call nlapiCreateEmailMerger(templateId).

See nlapiCreateEmailMerger(templateId) for a sample script.

The nlobjEmailMerger object is supported in all server-side scripts.

Methods

• merge()

SuiteScript Objects
nlobjEmailMerger

580

SuiteScript Developer & Reference Guide

• setCustomRecord(recordType, recordId)

• setEntity(entityType, entityId)

• setRecipient(recipientType, recipientId)

• setSupportCase(caseId)

• setTransaction(transactionId)

merge()

Use this method to perform a mail merge on an nlobjEmailMerger object (a scriptable e-mail
template) and the records designated with the nlobjEmailMerger set methods.

This method has a governance of 20 usage units.

Returns

• An nlobjMergeResult object containing the e-mail subject and body.

Throws

• SSS_MERGER_ERROR_OCCURRED – Thrown if the template merger fails.

Since

• Version 2015 Release 1

setCustomRecord(recordType, recordId)

Use this method to designate a custom record to use in a mail merge.

Parameters

• recordType {string} [required] – the internal ID of the custom record type. For example,
“customrecord_telco_customer”.

• recordId {number} [required] – The internal ID of the custom record to use in the mail
merge.

Returns

• Void

Throws

• SSS_INVALID_TYPE_ARG – Thrown if the recordType argument is invalid or missing.

SuiteScript Objects
nlobjEmailMerger

581

SuiteScript Developer & Reference Guide

Since

• Version 2015 Release 1

setEntity(entityType, entityId)

Use this method to designate an entity to use in a mail merge.

Parameters

• entityType {string} [required] – The record type of the record to use in the mail merge.
Use one of the following arguments:

• customer

• contact

• partner

• vendor

• employee

• entityId {number} [required] – The internal ID of the record to use in the mail merge

Returns

• Void

Throws

• SSS_INVALID_TYPE_ARG – Thrown if the entityType argument is invalid or missing.

• SSS_MERGER_ERROR_OCCURRED – Thrown if the entity cannot be set.

Since

• Version 2015 Release 1

setRecipient(recipientType, recipientId)

Use this method to designate a second entity (as a recipient) to use in a mail merge.

Parameters

• recipientType {string} [required] – The record type of the record to use in the mail
merge. Use one of the following arguments:

• customer

SuiteScript Objects
nlobjEmailMerger

582

SuiteScript Developer & Reference Guide

• contact

• partner

• vendor

• employee

• recipientId {number} [required] – The internal ID of the record to use in the mail merge.

Returns

• Void

Throws

• SSS_INVALID_TYPE_ARG – Thrown if the recipientType argument is invalid or missing.

• SSS_MERGER_ERROR_OCCURRED – Thrown if the recipient cannot be set.

Since

Version 2015 Release 1

setSupportCase(caseId)

Use this method to designate a support case to use in a mail merge.

Parameters

• caseId {number} [required] – The internal ID of the case record to use in the mail merge.

Returns

• Void

Since

Version 2015 Release 1

setTransaction(transactionId)

Use this method to designate a transaction to use in a mail merge. All transaction types are
supported

Parameters

• transactionId {number} [required] – the internal ID of the transaction record to use in
the mail merge.

SuiteScript Objects
nlobjError

583

SuiteScript Developer & Reference Guide

Returns

• Void

Throws

• SSS_MERGER_ERROR_OCCURRED – Thrown if the transaction cannot be set.

Since

• Version 2015 Release 1

nlobjError
Primary object used to encapsulate errors in the system. Note that the nlapiCreateError(code,
details, suppressNotification) function returns a reference to this object.

nlobjError Methods

• getCode()

• getDetails()

• getId()

• getInternalId()

• getStackTrace()

• getUserEvent()

getCode()

Returns the error code for this system or user-defined error

Returns

• The error code as a string

Since

• Version 2008.2

Example

The following script tries to send out an email following the submit of a new record. In the
event that an error is thrown, an execution log entry is created and the script continues
(user is redirected to the record in EDIT mode).

SuiteScript Objects
nlobjError

584

SuiteScript Developer & Reference Guide

function afterSubmit(type)
{
 if (type == 'create')
 {
 try
 {
 var subject = 'A '+nlaiGetRecordType()+' with id '+nlapiGetRecordId()+' was just created';
 nlapiSendEmail('-5', 'alerts@company.com', subject);
 }
 catch (e)
 {
 if (e instanceof nlobjError)
 nlapiLogExecution('DEBUG', 'system error', e.getCode() + '\n' + e.getDetails())
 else
 nlapiLogExecution('DEBUG', 'unexpected error', e.toString())
 }
 nlapiSetRedirectURL('RECORD', nlapiGetRecordType(), nlapiGetRecordId(), true);
 }
}

Standard Objects | UI Objects | SuiteScript Functions

getDetails()

Returns the error message (user-defined or system) associated with this error

Returns

• The string value of the error message

Since

• Version 2008.2

Example

See the sample for getCode().

Standard Objects | UI Objects | SuiteScript Functions

getId()

Returns an error reference ID. If you have included a catch block in your code, you can use
getId() to get the internal reference number for an unexpected error. This method is useful if
you want to keep your own log of error numbers or you want to email the value of getId() to
someone else.

Also note that if you have to call Technical Support to help you resolve a SuiteScript issue, this
ID may be helpful to your Support rep in diagnosing the problem.

SuiteScript Objects
nlobjError

585

SuiteScript Developer & Reference Guide

Note: If you do not use getId() to programmatically get the ID, you can also view the ID
in the UI. After a script has executed, the script's error ID (if there is an error) appears
on the Execution Log subtab of the Script Deployment page. The ID also appears on
the Execution Log subtab in the SuiteScript Debugger. Finally, if you have chosen to
be emailed whenever there is a problem with a script, the error ID is provided in the
email that is sent to you.

Returns

• The error ID as a string

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getInternalId()

Returns the internal ID of the submitted record if this error was thrown in an afterSubmit
script

Returns

• The the internal ID of the submitted record as an integer

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getStackTrace()

Returns the stacktrace containing the location of the error

Returns

• String[]

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjFile

586

SuiteScript Developer & Reference Guide

getUserEvent()

Return the name of the user event script (if applicable) that the error was thrown from.

Returns

• The string value of the user event that threw the error - for example, beforeLoad,
beforeSubmit, or afterSubmit

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjFile
Primary object used to encapsulate files (media items) in the NetSuite file cabinet. For an
example that shows how to use several the of File object methods to upload a file to the
NetSuite file cabinet and also attach the file to a record, see Uploading Files to the File Cabinet
Using SuiteScript in the NetSuite Help Center.

nlobjFile Methods

• getDescription()

• getFolder()

• getId()

• getName()

• getSize()

• getType()

• getURL()

• getValue()

• isInactive()

• isOnline()

• setDescription(description)

• setEncoding(encodingType)

• setFolder(id)

• setIsInactive(inactive)

SuiteScript Objects
nlobjFile

587

SuiteScript Developer & Reference Guide

• setIsOnline(online)

• setName(name)

Note: The following functions return a reference to nlobjFile:

• nlapiCreateFile(name, type, contents)

• nlapiLoadFile(id)

• nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

• nlapiPrintRecord(type, id, mode, properties)

getDescription()

Returns

• The string description of the file. This is the description that appears in the Description
field on the folder or file record.

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getEncoding()

Returns the character encoding of a file. NetSuite supports the following encoding types:

• Unicode (UTF-8)

• Western (Windows 1252)

• Western (ISO-8859–1)

• Chinese Simplified (GB 18030)

• Japanese (Shift-JIS)

• Western (Mac Roman)

• Chinese Simplified (GB 2312)

• Chinese Traditional (Big5)

Returns

• One of the following values:

SuiteScript Objects
nlobjFile

588

SuiteScript Developer & Reference Guide

• UTF-8

• windows-1252

• ISO-8859-1

• GB18030

• SHIFT_JIS

• MacRoman

• GB2312

• Big5

Since

• Version 2010.1

Standard Objects | UI Objects | SuiteScript Functions

getFolder()

Returns

• Integer: The internal ID of the file's folder within the NetSuite file cabinet, for example 10,
2, etc.

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getId()

Returns the internal ID of the file (if the file is stored in the NetSuite file cabinet)

Returns

• The integer value of file ID, for example 8, 108, 11, etc. This is the ID that appears in the
Internal ID column next to the file in the file cabinet.

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjFile

589

SuiteScript Developer & Reference Guide

getName()

Returns the name of the file

Returns

• The string value of the file name

Standard Objects | UI Objects | SuiteScript Functions

getSize()

Returns the size of the file in bytes

Returns

• The integer value of the file size

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getType()

Returns the type of the file

Returns

• The string value of the file type - for example, PDF, CSV, PLAINTEXT. (For a list of
supported file type IDs, see Supported File Types .)

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getURL()

Returns the URL to the file if it is stored in the NetSuite file cabinet

Returns

• The URL as a string

SuiteScript Objects
nlobjFile

590

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getValue()

Returns the contents of the file (base 64 encoded for binary files).

Important: This method is only supported on files up to 5MB in size.

Returns

• The string value of the file contents

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

isInactive()

Returns

• Boolean: The file's inactive status as either true or false. Returns true if the file is inactive.

Since

• Version 2009.1

See also

• setIsInactive(inactive)

Standard Objects | UI Objects | SuiteScript Functions

isOnline()

Returns

• Boolean: The file's online status as either true or false. Returns true if the file is “Available
without Login.”

SuiteScript Objects
nlobjFile

591

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

See also

• setIsOnline(online)

Standard Objects | UI Objects | SuiteScript Functions

setDescription(description)

Sets the description of the file

Parameters

• description {string} [required] - A description of the file. This description will appear in
the Description field on the folder or file record.

Returns

• void

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

setEncoding(encodingType)

Sets the character encoding of a file. The following types are supported when setting the
encoding for new and existing files:

• Unicode (UTF-8)

• Western (Windows 1252)

• Western (ISO-8859–1)

• Chinese Simplified (GB 18030)

• Japanese (Shift-JIS)

• Western (Mac Roman)

The following types are supported when setting the encoding for existing files:

• Chinese Simplified (GB 2312)

SuiteScript Objects
nlobjFile

592

SuiteScript Developer & Reference Guide

• Chinese Traditional (Big5)

Parameters

• encodingType {string} [required] - The type of encoding for the file. Use one of the
following case sensitive values:

• UTF-8

• windows-1252

• ISO-8859-1

• GB18030

• SHIFT_JIS

• MacRoman

• GB2312

• Big5

Important: GB2312 and Big5 are not valid arguments when setting the encoding for
a new file.

Returns

• void

Since

• Version 2010.1

Example

var newFile = nlapiCreateFile('Chinese.csv', 'CSV', csvText);
newFile.setFolder(csvFolderId);
newFile.setEncoding('UTF-8');
nlapiSubmitFile(newFile);

Standard Objects | UI Objects | SuiteScript Functions

setFolder(id)

Sets the internal ID of the folder that the file is in

Parameters

• id {int} [required] - The internal ID of the file's folder, for example 10, -4, 20, etc.

SuiteScript Objects
nlobjFile

593

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

setIsInactive(inactive)

Sets the file's inactive status. When you inactive a file or folder, it no longer appears on lists
unless (in the UI) you have selected the Show Inactives check box.

Note: The Show Inactives check box appears in the bottom-left corner of the Folders list.
Navigate to the Folders list by going to Documents > Files > File Cabinet.

Parameters

• inactive {boolean} [required] - The file's inactive status. Set to true to inactive the file. Set
to false to make the file active.

Returns

• void

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

setIsOnline(online)

Sets the file's online (“Available without Login”) status. When a file is online, other users can
download the file without a login session. This means you can upload images, MP3, or any
other file type to the file cabinet and give other users the file URL without giving them access to
the account.

Parameters

• online {boolean} [required] - The file's updated online status. Set to true to make the file
available online. Set to false if you do not want the file available online.

SuiteScript Objects
nlobjFile

594

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

setName(name)

Sets the name of the file

Parameters

• name {string} [required]- The name of the file

Returns

• void

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

Uploading Files to the File Cabinet Using SuiteScript

This sample shows how to upload a file into the NetSuite file cabinet. It also shows how to
attach this same file to a particular record. See the screenshots after this sample for more
details.

Note: The nlobjRequest.getFile method can return a reference to a file up to 10MB in
size.

Note: The nlapiSubmitFile function can submit nlobjFile objects of any size, as long as
the file size is permitted by the file cabinet.

Example

function uploader(request, response)

SuiteScript Objects
nlobjFile

595

SuiteScript Developer & Reference Guide

{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Attach File to Customer');
 var entityField = form.addField('entity', 'select', 'Customer', 'customer');
 entityField.setLayoutType('normal', 'startcol')
 entityField.setMandatory(true)

 var fileField = form.addField('file', 'file', 'Select File');
 fileField.setMandatory(true)

 form.addSubmitButton();
 form.addResetButton();
 response.writePage(form);
 }
 else
 {
 var entity = request.getParameter("entity")
 var file = request.getFile("file")

 // set the folder where this file will be added. In this case, 10 is the internal ID
 // of the SuiteScripts folder in the NetSuite file cabinet
 file.setFolder(10)

 // Create file and upload it to the file cabinet.
 var id = nlapiSubmitFile(file)

 // Attach file to customer record
 nlapiAttachRecord("file", id, "customer", entity)

 // Navigate to customer record
 response.sendRedirect('record', 'customer', entity)
 }
}

The following figure shows the output of this script. To attach a file to a particular customer,
specify the customer in the Customer field. Next, select a file from the Select File field. Click
Save when finished.

After clicking Save, you are redirected to the customer record that was specified in the
Customer field. In this case, the customer is Abe Simpson (see the following figure).

When the Abe Simpson customer record opens, click the Files subtab to verify that the file you
selected was attached to the record. In this case, the file is a txt file called sample file.

SuiteScript Objects
nlobjFile

596

SuiteScript Developer & Reference Guide

You can also go to the NetSuite file cabinet to verify that sample file.txt was uploaded to
the SuiteScripts folder. Navigate to the SuiteScripts folder by going to Documents > Files >
SuiteScripts.

The following figure shows the sample text.txt file in the SuiteScript folder.

SuiteScript Objects
nlobjFuture

597

SuiteScript Developer & Reference Guide

nlobjFuture
Encapsulates the properties of a merge duplicate record job status. Note that
nlobjJobManager.getFuture() returns a reference to this object.

nlobjFuture Methods

• isDone()

• isCancelled()

isDone()

Returns

• boolean - true if job has finished

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjJobManager

598

SuiteScript Developer & Reference Guide

isCancelled()

Returns

• boolean - for merge duplicate records, will always returns false

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

nlobjJobManager
Encapsulates the properties of a job manager. A call to nlapiGetJobManager(jobType) returns a
reference to this object. Use the methods in nlobjJobManager to create and submit your merge
duplicate records job request.

Important: When submitting a “merge duplicates” job, the maximum size of your job can
be 200 record.

For an end-to-end example that shows how the job manager APIs work together, see
Example - Using the Job Manager APIs to Merge Duplicate Records.

nlobjJobManager Methods

• createJobRequest()

• submit(nlobjDuplicateJobRequest)

• getFuture()

createJobRequest()

Returns

• nlobjDuplicateJobRequest

Since

• Version 2013.1

SuiteScript Objects
nlobjJobManager

599

SuiteScript Developer & Reference Guide

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

submit(nlobjDuplicateJobRequest)

Use to submit your job request. When submitting a “merge duplicates” job, the maximum size
of your job can be 200 record.

Be aware that submitting a job places the job into the NetSuite work queue for processing.
Submitting a job does not mean that the job is executed right away.

Parameters

• nlobjDuplicateJobRequest {Object} [required] - The job you want to submit

Returns

• The jobID is returned if the job is successfully submitted

Since

• Version 2013.1

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

getFuture()

Use to return a nlobjFuture object. Then use the methods on the nlobFuture object to check the
status of the job. Note that a call to getFuture costs 5 governance units.

Returns

• nlobjFuture

Since

• Version 2013.1

SuiteScript Objects
nlobjLogin

600

SuiteScript Developer & Reference Guide

Example

See Example - Using the Job Manager APIs to Merge Duplicate Records.

Standard Objects | UI Objects | SuiteScript Functions

nlobjLogin
Primary object used to encapsulate NetSuite user login credentials. Note that nlapiGetLogin()
returns a reference to this object.

nlobjLogin Methods

• changeEmail(currentPassword, newEmail, justThisAccount)

• changePassword(currentPassword, newPassword)

changeEmail(currentPassword, newEmail, justThisAccount)

Sets the logged-in user's email address to a new one.

Parameters

• currentPassword {string} [required] - The current password of the logged-in user. If a
valid value is not specified, an error will be thrown.

• newEmail {string} [required] - The new email address for the logged-in user. If a valid value
is not specified, an error will be thrown.

• justThisAccount {boolean} [optional] - If not set, this argument defaults to true. If set to
true, the email address change is applied only to roles within the current account. If set to
false, the email address change is applied to all accounts and roles.

Since

• Version 2012.2

Example

This example shows how to change the logged-in user's email address.

//Get the logged-in user's credentials
var login = nlapiGetLogin();
//Change current email address
login.changeEmail(‘MycUrr3ntPa$$word', ‘newemail@netsuite.com', true);

SuiteScript Objects
nlobjMergeResult

601

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

changePassword(currentPassword, newPassword)

Sets the logged-in user's password to a new one.

Parameters

• currentPassword {string} [required] - The current password of the logged-in user. If a
valid value is not specified, an error will be thrown.

• newPassword {string} [required] - The new password for the logged-in user. If a valid value
is not specified, an error will be thrown.

Since

• Version 2012.2

Example

This example shows how to change the logged-in user's password.

//Get the currently logged-in user credentials
var login = nlapiGetLogin();
//Change current password
login.changePassword(‘MycUrr3ntPa$$word', ‘MyNeWPaSw0rD!');

Standard Objects | UI Objects | SuiteScript Functions

nlobjMergeResult
The nlobjMergeResult object is supported in all server-side scripts.

Methods

• getBody()

• getSubject()

getBody()

Use this method to get the body of the email distribution in string format.

Returns

• A string

SuiteScript Objects
nlobjPivotColumn

602

SuiteScript Developer & Reference Guide

Since

Version 2015 Release 1

getSubject()

Use this method to get the subject of the email distribution in string format.

Returns

• A string

Since

Version 2015 Release 1

nlobjPivotColumn
Object used to encapsulate a pivot table column.

Methods

• getAlias()

• getParent()

• getLabel()

• getSummaryLine()

• getValue()

• getVisibleChildren()

• isHidden()

getAlias()

Get the column alias.

Returns

• string - The column alias.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjPivotColumn

603

SuiteScript Developer & Reference Guide

getDependency(alias)

Returns

getParent()

Get the parent column.

Returns

• nlobjPivotColumn - Null if it does not exist

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getLabel()

Get the column label.

Returns

• string - Column label

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getSummaryLine()

Get the summary line.

Returns

• nlobjPivotColumn - Summary line if it exists, otherwise null

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjPivotRow

604

SuiteScript Developer & Reference Guide

getValue()

Get the value of the column.

Returns

• object - The value of this column

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getVisibleChildren()

Get any defined children columns.

Returns

• nlobjPivotColumn[] - Null if no children columns exist

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

isHidden()

Checks if the column is hidden.

Returns

• boolean - True if the column is hidden

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjPivotRow
Object used to encapsulate a pivot table row.

SuiteScript Objects
nlobjPivotRow

605

SuiteScript Developer & Reference Guide

Methods

• getAlias()

• getChildren()

• getLabel()

• getOpeningLine()

• getParent()

• getSummaryLine()

• getValue()

• getValue(pivotColumn)

• isDetailLine()

getAlias()

Get the row alias.

Returns

• string - The row alias.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getChildren()

Get the children rows if there are any.

Returns

• nlobjPivotRow[] - Null if the row is a detail line or if there are no children.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

Get the row label.

https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_N3092927.html

SuiteScript Objects
nlobjPivotRow

606

SuiteScript Developer & Reference Guide

• string - The row label.

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getOpeningLine()

Returns

Since

getParent()

Get the summary line from the report.

Returns

• nlobjPivotRow - Null if the row does not exist.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getSummaryLine()

Get the parent row if it exists.

Returns

• nlobjPivotRow - Null if the row is a detail line.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getValue()

Get the row value if the row is a detail line.

SuiteScript Objects
nlobjPivotTable

607

SuiteScript Developer & Reference Guide

Returns

• object - The value of the row hierarchy, or null if isDetailLine returns false.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getValue(pivotColumn)

Get the value of the row/column combination.

Parameters

• pivotColumn {nlobjPivotColumn} [required] - The pivot column.

Returns

• object - The value of the row/column combination, or null if isDetailLine returns false.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

isDetailLine()

Check if the row is a detail line.

Returns

• boolean - True if the row is a detail line.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjPivotTable
Object used to encapsulate the pivot table.

SuiteScript Objects
nlobjPivotTableHandle

608

SuiteScript Developer & Reference Guide

Methods

• getColumnHierarchy()

• getRowHierarchy()

getColumnHierarchy()

Get the column hierarchy.

Returns

• nlobjPivotColumn

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getRowHierarchy()

Get the row hierarchy.

Returns

• nlobjPivotRow

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjPivotTableHandle
Handle to the pivot table object. A handle is a reference which points to the pivot table.

Methods

• getPivotTable()

• isReady()

getPivotTable()

Get the pivot table object from the report definition.

SuiteScript Objects
nlobjRecord

609

SuiteScript Developer & Reference Guide

Note: This is a blocking call and it will wait until the report definition execution has
finished. Using isReady is recommended to check execution state if blocking is
unacceptable.

Returns

• nlobjPivotTable

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

isReady()

Returns the completion status flag of the report definition execution.

Returns

• boolean - True if the execution has finished.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjRecord
Primary object used to encapsulate a NetSuite record.

Methods

• commitLineItem(group, ignoreRecalc)

• createCurrentLineItemSubrecord(sublist, fldname)

• createSubrecord(fldname)

• editCurrentLineItemSubrecord(sublist, fldname)

• editSubrecord(fldname)

• findLineItemMatrixValue(group, fldnam, column, val)

• findLineItemValue(group, fldnam, value)

• getAllFields()

SuiteScript Objects
nlobjRecord

610

SuiteScript Developer & Reference Guide

• getAllLineItemFields(group)

• getCurrentLineItemDateTimeValue(type, fieldId, timeZone)

• getCurrentLineItemMatrixValue(group, fldnam, column)

• getCurrentLineItemValue(type, fldnam)

• getCurrentLineItemValues(type, fldnam)

• getDateTimeValue(fieldId, timeZone)

• getField(fldnam)

• getFieldText(name)

• getFieldTexts(name)

• getFieldValue(name)

• getFieldValues(name)

• getId()

• getLineItemCount(group)

• getLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

• getLineItemField(group, fldnam, linenum)

• getLineItemMatrixField(group, fldnam, linenum, column)

• getLineItemMatrixValue(group, fldnam, lineum, column)

• getLineItemText(group, fldnam, linenum)

• getLineItemValue(group, name, linenum)

• getLineItemValues(type, fldnam, linenum)

• getMatrixCount(group, fldnam)

• getMatrixField(group, fldname, column)

• getMatrixValue(group, fldnam, column)

• getRecordType()

• insertLineItem(group, linenum, ignoreRecalc)

• removeLineItem(group, linenum, ignoreRecalc)

• removeCurrentLineItemSubrecord(sublist, fldname)

• removeSubrecord(fldname)

• selectLineItem(group, linenum)

• selectNewLineItem(group)

SuiteScript Objects
nlobjRecord

611

SuiteScript Developer & Reference Guide

• setCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

• setCurrentLineItemMatrixValue(group, fldnam, column, value)

• setCurrentLineItemValue(group, name, value)

• setDateTimeValue(fieldId, dateTime, timeZone)

• setFieldText(name, text)

• setFieldTexts(name, text)

• setFieldValue(name, value)

• setFieldValues(name, value)

• setLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

• setLineItemValue(group, name, linenum, value)

• setMatrixValue(group, fldnam, column, value)

• viewCurrentLineItemSubrecord(sublist, fldname)

• viewLineItemSubrecord(sublist, fldname, linenum)

• viewSubrecord(fldname)

Note: The following functions return a reference to the nlobjRecord object:

• nlapiCopyRecord(type, id, initializeValues)

• nlapiCreateRecord(type, initializeValues)

• nlapiGetNewRecord()

• nlapiGetOldRecord()

• nlapiLoadRecord(type, id, initializeValues)

• nlapiTransformRecord(type, id, transformType, transformValues)

commitLineItem(group, ignoreRecalc)

Use this method to commit the current line in a sublist.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• ignoreRecalc {Boolean true|false} [optional] – If set to true, the total is not recalculated
upon execution. Use this parameter if you are editing multiple line items on the same
sublist and you need to improve performance. Do not use this option on the last commit

SuiteScript Objects
nlobjRecord

612

SuiteScript Developer & Reference Guide

of the sublist; the last commitLineItem call must recalculate the total. An error is thrown
upon record submit if you do not recalculate the total on the last commitLineItem of the
sublist. This parameter is only supported with server-side scripts.

Returns

• void

Since

• Version 2009.2

Example

This sample shows how to create a new Vendor Bill record and then add items to the Item
sublist and expenses to the Expenses sublist. Note that because you are adding new lines to
each sublist, you must call the selectNewLineItem(group) method. You then set all values
for the new lines using the setCurrentLineItemValue(group, name, value) method. When
you are finished adding values to each sublist, you must commit all sublist updates using the
commitLineItem(group) method.

var record = nlapiCreateRecord('vendorbill');
record.setFieldValue('entity', 196);
record.setFieldValue('department', 3);
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item','item', 380);
record.setCurrentLineItemValue('item', 'location', 102);
record.setCurrentLineItemValue('item', 'amount', '2');
record.setCurrentLineItemValue('item', 'customer', 294);
record.setCurrentLineItemValue('item','isbillable', 'T');
record.commitLineItem('item');

record.selectNewLineItem('expense');
record.setCurrentLineItemValue('expense','category', 3);
record.setCurrentLineItemValue('expense', 'account', 11);
record.setCurrentLineItemValue('expense', 'amount', '10');
record.setCurrentLineItemValue('expense','customer', 294);
record.setCurrentLineItemValue('expense','isbillable', 'T');
record.commitLineItem('expense');

var id = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

createCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to create a subrecord from a sublist field on the
parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

SuiteScript Objects
nlobjRecord

613

SuiteScript Developer & Reference Guide

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Creating an Inventory Detail Subrecord in the NetSuite Help Center.

Standard Objects | UI Objects | SuiteScript Functions

createSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to create a subrecord from a body field on the
parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Creating an Inventory Detail Subrecord in the NetSuite Help Center.

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjRecord

614

SuiteScript Developer & Reference Guide

editCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to edit a subrecord from a sublist field on the
parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Editing an Inventory Detail Subrecord in the NetSuite Help Center.

Standard Objects | UI Objects | SuiteScript Functions

editSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to edit a subrecord from a body field on the
parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• nlobjSubrecord

SuiteScript Objects
nlobjRecord

615

SuiteScript Developer & Reference Guide

Since

• Version 2011.2

Example

Standard Objects | UI Objects | SuiteScript Functions

findLineItemMatrixValue(group, fldnam, column, val)

Use this method to return the line number of a particular price in a given column. If the value is
present on multiple lines, it will return the line item of the first line that contains the value.

Use this API on a matrix sublists only.

Note: Currently the Pricing sublist is the only matrix sublist type that supports SuiteScript.
For details on working with the Pricing sublist, see Pricing Sublist in the NetSuite
Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

• val {string} [required] - The value of the field

Returns

• The line number (as an integer) of a specified matrix field

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

findLineItemValue(group, fldnam, value)

Use this API to return the line number for the first occurrence of a field value in a sublist
column. This API can be used on any sublist type that supports SuiteScript (editor, inline
editor, and list sublists).

SuiteScript Objects
nlobjRecord

616

SuiteScript Developer & Reference Guide

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• fldnam {string} [required] - The field internal ID

• value {string} [required] - The value of the field

Returns

• The line number (as an integer) of a specific sublist field

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getAllFields()

Returns a normal keyed array of all the fields on a record. Note that the number of fields
returned will differ when you call getAllFields() on the edit of a record vs. on the xedit of a
record. For details, see these topics :

• Inline Editing and nlapiGetNewRecord()

• Inline Editing and nlapiGetOldRecord()

• What's the Difference Between xedit and edit User Event Types?

Returns

• String[] of all field names on the record

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getAllLineItemFields(group)

Returns an array of all the field names of a sublist on this record

SuiteScript Objects
nlobjRecord

617

SuiteScript Developer & Reference Guide

Parameters

• group {string} [required]- The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

Returns

• String[] of sublist field names

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getCurrentLineItemDateTimeValue(type, fieldId, timeZone)

Returns the value of a datetime field on the currently selected line of a sublist. If timeZone is
passed in, the datetime value is converted to that time zone and then returned. If timeZone is
not passed in, the datetime value is returned in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. This field ID must point to a datetime
formatted field.

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table. If this argument is
not supplied, the time zone will default to the time zone set in user preferences.

Returns

• The string value of a datetime field on the currently selected line.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

var a = nlapiLoadRecord('customrecord_parentdatetime', 1);

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

618

SuiteScript Developer & Reference Guide

a.selectLineItem('recmachcustrecord_childdatetime', 1);
var tz = a.getCurrentLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datet
imetzcol', 'America/Regina');

getCurrentLineItemMatrixValue(group, fldnam, column)

Use this API to get the value of the currently selected matrix field. This API should be used on
matrix sublists only.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field being set.

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

Returns

• The string value of a field on the currently selected line in a matrix sublist. Returns null if
the field does not exist.

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getCurrentLineItemValue(type, fldnam)

Returns the value of a sublist field on the currently selected line

Parameters

• type {string} [required] - The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the field being set

SuiteScript Objects
nlobjRecord

619

SuiteScript Developer & Reference Guide

Returns

• The string value of a field on the currently selected line. Returns null if field does not exist.

Standard Objects | UI Objects | SuiteScript Functions

getCurrentLineItemValues(type, fldnam)

Returns the values of a multiselect sublist field on the currently selected line. One example of a
multiselect sublist field is the Serial Numbers field on the Items sublist.

This function is not supported in client SuiteScript. It is meant to be used in user event scripts.

Parameters

• type {string} [required] - The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The name of the multiselect field

Returns

• An array of string values for the multiselect sublist field

Since

• Version 2012.1

Standard Objects | UI Objects | SuiteScript Functions

getDateTimeValue(fieldId, timeZone)

Returns the value of a datetime field. If timeZone is passed in, the datetime value is converted
to that time zone and then returned. If timeZone is not passed in, the datetime value is returned
in the default time zone.

Parameters

• fieldId {string} [required] — The internal field ID. This field ID must point to a datetime
formatted field.

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

620

SuiteScript Developer & Reference Guide

Returns

• The string value of a datetime field.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Standard Objects | UI Objects | SuiteScript Functions

getField(fldnam)

Returns field metadata for a field. This method is only supported with server-side scripts.

Parameters

• fldnam {string} [required] - The internal ID of the field

Returns

• The nlobjField object

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getFieldText(name)

Returns the UI display value for a select field. This method is only supported with server-side
scripts. This method is supported on select fields only.

Parameters

• name {string} [required] - The internal ID of the field

Returns

• String UI display value corresponding to the current selection for a select field. Returns
null if field does not exist on the record or if the field is restricted.

SuiteScript Objects
nlobjRecord

621

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Example

The sample below shows how to use getFieldText(name). In this sample, the script will
return the UI display value of the Sales Rep (salesrep) field. In this account, the Sales Rep
has been set to Abe Simpson. This is the value that will be returned.

var rec = nlapiLoadRecord('salesorder', 1957);
var valText = rec.getFieldText('salesrep'); // returns Abe Simpson

See also

• nlapiGetFieldText(fldnam) - this is the form-level client-side equivalent of
nlobjRecord.getFieldText(name).

Standard Objects | UI Objects | SuiteScript Functions

getFieldTexts(name)

Returns the UI display values for a multi-select field. This method is only supported with
server-side scripts. This method is supported on multi-select fields only.

Parameters

• name {string} [required] - The internal ID of the multiselect field

Returns

• String[] - Returns the selected text values of a multi-select field

Since

• Version 2009.1

Example

The sample below shows how to use getFieldTexts(name). In this sample, the script will
return the UI display values of a custom multiselect field that references customers in
the account. The internal ID for the multiselect field is custbody23. In this account, the
multiselect field has the display values of 104 Lou Liang and 105 Barry Springsteen.
These are the values that will be returned.

var rec = nlapiLoadRecord('salesorder', 1957); // load the sales order
var valText = rec.getFieldTexts('custbody23'); // returns 104 Lou Liang and 105 Barry Springst

SuiteScript Objects
nlobjRecord

622

SuiteScript Developer & Reference Guide

een

See also

nlapiGetFieldTexts(fldnam) - this is the form-level client-side equivalent of
nlobjRecord.getFieldTexts(name).

Standard Objects | UI Objects | SuiteScript Functions

getFieldValue(name)

Returns the value (internal ID) of a field.

Note that NetSuite recommends you read the topic Getting Field Values in SuiteScript, which
addresses the rare instances in which the value returned by this API is inconsistent.

Parameters

• name {string} [required] - The internal ID of the field whose value is being returned.

Returns

• The internal ID (string) value for the field

Example

In this sample, the script returns the internal ID of the value in the Partner (partner) field.
In this particular sales order, the Partner field has been set to ABC Inc., which has an
internal ID value of 219. The value 219 will be returned in this script.

var rec = nlapiLoadRecord('salesorder', 18); // load a sales order
var value = rec.getFieldValue('partner'); // get internal ID value of the Partner field

Standard Objects | UI Objects | SuiteScript Functions

getFieldValues(name)

Returns the value (field ID) or values (array of field IDs) of a multi-select field.

Parameters

• name {string} [required]- The name of the field whose value is being returned

Returns

• If there is only one value selected in the multi-select field, this method returns the field ID
as a string.

SuiteScript Objects
nlobjRecord

623

SuiteScript Developer & Reference Guide

• If there are multiple values selected in the multi-select field, this method returns a string
array of field IDs.

• If the field is not on the record, this method returns null.

Note: To determine whether getFieldValues returns a string or an array, compare the
return value to the return value of nlobjRecord.getFieldValue. The getFieldValue
method returns a string.

Example

In this sample, the script returns an array of internal ID values that are set in a custom multi-
select field called Advertising Preferences. (In this account, the internal ID of the Advertising
Preferences field is custentity1.)

In the UI, the Advertising Preferences field has the values of E-mail and Mail. The internal ID
values for E-mail and Mail are 2 and 3, respectively. The values of 2 and 3 will be returned in
this script.

var rec = nlapiLoadRecord('customer', 196); // load a customer record
var values = rec.getFieldValues('custentity1'); //get array of internal ID values set in custen
tity1 field

Standard Objects | UI Objects | SuiteScript Functions

getId()

Use this method to get the internal ID of a record or NULL for new records.

Returns

• Integer value of the record ID

Standard Objects | UI Objects | SuiteScript Functions

getLineItemCount(group)

Returns the number of lines on a sublist

Important: The first line number on a sublist is 1 (not 0).

Parameters

• group {string} [required]- The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

SuiteScript Objects
nlobjRecord

624

SuiteScript Developer & Reference Guide

Returns

• The integer value of the number of line items on a sublist

getLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

Returns the value of a datetime field on a sublist. If timeZone is passed in, the datetime value is
converted to that time zone and then returned. If timeZone is not passed in, the datetime value
is returned in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• lineNum {int} [required] — The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• The string value of a datetime field on a sublist.

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

var a = nlapiLoadRecord('customrecord_parentdatetime', 1);
var tz = a.getLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datetimetzco
l', 1, 'America/Regina');

Standard Objects | UI Objects | SuiteScript Functions

getLineItemField(group, fldnam, linenum)

Returns field metadata for a line item (sublist) field. This method is only supported with server-
side scripts.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

625

SuiteScript Developer & Reference Guide

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• fldnam {string} [required] - The internal ID of the line item field

• linenum {int} [required] - The line number this field is on. Note the first line number on a
sublist is 1 (not 0). Only settable for sublists of type list.

Returns

• An nlobjField object

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getLineItemMatrixField(group, fldnam, linenum, column)

Use this API to obtain metadata for a field that appears in a matrix sublist.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the field (line) whose value you want
returned.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• column {int} [required] - The column number for this field. Column numbers start at 1,
not 0.

Returns

• An nlobjField object representing this sublist field. Returns null if the field you have
specified does not exist.

SuiteScript Objects
nlobjRecord

626

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

record = nlapiLoadRecord('inventoryitem', 312);
var itemid = record.getFieldValue('itemid');
//Get the metadata for the price matrix field.
var matrixFieldObj = record.getLineItemMatrixField('price1', 'price', 1, 2);
var fieldLabel = matrixFieldObj.getLabel();
var fieldName = matrixFieldObj.getName();
var fieldType = matrixFieldObj.getType();

var fieldMetaInfo = 'Label: '+fieldLabel+' Name: '+fieldName+' Type: '+fieldType ;
record.setFieldValue('purchasedescription', fieldMetaInfo);

var id2 = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

getLineItemMatrixValue(group, fldnam, lineum, column)

Use this API to get the value of a matrix field that appears on a specific line in a specific
column. This API can be used only in the context of a matrix sublist.

Note: Currently the Pricing sublist is the only matrix sublist type that supports SuiteScript.
For details on working with the Pricing sublist, see Pricing Sublist in the NetSuite
Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix field whose value you want
returned.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• The string value of the matrix field

SuiteScript Objects
nlobjRecord

627

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

record = nlapiLoadRecord('inventoryitem', 333);
var itemid = record.getFieldValue('itemid');
var price1 = record.getLineItemMatrixValue('price1', 'price', 1, 1);
var price2 = record.getLineItemMatrixValue('price1', 'price', 2, 1);

Standard Objects | UI Objects | SuiteScript Functions

getLineItemText(group, fldnam, linenum)

Returns the display name of a select field (based on its current selection) in a sublist. This
method is only supported with server-side scripts.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• fldnam {string} [required] - The name of the field/line item being set

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• String - The string UI display value corresponding to the current selection for a line item
select field. Returns null if field does not exist on the record or the field is restricted.

Since

• Version 2009.1

Example

The sample below shows how to set getLieItemText(type, fldnam, linenum). In this
sample, the script will return the UI display name value of the Item (item) field on the
Item sublist. In this account, the Item field has been set to Assorted Bandages. This is the
value that will be returned.

var rec = nlapiLoadRecord('salesorder', 1957);
var valText = rec.getFieldText('salesrep');
var line1txt= rec.getLineItemText('item', 'item', 1);

SuiteScript Objects
nlobjRecord

628

SuiteScript Developer & Reference Guide

See also

• nlapiGetLineItemText(type, fldnam, linenum) - this is the form-level client-side equivalent
of nlobjRecord.getLineItemText.

Standard Objects | UI Objects | SuiteScript Functions

getLineItemValue(group, name, linenum)

Returns the value of a sublist line item field.

Note that NetSuite recommends you read the topic Getting Field Values in SuiteScript, which
addresses the rare instances in which the value returned by this API is inconsistent.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• name {string} [required]- The name of the sublist field whose value is being returned

• linenum {int} [required]- The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• The string value of the sublist field name

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getLineItemValues(type, fldnam, linenum)

Returns the values of a multiselect sublist field on a selected line. One example of a multiselect
sublist field is the Serial Numbers field on the Items sublist.

This function is not supported in client SuiteScript. It is meant to be used in user event scripts.

SuiteScript Objects
nlobjRecord

629

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] - The sublist internal ID (for example, use addressbook as the ID
for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, sublist internal IDs, and sublist field IDs.

• fldnam {string} [required] - The internal ID of the multiselect field

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• An array of string values for the multiselect sublist field

Since

• Version 2012.1

Standard Objects | UI Objects | SuiteScript Functions

getMatrixCount(group, fldnam)

Use this API in a matrix sublist to get the number of columns for a specific matrix field.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

Note: The first column in a matrix is 1, not 0.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The field internal ID of the matrix field.

Returns

• The integer value for the number of columns of a specified matrix field

Since

• Version 2009.2

Example

record = nlapiLoadRecord('inventoryitem', 333);

SuiteScript Objects
nlobjRecord

630

SuiteScript Developer & Reference Guide

var itemid = record.getFieldValue('itemid');
var count = record.getMatrixCount('price', 'price');

Standard Objects | UI Objects | SuiteScript Functions

getMatrixField(group, fldname, column)

Use this API to get field metadata for a matrix “header” field in a matrix sublist. This method is
only supported with server-side scripts.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

For example, if the Quantity Pricing feature is enabled in your account, you will see the Qty
fields at the top of the pricing matrix. The Qty fields are considered to be the header fields
in the pricing matrix. For more information on matrix header fields, see Matrix APIs in the
NetSuite Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix header field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• nlobjField object

Since

• Version 2009.2

Example

This sample shows how to get the metadata of the quantity (Qty) field on the USA Pricing
tab.

record = nlapiLoadRecord('inventoryitem', 333);
var itemid = record.getFieldValue('itemid');

//Get the metadata of quantity field inside the USA Pricing tab
var fieldObj = record.getMatrixField('price1', 'price',1);
var fieldLabel = fieldObj.getLabel();
var fieldName = fieldObj.getName();

SuiteScript Objects
nlobjRecord

631

SuiteScript Developer & Reference Guide

var fieldType = fieldObj.getType();

var fieldMetaInfo = 'Label: '+fieldLabel+' Name: '+fieldName+' Type: '+fieldType ;
record.setFieldValue('purchasedescription', fieldMetaInfo);
var id2 = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

getMatrixValue(group, fldnam, column)

Use this API to get the value of a matrix “header” field in a matrix sublist.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

For example, if the Quantity Pricing feature is enabled in your account, you will see the Qty
fields at the top of the pricing matrix. The Qty fields are considered to be the header fields
in the pricing matrix. See Matrix APIs in the NetSuite Help Center for more information on
matrix header fields.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

• fldnam {string} [required] - The internal ID of the matrix header field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

Returns

• The string value of a matrix header field

Since

• Version 2009.2

Example

record = nlapiLoadRecord('inventoryitem', 333);
var itemid = record.getFieldValue('itemid');
var quant1 = record.getMatrixValue('price1', 'price', '2');
record.setFieldValue('purchasedescription', quant1);
var id2 = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjRecord

632

SuiteScript Developer & Reference Guide

getRecordType()

Returns the record type (for example assembly unbuild would be returned for the Assembly
Unbuild record type; salesorder would be returned for the Sales Order record type).

Returns

• The string value of the record name internal ID

Standard Objects | UI Objects | SuiteScript Functions

insertLineItem(group, linenum, ignoreRecalc)

Inserts a new line into a sublist. This function is only supported for edit sublists (inlineeditor,
editor). Note, however, this API will work on list sublists that have been added via the UI object
nlobjSubList

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• linenum {int} [required] - Line index at which to insert the line. Note that in sublists, the
first line number is 1 (not 0). If the number is greater than the number of lines on the
sublist, an error is returned.

• ignoreRecalc {Boolean true|false} [optional] – If set to true, the total is not recalculated
upon execution. Use this parameter if you are inserting multiple line items on the same
sublist and you need to improve performance. Do not use this option on the last line item
insert of the sublist; the last insertLineItem call must recalculate the total. An error is
thrown upon record submit if you do not recalculate the total on the last insertLineItem of
the sublist. This parameter is only supported with server-side scripts.

Returns

• void

Example

// insert line at the beginning of the item sublist
var rec = nlapiGetNewRecord();
rec.insertLineItem('item', 1);
rec.setLineItemValue('item', 'quantity', 1, 10);

// insert line at the end
// triggered in the beforeSubmit event
var rec = nlapiGetNewRecord();
var intCount = rec.getLineItemCount('item');

SuiteScript Objects
nlobjRecord

633

SuiteScript Developer & Reference Guide

rec.insertLineItem('item', intCount + 1);
rec.setLineItemValue('item', 'quantity', intCount + 1, 10);

Standard Objects | UI Objects | SuiteScript Functions

removeLineItem(group, linenum, ignoreRecalc)

Use this method to remove an existing line from a sublist.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• ignoreRecalc {Boolean true|false} [optional] – If set to true, the total is not recalculated
upon execution. Use this parameter if you are removing multiple line items on the same
sublist and you need to improve performance. Do not use this option on the last line item
removal of the sublist; the last removeLineItem call must recalculate the total. An error is
thrown upon record submit if you do not recalculate the total on the last removeLineItem
of the sublist. This parameter is only supported with server-side scripts.

Returns

• void

Since

• Version 2009.2

Example

for (j=1; j <= soRecord.getLineItemCount('item'); j++)
{
soRecord.removeLineItem('item','1');
}

Standard Objects | UI Objects | SuiteScript Functions

removeCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to remove a subrecord from a sublist field on
the parent record.

SuiteScript Objects
nlobjRecord

634

SuiteScript Developer & Reference Guide

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• void

Since

• Version 2011.2

Example

Standard Objects | UI Objects | SuiteScript Functions

removeSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to remove a subrecord from a body field on the
parent record.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• void

Since

• Version 2011.2

SuiteScript Objects
nlobjRecord

635

SuiteScript Developer & Reference Guide

Example

See Removing an Inventory Detail Subrecord from a Sublist Line in the NetSuite Help
Center.

Standard Objects | UI Objects | SuiteScript Functions

selectLineItem(group, linenum)

Use this method to select an existing line in a sublist.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• void

Since

• Version 2009.2

Example

var record = nlapiCreateRecord('inventoryitem');
record.setFieldValue('itemid', '124');
record.setFieldValue('department', 3);
record.setMatrixValue('price1', 'price', '2', 500);

record.selectLineItem('price', '1');
record.setCurrentLineItemMatrixValue('price', 'price', 1, '100');
record.setCurrentLineItemMatrixValue('price', 'price', 2, '90');
record.commitLineItem('price');

var id = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

selectNewLineItem(group)

Use this method to insert and select a new line in a sublist.

SuiteScript Objects
nlobjRecord

636

SuiteScript Developer & Reference Guide

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

Returns

• void

Since

• Version 2009.2

Example

This sample shows how to create a new Vendor Bill record and then add items to the Item
sublist and expenses to the Expenses sublist. Note that because you are adding new lines to
each sublist, you must call the selectNewLineItem(group) method. You then set all values
for the new lines using the setCurrentLineItemValue(group, name, value) method. When
you are finished adding values to each sublist, you must commit all sublist updates using
the commitLineItem(group, ignoreRecalc) method.

var record = nlapiCreateRecord('vendorbill');
record.setFieldValue('entity', 196);
record.setFieldValue('department', 3);
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item','item',380);
record.setCurrentLineItemValue('item', 'location', 102);
record.setCurrentLineItemValue('item', 'amount', '2');
record.setCurrentLineItemValue('item', 'customer', 294);
record.setCurrentLineItemValue('item','isbillable', 'T');
record.commitLineItem('item');

record.selectNewLineItem('expense');
record.setCurrentLineItemValue('expense','category', 3);
record.setCurrentLineItemValue('expense', 'account', 11);
record.setCurrentLineItemValue('expense', 'amount', '10');
record.setCurrentLineItemValue('expense','customer', 294);
record.setCurrentLineItemValue('expense','isbillable', 'T');
record.commitLineItem('expense');

var id = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

setCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

Sets the value of a datetime field on the currently selected line of a sublist. If timeZone is passed
in, the datetime value is converted to that time zone and then set. If timeZone is not passed in,
the datetime value is set in the default time zone.

SuiteScript Objects
nlobjRecord

637

SuiteScript Developer & Reference Guide

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

Returns

• void

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

var a = nlapiLoadRecord('customrecord_parentdatetime', 1);
a.selectLineItem('recmachcustrecord_childdatetime', 1);
a.setCurrentLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datetimetzcol'
, '01/01/2013 06:00:01 am', 'America/Phoenix');
a.commitLineItem('recmachcustrecord_childdatetime');
nlapiSubmitRecord(a);

setCurrentLineItemMatrixValue(group, fldnam, column, value)

Use this API to set the value of a given matrix sublist field. Also note that it should be used on
matrix sublists only.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

Parameters

• group {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

638

SuiteScript Developer & Reference Guide

• fldnam {string} [required] - The internal ID of the matrix field.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

• value {string | int} [required] - The value the field is being set to.

Returns

• void

Since

• Version 2009.2

Example

var record = nlapiCreateRecord('inventoryitem');
record.setFieldValue('itemid', '124');
record.setFieldValue('department', 3);
record.setMatrixValue('price1', 'price', '2', 500);

record.selectLineItem('price', '1');
record.setCurrentLineItemMatrixValue('price', 'price', 1, '100');
record.setCurrentLineItemMatrixValue('price', 'price', 2, '90');
record.commitLineItem('price');

var id = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

setCurrentLineItemValue(group, name, value)

Use this method to set the value of a sublist line item field.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• name {string} [required] - The name of the field being set

• value {string} [required] - The value the field is being set to.

Important: Check box fields take the values of T or F, not true or false.

Returns

• void

SuiteScript Objects
nlobjRecord

639

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

This sample shows how to create a new Vendor Bill record and then add items to the Item
sublist and expenses to the Expenses sublist. Note that because you are adding new lines to
each sublist, you must call the selectNewLineItem(group) method. You then set all values
for the new lines using the setCurrentLineItemValue(group, name, value) method.
When you are finished adding values to each sublist, you must commit all sublist updates
using the commitLineItem(group, ignoreRecalc) method.

var record = nlapiCreateRecord('vendorbill');
record.setFieldValue('entity', 196);
record.setFieldValue('department', 3);
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item','item', 380);
record.setCurrentLineItemValue('item', 'location', 102);
record.setCurrentLineItemValue('item', 'amount', '2');
record.setCurrentLineItemValue('item', 'customer', 294);
record.setCurrentLineItemValue('item','isbillable', 'T');
record.commitLineItem('item');

record.selectNewLineItem('expense');
record.setCurrentLineItemValue('expense','category', 3);
record.setCurrentLineItemValue('expense', 'account', 11);
record.setCurrentLineItemValue('expense', 'amount', '10');
record.setCurrentLineItemValue('expense','customer', 294);
record.setCurrentLineItemValue('expense','isbillable', 'T');
record.commitLineItem('expense');

var id = nlapiSubmitRecord(record, true);

setDateTimeValue(fieldId, dateTime, timeZone)

Sets the value of a datetime field. If timeZone is passed in, the datetime value is converted to
that time zone and then set. If timeZone is not passed in, the datetime value is set in the default
time zone.

Parameters

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

640

SuiteScript Developer & Reference Guide

Returns

• void

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Standard Objects | UI Objects | SuiteScript Functions

setFieldText(name, text)

Sets the value of a select field using its corresponding display value. This method is only
supported with server-side scripts.

Parameters

• name {string} [required] - The internal ID of the field being set

• text {string} [required] - The display value corresponding to the value the field is being set
to

Returns

• void

Since

• Version 2009.1

Example

var record = nlapiLoadRecord('salesorder', 1955); // load the sales order
record.setFieldText('location', 'East Coast'); // set the field display value for Location to
East Coast
var id = nlapiSubmitRecord(record, true); // submit the record

Standard Objects | UI Objects | SuiteScript Functions

setFieldTexts(name, text)

Sets the values for a multiselect field from their display values. This method is only supported
with server-side scripts.

SuiteScript Objects
nlobjRecord

641

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID of the field being set

• texts {string[]} [required] - The display values corresponding to the values the field is
being set to

Returns

• void

Since

• Version 2009.1

Example

var values = new Array(); // create an array of customers who are currently in NetSuite
values[0] = 'Abe Lincoln'; // add the first customer
values[1] = 'Abe Simpson'; // add the second customer
var record = nlapiLoadRecord('salesorder', 447); // load the sales order

// set the field display values for the custom multiselect field
// called Customers Multiselect Field
record.setFieldTexts('custbody16', values);

// submit the record
var submit = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

setFieldValue(name, value)

Sets the value of a field

Parameters

• name {string} [required] - The name of the field being set

• value {string} [required] - The value the field is being set to

SuiteScript Objects
nlobjRecord

642

SuiteScript Developer & Reference Guide

Returns

• void

Standard Objects | UI Objects | SuiteScript Functions

setFieldValues(name, value)

Sets the value of a multi-select field

Parameters

• name {string} [required] - The name of the field being set

• value {string[]} [required]- String array containing field values

Returns

• void

Standard Objects | UI Objects | SuiteScript Functions

setLineItemDateTimeValue(type, fieldId, lineNum, dateTime,
timeZone)

Sets the value of a datetime field on a sublist. If timeZone is passed in, the datetime value is
converted to that time zone and then set. If timeZone is not passed in, the datetime value is set
in the default time zone.

Parameters

• type {string} [required] — The internal sublist ID

• fieldId {string} [required] — The internal field ID. The field ID passed in must point to a
datetime formatted field.

• lineNum {int} [required] — The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• dateTime {string} [required] — The date and time in format mm/dd/yyyy hh:mm:ss am|
pm (for example, ‘09/25/2013 06:00:01 am’).

• timeZone {string | int} [optional] — If a string is passed in, it must match one of the Olson
Values listed in the Olson Values table (values are case-insensitive). If an integer is passed
in, it must match one of the Key values listed in the Olson Values table.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_3727261949.html

SuiteScript Objects
nlobjRecord

643

SuiteScript Developer & Reference Guide

Returns

• void

Throws

• SSS_INVALID_ARG_TYPE

Since

• Version 2013 Release 2

Example

var a = nlapiLoadRecord('customrecord_parentdatetime', 1);
a.setLineItemDateTimeValue('recmachcustrecord_childdatetime', 'custrecord_datetimetzcol', 1, '0
1/01/2013 06:00:01 am', 'America/Phoenix');
nlapiSubmitRecord(a);

Standard Objects | UI Objects | SuiteScript Functions

setLineItemValue(group, name, linenum, value)

Sets the value of a sublist line item.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• name {string} [required] - The name of the field being set

• linenum {int} [required] - The line number for this field. Note the first line in a sublist is 1
(not 0).

• value {string} [required] - The value the field is being set to. If a valid value is not specified
an error will be thrown.

Returns

• void

SuiteScript Objects
nlobjRecord

644

SuiteScript Developer & Reference Guide

Since

• Version 2008.1

Example

The following example shows how to create a new record and then add a sublist to the
record. In this case a Partner sublist is being added to a newly created Sale Order.

/*Create a Sales Order record. Next, add a field to the record and then add an *item, which mus
t be added before a Sales Order can be saved.
*/
var record = nlapiCreateRecord('salesorder');
record.setFieldValue('entity', 87);
record.setLineItemValue('item','item', 1, 458);
record.setFieldValue('shippingcost',12);

/*Add a Partners sublist to the Sales Order. Note you must provide a valid value
 *for the Partner ID. In this case, to obtain Partner IDs you can look in the UI
 *under Lists > Relationships > Partners. Ensure that the Show Internal ID
 *preference is enabled. IDs will appear in the ID column of the Partner list.
*/
record.setLineItemValue('partners','partner', 1,311);
record.setLineItemValue('partners','partnerrole', 1,1);
record.setLineItemValue('partners', 'isprimary',1, 'T');
record.setLineItemValue('partners', 'contribution',1, 100);

//Finally, submit the record to save it.
var id = nlapiSubmitRecord(record, true);

Standard Objects | UI Objects | SuiteScript Functions

setMatrixValue(group, fldnam, column, value)

This API is used to set a header field in a matrix sublist. Also note that this API should be used
on matrix sublists only.

Important: Currently the Pricing sublist is the only matrix sublist type that supports
SuiteScript. For details on working with the Pricing sublist, see Pricing Sublist
in the NetSuite Help Center.

In the case of the Pricing sublist, this API is used to set the quantity levels that appear in the
Qty fields. Note that you should use this API only if you have the Quanity Pricing feature
enabled in your account, as these header fields appear only if this feature is enabled.

Parameters

• type {string} [required] - The sublist internal ID. In the NetSuite Help Center, see Pricing
Sublist Internal IDs to determine the correct internal ID of your pricing list.

SuiteScript Objects
nlobjRecord

645

SuiteScript Developer & Reference Guide

• fldnam {string} [required] - The name of the field being set.

• column {int} [required] - The column number for this field. Column numbers start at 1
(not 0).

• value {string} [required] - The value the field is being set to.

Important: Check box fields take the values of T or F, not true or false.

Returns

• void

Since

• Version 2009.2

Example

The following sample shows how to set pricing matrix values on a new Inventory Item record.
In this sample, setMatrixValue is used to set the quantity levels in Qty columns 2, 3, 4, 5. Note
that in this account, the Multi-Currency feature has been enabled and all pricing matrix values
are being set on the USA pricing tab (price1).

var record = nlapiCreateRecord('inventoryitem');
record.setFieldValue('itemid', '124');
record.setFieldValue('department', 3);
record.setMatrixValue('price1', 'price', '2', 500);
record.setMatrixValue('price1', 'price', '3', 600);
record.setMatrixValue('price1', 'price', '4', 700);
record.setMatrixValue('price1', 'price', '5', 800);
//Now set prices to all pricelevel and quantity level fields on the USA tab.
//Set Base prices in different columns.
record.selectLineItem('price1','1');
record.setCurrentLineItemMatrixValue('price1', 'price', 1, '100');
record.setCurrentLineItemMatrixValue('price1', 'price', 2, '200');
record.setCurrentLineItemMatrixValue('price1', 'price', 3, '300');
record.setCurrentLineItemMatrixValue('price1', 'price', 4, '400');
record.setCurrentLineItemMatrixValue('price1', 'price', 5, '500');

record.commitLineItem('price1');

Standard Objects | UI Objects | SuiteScript Functions

viewCurrentLineItemSubrecord(sublist, fldname)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a sublist field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this API.

SuiteScript Objects
nlobjRecord

646

SuiteScript Developer & Reference Guide

You can call this API when you want your script to read the nlobjSubrecord object of the
current sublist line you are on.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Viewing an Inventory Detail Subrecord in the NetSuite Help Center.

Standard Objects | UI Objects | SuiteScript Functions

viewLineItemSubrecord(sublist, fldname, linenum)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a sublist field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this function.

You can call this API when you want to read the value of a line you are not currently on. For
example, if you are editing line 2, you can call this API on line 1 to get the value of line 1.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• sublist {string} [required] - The sublist internal ID on the parent record (for example, use
item as the ID for the Items sublist).

SuiteScript Objects
nlobjRecord

647

SuiteScript Developer & Reference Guide

• fldname {string} [required] - The internal ID of the “subrecord field” on the sublist of the
parent record (for example, inventorydetail as the ID for the Inventory Details sublist
field).

• linenum {int} [required] - The line number for the sublist field. Note the first line number
on a sublist is 1 (not 0).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

Standard Objects | UI Objects | SuiteScript Functions

viewSubrecord(fldname)

Returns a nlobjSubrecord object. Use this API to view a subrecord from a body field on
the parent record. Calling this API analogous to doing a “get” on a subrecord, however, the
nlobjSubrecord object returned is in read-only mode. Therefore, an error is thrown if you
attempt to edit a subrecord returned by this function.

See Working with Subrecords in SuiteScript for general information on working with
subrecords in NetSuite.

Parameters

• fldname {string} [required] - The internal ID of the “subrecord field” on the body of the
parent record (for example, inventorydetail as the ID for the Inventory Details body
field).

Returns

• nlobjSubrecord

Since

• Version 2011.2

Example

See Viewing an Inventory Detail Subrecord in the NetSuite Help Center.

SuiteScript Objects
nlobjReportColumn

648

SuiteScript Developer & Reference Guide

nlobjReportColumn
Object used to encapsulate a report column on a pivot report.

Methods

• getFormula()

• getParent()

• isMeasure()

getFormula()

Get the formula for this column

Returns

• string - Formula or null if it does not exist.

getParent()

Get the parent reference of this column.

Returns

• The parent reference to the nlobjReportColumnHierarchy object.

isMeasure()

Returns the measure flag

Returns

• boolean - True if the column is flagged as a measure.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjReportColumnHierarchy
Object used to encapsulate the report column hierarchy.

SuiteScript Objects
nlobjReportDefinition

649

SuiteScript Developer & Reference Guide

Methods

• getChildren()

• getParent()

getChildren()

Get the children reference of this column hierarchy.

Returns

• The child reference to the nlobjReportColumnHierarchy object.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getParent()

Get the parent reference of this column hierarchy.

Returns

• Either the parent reference to the nlobjReportColumnHierarchy object or null.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjReportDefinition
The primary object that contains the definition of the report. For an example that shows how to
use several of the nlobjReportDefinition object methods to programmatically render a pivot
table report in a browser, see Building a Pivot Report Using SuiteScript.

Methods

• addColumn(alias, isMeasure, label, parent, format, formula)

• addColumnHierarchy(alias, label, parent, format)

SuiteScript Objects
nlobjReportDefinition

650

SuiteScript Developer & Reference Guide

• addRowHierarchy(alias, label, format)

• addSearchDatasource(searchType, id, filters, columns, map)

• executeReport(form)

• setTitle(title)

addColumn(alias, isMeasure, label, parent, format, formula)

Add a column to the report definition.

Parameters

• alias {string} [required] - The column alias.

• isMeasure {boolean} [required] - A value of true means that the column is flagged as a
measure.

• label {string} [required] - The column label that will be displayed on the report.

• parent {nlobjReportColumnHierarchy} [optional] - The reference to the parent column in
the hierarchy. If null, then this column will not be associated with a parent column.

• format {string} [required] - The data type that this column represents.

• formula {string} [optional] - A string which describes a mathematical formula in the
format of “F(x,y,z) = mathematical function”, where x,y,z are previously defined aliases
from addRowHierarchy, addColumnHierarchy, or addColumn calls.

Returns

• The reference to the nlobjReportColumn object.

Since

• Version 2012.2

Example

See the code sample in Building a Pivot Report Using SuiteScript.

Standard Objects | UI Objects | SuiteScript Functions

addColumnHierarchy(alias, label, parent, format)

Add a column hierarchy to the report definition.

SuiteScript Objects
nlobjReportDefinition

651

SuiteScript Developer & Reference Guide

Parameters

• alias {string} [required] - The column alias.

• label {string} [required] - The column label that will be displayed on the report.

• parent {nlobjReportColumnHierarchy} [optional] - The reference of the parent column in
the hierarchy. If null, then this column will be the root (top level) column.

• format {string} [required] - The data type that this column represents.

Returns

• The reference to the nlobjReportColumnHierarchy object.

Since

• Version 2012.2

Example

See the code sample in Building a Pivot Report Using SuiteScript.

Standard Objects | UI Objects | SuiteScript Functions

addRowHierarchy(alias, label, format)

Add a row hierarchy to the report definition.

Parameters

• alias {string} [required] - The row alias.

• label {string} [required] - The row label that will be displayed on the report.

• format {string} [required] - The data type that this row represents.

Returns

• The reference to the nlobjReportRowHierarchy object.

Since

• Version 2012.2

Example

See the code sample in Building a Pivot Report Using SuiteScript.

SuiteScript Objects
nlobjReportDefinition

652

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

addSearchDatasource(searchType, id, filters, columns, map)

Attaches a search as a data source to the report definition.

Parameters

• searchType {string} [required] - The type of records to search.

• id {string} [optional] - The internal id (as a string) if you are using a saved search as a data
source.

• filters {nlobjSearchFilter[]} [required] - The array of search filters.

Note: Search filter expression as filters parameter is currently not supported.

• columns {nlobjSearchColumn(name, join, summary)[]} [required] - The array of search
columns.

• map {string} [required] - The mapping of rows/columns of the search to the report.

Since

• Version 2012.2

Example

This snippet of code shows how a data source is set up. Observe how the columns are
mapped.

var reportDefinition = nlapiCreateReportDefinition();

var columns = new Array();
var filters = new Array();

columns[0] = new nlobjSearchColumn('internalID', null, 'group');
columns[1] = new nlobjSearchColumn('entity', null, 'group');
filters[0] = new nlobjSearchFilter('status', null, 'anyof', 'inProgress');

reportDefinition.addSearchDataSource('opportunity', null, filters, columns, {'internalID':colum
ns[0], 'entity':columns[1]});

Standard Objects | UI Objects | SuiteScript Functions

executeReport(form)

Creates the form for rendering from the report definition.

SuiteScript Objects
nlobjReportDefinition

653

SuiteScript Developer & Reference Guide

Parameters

• form {nlobjReportForm} [optional] - The form object created with
nlapiCreateReportForm.

If not specified the call waits until the execution is finished (synchronous) and an
nlobjPivotTable will be available from the handle. If the parameter is set, the call returns
immediately and the returned value references the nlobjReportForm - a pivot table handle
will not be available in this case.

Note: Only one synchronous pivot table execution is allowed at a time. If a second
synchronous execution is called, it will invalidate the first pivot table.

Returns

• nlobjPivotTableHandle - The identifier of the pivot table handle, or nlobjReportForm.

Since

• Version 2012.2

Example 1

This example shows how to create a pivot table for basic rendering as a report in a browser.

//Create a form to put the report on
var myForm = nlapiCreateReportForm('Pivot Report Sales Orders');

//Populate form here
...

//Build the form from the report definition
var myReportForm = reportDefinition.executeReport(myForm);

//Write the form back to the browser
response.writePage(myReportForm);

Example 2

This example shows how to create a pivot table for further processing with SuiteScript. The
pivot table is not rendered.

//Create a form to put the report on
var myform = nlapiCreateReportForm('Pivot Report Sales Orders');

//Populate form here
...

SuiteScript Objects
nlobjReportDefinition

654

SuiteScript Developer & Reference Guide

//Build the form from the report definition, get the pivot table handle
var myPivotTableHandle = reportDefinition.executeReport();

//Get the pivot table object
var myPivotTable = myPivotTableHandle.getPivotTable();

Standard Objects | UI Objects | SuiteScript Functions

setTitle(title)

Sets the title of the report definition.

Parameters

• title {string} [optional] - The name of the report definition.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

Building a Pivot Report Using SuiteScript

This example shows how to create a report showing the opportunities for each customer, and
opportunity status. Each opportunity status is broken down to show the projected total and the
probability of each opportunity.

Use the method executeReport passing along an optional form parameter rather than void so
that the form definition is built onto a standard nlobjReportForm object that can be rendered
on the browser using the response.writePage method.

function runOpportunitiesPivot(request, response)
{
 //Instantiate a report definition to work with
 var reportDefinition = nlapiCreateReportDefinition();

 //Define the rows/column hierarchy and the actual column data
 var customer = reportDefinition.addRowHierarchy('entity', 'Customer', 'TEXT');
 var salesrep= reportDefinition.addColumn('salesrep', false, 'Sales Rep', null, 'TEXT', null
);
 var entstat = reportDefinition.addColumnHierarchy('entitystatus', 'Opportunity Status', nul
l, 'TEXT');
 var total = reportDefinition.addColumn('projectedtotal', true, 'Projected Total',
 entstat, 'CURRENCY', null);
 var prob = reportDefinition.addColumn('probability', false, 'Probability %', entstat, 'PERC
ENT', null);

 //Create the search to feed the report

SuiteScript Objects
nlobjReportDefinition

655

SuiteScript Developer & Reference Guide

 var columns = new Array();
 columns[0] = new nlobjSearchColumn('internalID', null, 'group');
 columns[1] = new nlobjSearchColumn('entity', null, 'group');
 columns[2] = new nlobjSearchColumn('salesrep', null, 'group');
 columns[3] = new nlobjSearchColumn('expectedclosedate', null, 'group');
 columns[4] = new nlobjSearchColumn('entitystatus', null, 'group');
 columns[5] = new nlobjSearchColumn('projectedtotal', null, 'sum');
 columns[6] = new nlobjSearchColumn('probability', null, 'group');

 //Add search to the report and map the search columns to the reports columns
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('projectedtotal', null, 'greaterthan', 2000);
 reportDefinition.addSearchDataSource('opportunity', null, filters, columns,
 {'internalID':columns[0], 'entity':columns[1], 'salesrep':columns[2], 'expectedclosedate':c
olumns[3],
 'entitystatus':columns[4], 'projectedtotal':columns[5], 'probability':columns[6]});

 //Create a form to build the report on
 var form = nlapiCreateReportForm('Pivot Report Suitelet: Opportunities');

 //Build the form from the report definition
 var pvtTable = reportDefinition.executeReport(form);

 //Write the form to the browser
 response.writePage(form);
}

The following figure shows how the pivot report example is rendered in the NetSuite UI.

Note: Right-click and open in New Tab to see full-sized image.

You can use the UI to define the row/column hierarchy and the actual column data of a pivot
report. For more information, see the help topic Creating a Pivot Report.

In SuiteScript, this looks like:

var customer = reportDefinition.addRowHierarchy('entity', 'Customer', 'TEXT');
var salesrep= reportDefinition.addColumn('salesrep', false, 'Sales Rep', null, 'TEXT', null);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N714053.html

SuiteScript Objects
nlobjReportForm

656

SuiteScript Developer & Reference Guide

var entstat = reportDefinition.addColumnHierarchy('entitystatus', 'Opportunity Status', null, '
TEXT');
var total = reportDefinition.addColumn('projectedtotal', true, 'Projected Total', entstat, 'CUR
RENCY', null);
var prob = reportDefinition.addColumn('probability', false, 'Probability %', entstat, 'PERCENT'
, null);

nlobjReportForm
Object used to encapsulate the report form and render the report in HTML.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjReportRowHierarchy
Object used to encapsulate the report row hierarchy.

Methods

• getChild()

• getParent()

getChild()

Get the child reference of this row hierarchy.

Returns

• The child reference to the nlobjReportRowHierarchy object.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

getParent()

Get the parent reference of this row hierarchy.

SuiteScript Objects
nlobjRequest

657

SuiteScript Developer & Reference Guide

Returns

• Either the parent reference to the nlobjReportRowHierarchy object or null.

Since

• Version 2012.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjRequest
Primary object used to encapsulate an HTTP GET or POST request. When creating Suitelets,
you pass request and response arguments to your user-defined function (see example). With
the request object instantiated, you can then call any nlobjRequest method.

Example

function demoSimpleForm(request, response)
{
 //call an nlobjRequest method
 if (request.
getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');
 //remainder of code...

 response.writePage(form);
 }
}

nlobjRequest Methods

• getAllHeaders()

• getAllParameters()

• getBody()

• getFile(id)

• getHeader(name)

• getLineItemCount(group)

• getLineItemValue(group, name, line)

• getMethod()

• getParameter(name)

SuiteScript Objects
nlobjRequest

658

SuiteScript Developer & Reference Guide

• getParameterValues(name)

• getURL()

getAllHeaders()

Returns an Object containing all the request headers and their values.

Returns

• String[] of header names

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getAllParameters()

Returns an Object containing all the request parameters and their values

Returns

• String[] of parameter field names

Since

• Version 2008.2

Example

The following example shows how to set or read multiple parameters from a request object by
iterating through the properties of the object

var params = request.getAllParameters()
for (param in params)
{
 nlapiLogExecution('DEBUG', 'parameter: '+ param)
 nlapiLogExecution('DEBUG', 'value: '+params[param])
}

Standard Objects | UI Objects | SuiteScript Functions

getBody()

Returns the body of the POST request

SuiteScript Objects
nlobjRequest

659

SuiteScript Developer & Reference Guide

Returns

• The string value of the request body

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getFile(id)

Returns a file reference (nlobjFile object) added to a Suitelet page with the
nlobjForm.addField(name, type, label, sourceOrRadio, tab) method (where ‘file’ is passed
in as the type argument). The getFile method can return a reference to a file up to, but not
including, 10MB in size.

Returns

• nlobjFile

Since

• Version 2010.1

Example

See Uploading Files to the File Cabinet Using SuiteScript.

Standard Objects | UI Objects | SuiteScript Functions

getHeader(name)

Returns the value of a header in the request

Parameters

• name {string} [required]- The name of the header

Returns

• The request header as a string

Since

• Version 2008.2

SuiteScript Objects
nlobjRequest

660

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

getLineItemCount(group)

Returns the number of lines in a sublist

Important: The first line number on a sublist is 1 (not 0).

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

Returns

• The integer value of the number of line items in a sublist

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getLineItemValue(group, name, line)

Returns the value of a sublist line item.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, as well as all internal IDs associated with each sublist.

• name {string} [required] - The name of the field whose value is returned

• line {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

SuiteScript Objects
nlobjRequest

661

SuiteScript Developer & Reference Guide

Returns

• The string value of the line item

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getMethod()

Returns the METHOD of the request.

Returns

• The string value of the request type. Request types include GET or POST.

Since

• Version 2008.1

Example

function demoSimpleForm(request, response)
{
 if (request.
getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');

 //remainder of code...

 response.writePage(form);
 {
}

Standard Objects | UI Objects | SuiteScript Functions

getParameter(name)

Returns the value of the request parameter

Parameters

• name {string} [required]- The name of the request parameter whose value is returned

Returns

• The string value of the request parameter

SuiteScript Objects
nlobjResponse

662

SuiteScript Developer & Reference Guide

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getParameterValues(name)

Returns the values of a request parameter as an Array

Parameters

• name {string} [required] - The name of the request parameter whose value is returned

Returns

• String[] of parameter values

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getURL()

Returns the full URL of the request

Returns

• The string value of the request URL

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

nlobjResponse
Primary object used for scripting web responses in Suitelets. Note that the
nlapiRequestURL(url, postdata, headers, callback, httpMethod) function returns a reference to
this object.

SuiteScript Objects
nlobjResponse

663

SuiteScript Developer & Reference Guide

When creating Suitelets you will pass request and response arguments to your user-defined
function (see example). With the response object instantiated, you can then call any
nlobjResponse method.

See Supported File Types in the NetSuite Help Center for a list of all content/media types that
can be returned through the nlobjResponse object.

Note: nlobjResponse currently supports only gzip and deflate compression algorithms.

Example

function demoSimpleForm(request, response)
{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');

 //remainder of code...

 //call the nlobjResponse object writePage method
 response. writePage(form);
 {
}

nlobjResponse Methods

• addHeader(name, value)

• getAllHeaders()

• getBody()

• getCode()

• getError()

• getHeader(name)

• getHeaders(name)

• renderPDF(xmlString)

• setCDNCacheable(type)

• setContentType(type, name, disposition)

• setEncoding(encodingType)

• setHeader(name, value)

• sendRedirect(type, identifier, id, editmode, parameters)

• write(output)

SuiteScript Objects
nlobjResponse

664

SuiteScript Developer & Reference Guide

• writeLine(output)

• writePage(pageobject)

addHeader(name, value)

Adds a header to the response. If this header has already been set, this will add a new header
to the response. Note that all user-defined headers must be prefixed with Custom-Header
otherwise an SSS_INVALID_ARG error will be thrown ()

Parameters

• name {string} [required] - The name of the header

• value {string} [required] - The value used to set header

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getAllHeaders()

Returns an Array containing all the headers returned in the response. Only available in the
return value of a call to nlapiRequestURL(url, postdata, headers, callback, httpMethod).

Returns

• String[] of headers

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getBody()

Returns the body returned by the server. Only available in the return value of a call to
nlapiRequestURL(url, postdata, headers, callback, httpMethod).

SuiteScript Objects
nlobjResponse

665

SuiteScript Developer & Reference Guide

Note: nlobjResponse currently supports only gzip and deflate compression algorithms.

Returns

• The string value of the body

Standard Objects | UI Objects | SuiteScript Functions

getCode()

Returns the response code returned by the server. Only available in the return value of a call to
nlapiRequestURL(url, postdata, headers, callback, httpMethod).

Returns

• The string value of the response code

Standard Objects | UI Objects | SuiteScript Functions

getError()

Returns the nlobjError thrown during request. Only available in the return value of call to
nlapiRequestURL in Client SuiteScript.

Returns

• nlobjError

Standard Objects | UI Objects | SuiteScript Functions

getHeader(name)

Returns the value for a header returned in the response. Only available in the return value of a
call to nlapiRequestURL(url, postdata, headers, callback, httpMethod).

Parameters

• name {string} [required] - The header name

Returns

• The string value of the header

Since

• Version 2008.2

SuiteScript Objects
nlobjResponse

666

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

getHeaders(name)

Returns an Array containing all the values for a header returned in the response. This is only
available in the return value of a call to nlapiRequestURL.

Parameters

• name {string} - The header name

Returns

• String[] of header values

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

renderPDF(xmlString)

Generates, and renders, a PDF directly to a response. Use renderPDF to generate PDFs without
first importing a file to the file cabinet. This method is useful if your script does not have
NetSuite file cabinet permissions.

The renderPDF method uses the Big Faceless Report Generator built by Big Faceless
Organization (BFO). The BFO Report Generator is a third-party library used for converting
XML to PDF documents. The renderPDF method passes XML to the BFO tag library (which
is stored by NetSuite), and renders a PDF directly to a response. Note that the xmlString
argument is the same input string as that passed to BFO by nlapiXMLToPDF(xmlstring).

For details on BFO, available tags, and BFO examples, see the following links:

• http://faceless.org/products/report/docs/userguide.pdf

• http://faceless.org/products/report/docs/tags/

Note: SuiteScript developers do not need to install any BFO-related files or components to
use the Report Generator functionality.

The renderPDF method is supported in server-side scripts. It has a governance of 10 usage units.

Parameters

• xmlString {string} [required] – Content of your PDF, passed to renderPDF as a string.

http://faceless.org/products/report/docs/userguide.pdf
http://faceless.org/products/report/docs/tags/

SuiteScript Objects
nlobjResponse

667

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2014 Release 2

Example

function testSimpleXML(request, response)
{
 var xml = '<?xml version="1.0"?>\n<!DOCTYPE pdf PUBLIC "-//big.faceless.org//report" "repor
t-1.1.dtd">\n<pdf>\n<body font-size="18">\nTesting!\n</body>\n</pdf>';
 response.renderPDF(xml);
}

setCDNCacheable(type)

Sets CDN caching for a shorter period of time or a longer period of time. There is no ability to
invalidate individual assets, so SSP Application can set its TTL (Time To Live) in CDN and fall
into one of four categories:

• Unique — This asset is not cached.

• Short — This asset may change frequently, so cache it for five minutes.

• Medium — This asset may or may not change frequently, so cache it for two hours.

• Long — This asset is not expected to change frequently, so cache it for seven days.

Important: This method is not accessible through a Suitelet. It must be accessed in the
context of a shopping SSP.

Parameters

• type {constant} [required]- Constant value to represent the caching duration:

• CACHE_DURATION_UNIQUE

• CACHE_DURATION_SHORT

• CACHE_DURATION_MEDIUM

• CACHE_DURATION_LONG

Note that when setting constant values, you do not use quotation marks. The syntax will
be something similar to:

setCDNCacheable(response.CACHE_DURATION_SHORT);

SuiteScript Objects
nlobjResponse

668

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

setContentType(type, name, disposition)

Sets the content type for the custom responses (and an optional file name for binary output).
This API is available in Suitelet scripts only.

Parameters

• type {string} [required] - The content/file type. For a list of supported file types, see
Supported File Types in the NetSuite Help Center.

• name {string} [optional] - Set the name of the file being downloaded (for example
'foobar.pdf ')

• disposition {string} [optional] - Content disposition to use for file downloads. Available
values are inline or attachment. If a value is not specified, the parameter will default to
attachment. What this means is that instead of a new browser (or Acrobat) launching and
rendering the content, you will instead be asked if you want to download and Save the file.

Returns

• void

Since

• Version 2008.2

Example

See Example 2 for nlapiXMLToPDF. This sample shows how to set a file content type to PDF
and then, by specifying inline as the disposition type, having the PDF open in Acrobat.

Standard Objects | UI Objects | SuiteScript Functions

setEncoding(encodingType)

Sets the character encoding on nlobjResponse content. Available encoding types are:

• Unicode (UTF-8)

SuiteScript Objects
nlobjResponse

669

SuiteScript Developer & Reference Guide

• Western (Windows 1252)

• Western (ISO-8859–1)

• Chinese Simplified (GB 18030)

• Chinese Simplified (GB 2312)

• Japanese (Shift-JIS)

• Western (Mac Roman)

The default encoding type is Unicode (UTF-8).

Your browser character encoding settings must match the specified encoding to view the file
contents correctly.

Parameters

• encodingType {string} [required] - The type of encoding for the response. Use one of the
following case sensitive values:

• UTF-8

• windows-1252

• ISO-8859-1

• GB18030

• GB2312

Important: GB2312 is not a valid argument when setting the encoding for a
new file.

• SHIFT_JIS

• MacRoman

Returns

• void

Since

• Version 2013.1

Example

This example shows how to set the encoding of an existing windows-1252 file that has a file ID
of 215.

var nlFile = nlapiLoadFile('215');

SuiteScript Objects
nlobjResponse

670

SuiteScript Developer & Reference Guide

response.setEncoding('windows-1252');
nlapiLogExecution('DEBUG', 'Content', nlFile.getValue());
response.write(nlFile.getValue());

Standard Objects | UI Objects | SuiteScript Functions

setHeader(name, value)

Sets the value of a response header. Note that all user-defined headers must be prefixed with
Custom-Header otherwise an SSS_INVALID_ARG or SSS_INVALID_HEADER error will be
thrown.

Important: This method is available only in Suitelets.

Parameters

• name {string} [required] - The name of the header

• value {string} [required] - The value used to set header

Returns

• void

Since

• Version 2008.2

Example

function demoHTML(request, response)
{
var html = '<html><body><h1>Hello World</h1></body></html>';
response.write(html);

//set a custom header
response.setHeader('Custom-Header-Demo', 'Demo');
}

Standard Objects | UI Objects | SuiteScript Functions

sendRedirect(type, identifier, id, editmode, parameters)

Sets the redirect URL by resolving to a NetSuite resource. Note that all parameters must be
prefixed with custparam otherwise an SSS_INVALID_ARG error will be thrown.

Also note that all URLs must be internal unless the Suitelet is being executed in an “Available
without Login” context. If this is the case, then within the “Available without Login” (externally

SuiteScript Objects
nlobjResponse

671

SuiteScript Developer & Reference Guide

available) Suitelet, you can set the type parameter to EXTERNAL and the identifier
parameter to the external URL.

Parameters

• type {string} [required] - The base type for this resource

• RECORD - Record Type

• TASKLINK - Task Link

• SUITELET - Suitelet

• EXTERNAL - Custom URL (external) and only available for external Suitelets (i.e.
available without login)

• identifier {string} [required] - The primary id for this resource (record type ID for
RECORD, scriptId for SUITELET, taskId for tasklink, url for EXTERNAL)

• id {string} [optional] - The secondary id for this resource (record type ID for RECORD,
deploymentId for SUITELET)

• editmode {boolean true || false} [optional] - For RECORD calls, this determines whether
to return a URL for the record in edit mode or view mode. If set to true, returns the URL
to an existing record in edit mode, otherwise the record is returned in view mode.

• parameters {hashtable} [optional] - An associative array of additional URL parameters as
name/value pairs

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

write(output)

Write information (text/xml/html) to the response

Parameters

• output {string | nlobjFile object} [required] - String or file being written

Returns

• void

SuiteScript Objects
nlobjResponse

672

SuiteScript Developer & Reference Guide

Example

function demoHTML(request, response)
{
var html = '<html><body><h1>Hello World</h1></body></html>';
response.write(html);
response.setHeader('Custom-Header-Demo', 'Demo');
}

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

writeLine(output)

Write line information (text/xml/html) to the response

Parameters

• output {string} [required] - String being written

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

writePage(pageobject)

Generates a page using a page element object (nlobjForm or nlobjList)

Parameters

• pageobject {nlobjForm | nlobjList} [required] - Standalone page object: nlobjForm or
nlobjList

Returns

• void

Since

• Version 2008.2

SuiteScript Objects
nlobjSearch

673

SuiteScript Developer & Reference Guide

Example

function demoSimpleForm(request, response)
{
 if (request.
getMethod() == 'GET') {
 var form = nlapiCreateForm('Simple Form');

 //remainder of code...

 response.writePage(form);
 {
}

Standard Objects | UI Objects | SuiteScript Functions

nlobjSearch
Primary object used to encapsulate a NetSuite saved search. Note, however, you are not
required to save the search results returned in this object.

A reference to nlobjSearch is returned by nlapiCreateSearch(type, filters, columns) and
nlapiLoadSearch(type, id). If you are creating a new search using nlapiCreateSearch, the
search will not be saved until you call nlobjSearch.saveSearch(title, scriptId).

Once you have saved the search, you can get properties of the search or redefine the search
by loading the search with nlapiLoadSearch(type, id) and calling various methods on the
nlobjSearch object. You can also do this for searches created in the UI.

By default, the search returned by nlapiCreateSearch will be private, which follows the saved
search model in the UI. To make a search public, you must call nlobjSearch.setIsPublic(type)
before saving it.

Note: You can see the filters and columns properties of nlobjSearch in the SuiteScript
Debugger once the object is loaded.

For general information on executing NetSuite searches using SuiteScript, see Searching
Overview in the NetSuite Help Center.

Methods

• addColumn(column)

• addColumns(columns)

• addFilter(filter)

• addFilters(filters)

SuiteScript Objects
nlobjSearch

674

SuiteScript Developer & Reference Guide

• deleteSearch()

• getColumns()

• getFilterExpression()

• getFilters()

• getId()

• getIsPublic()

• getScriptId()

• getSearchType()

• runSearch()

• saveSearch(title, scriptId)

• setColumns(columns)

• setFilterExpression(filterExpression)

• setFilters(filters)

• setIsPublic(type)

• setRedirectURLToSearch()

• setRedirectURLToSearchResults()

Standard Objects | UI Objects | SuiteScript Functions

addColumn(column)

Adds a single return column to the search. Note that existing columns on the search are not
changed.

Parameters

• column {nlobjSearchColumn(name, join, summary)} [required] - The nlobjSearchColumn
you want added to the search.

Returns

• void

Since

• Version 2012.1

SuiteScript Objects
nlobjSearch

675

SuiteScript Developer & Reference Guide

Example

This example shows how to create a saved search and then load the search to add an
additional column. After the new column is added, a new script ID is assigned to the
search.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the existing search and add a new column to the search
var newSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Call addColumn to add column to the existing search
var newColumn = new nlobjSearchColumn('somecolumn');
newSearch.addColumn(newColumn);
var newId = newSearch.saveSearch('My New Search', 'customsearch_kr2');

Standard Objects | UI Objects | SuiteScript Functions

addColumns(columns)

Adds multiple return columns to the search. Note that existing columns on the search are not
changed.

Parameters

• columns {nlobjSearchColumn(name, join, summary)[]} [required] - The
nlobjSearchColumn[] you want added to the search.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to create a saved search and then load the search to add columns.
After the new columns are added, a new script ID is assigned to the search.

SuiteScript Objects
nlobjSearch

676

SuiteScript Developer & Reference Guide

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the existing search
var newSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Define additional columns for the existing search
var newColumns = new Array();
columns[0] = new nlobjSearchColumn('somecolumn');
columns[1] = new nlobjSearchColumn('somecolumn1');
columns[2] = new nlobjSearchColumn('somecolumn2');
// Call addColumns to add columns to the existing search
newSearch.addColumns(newColumns);
var newId = newSearch.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Standard Objects | UI Objects | SuiteScript Functions

addFilter(filter)

Adds a single search filter. Note that existing filters on the search are not changed.

Note: This method does not accept a search filter expression (Object[]) as parameter.
Only a single search filter (nlobjSearchFilter) is accepted.

Parameters

• filter {nlobjSearchFilter} [required] - The nlobjSearchFilter you want added to the
search.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to create a saved search and then load the search to add an
additional filter. After the new filter is added, a new script ID is assigned to the search.

SuiteScript Objects
nlobjSearch

677

SuiteScript Developer & Reference Guide

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the existing search and add a new filter to the search
var newSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Call addFilter to add an additional filter to the existing search
var newFilter = new nlobjSearchFilter('somefilter');
newSearch.addFilter(newFilter);
var newId = newSearch.saveSearch('My New Search', 'customsearch_kr2');

Standard Objects | UI Objects | SuiteScript Functions

addFilters(filters)

Adds a search filter list. Note that existing filters on the search are not changed.

Note: This method does not accept a search filter expression (Object[]) as parameter. Only
a search filter list (nlobjSearchFilter[]) is accepted.

Parameters

• filters {nlobjSearchFilter[]} [required] - The list (array) of zero or more
nlobjSearchFilter you want added to the search.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to create a saved search and then load the search to add filters.
After the new filters are added, a new script ID is assigned to the search.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');

SuiteScript Objects
nlobjSearch

678

SuiteScript Developer & Reference Guide

filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define return columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the existing search
var newSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Define additional filters to the existing search
var newFilters = new Array();
newFilters[0] = new nlobjSearchFilter('somefilter');
newFilters[1] = new nlobjSearchFilter('somefilter1');
newFilters[2] = new nlobjSearchFilter('somefilter2');
// Call addFilters to add filters to the existing search
newSearch.addFilters(newFilters);
var newId = newSearch.saveSearch('My New Search', 'customsearch_kr2');

Standard Objects | UI Objects | SuiteScript Functions

deleteSearch()

Deletes a given saved search that was created through scripting or through the UI.

If you have created a saved search through the UI, you can load the search using
nlapiLoadSearch(type, id) and then call deleteSearch to delete it.

In scripting if you have created a search using nlapiCreateSearch(type, filters, columns) and
saved the search using the nlobjSearch.saveSearch(title, scriptId), you can then load the search
and call deleteSearch to delete it.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to load an existing saved search and delete it.

// Load the existing search and then delete it
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
mySearch.deleteSearch();

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearch

679

SuiteScript Developer & Reference Guide

getColumns()

Gets the search return columns for the search.

Returns

• nlobjSearchColumn(name, join, summary)[]

Since

• Version 2012.1

Example

This example shows how to load an existing saved search and get its search return
columns and its filters.

var s = nlapiLoadSearch('opportunity', 'customsearch_kr');
var columns = s.getColumns();
var filters = s.getFilters();

Standard Objects | UI Objects | SuiteScript Functions

getFilterExpression()

Gets the filter expression for the search.

Returns

• Object[]

Since

• Version 2012.2

Example

This example shows how to load an existing saved search and get its search filter expression.

var s = nlapiLoadSearch('opportunity', 'customsearch_kr');
var filterExpression = s.getFilterExpression();

Standard Objects | UI Objects | SuiteScript Functions

getFilters()

Gets the filters for the search.

SuiteScript Objects
nlobjSearch

680

SuiteScript Developer & Reference Guide

Note: This method does not return a search filter expression (Object[]). Only a search filter
list (nlobjSearchFilter[]) is returned. If you want to get a search filter expression,
see getFilterExpression().

Returns

• nlobjSearchFilter[]

Since

• Version 2012.1

Example

This example shows how to load an existing saved search and get its search return
columns and its filters.

var s = nlapiLoadSearch('opportunity', 'customsearch_kr');
var columns = s.getColumns();
var filters = s.getFilters();

Standard Objects | UI Objects | SuiteScript Functions

getId()

Gets the internal ID of the search. The internal ID is available only when the search is either
loaded using nlapiLoadSearch(type, id) or has been saved using nlobjSearch.saveSearch(title,
scriptId).

If this is an ad-hoc search (created with nlapiCreateSearch(type, filters, columns)), this method
will return null.

Returns

• The search ID as a string. Typical return values will be something like 55 or 234 or
87. You will not receive a value such as customsearch_mysearch. Any ID prefixed with
customsearch is considered a script ID, not the search's internal system ID.

Since

• Version 2012.1

Example

This example shows how to load an existing saved search and get its internal system ID.

// Load the existing search and then get its internal ID assigned by NetSuite

SuiteScript Objects
nlobjSearch

681

SuiteScript Developer & Reference Guide

var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
var internalId = mySearch.getId();

Standard Objects | UI Objects | SuiteScript Functions

getIsPublic()

Gets whether the nlobjSearch has been set as public search.

Returns

• Returns true if the search is public. Returns false if it is not.

Since

• Version 2012.1

Example

This example shows how to load an existing saved search and check whether the search is
public or private.

// Load the existing search and see if it is public
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
if (mySearch.getIsPublic());
{
 // mySearch is public…
}
else
{
 // mySearch is private…
}

Standard Objects | UI Objects | SuiteScript Functions

getScriptId()

Gets the script ID of the search. The script ID is available only when the search is either loaded
using nlapiLoadSearch(type, id) or has been saved using nlobjSearch.saveSearch(title, scriptId).

If this is an ad-hoc search (created with nlapiCreateSearch(type, filters, columns)), this method
will return null.

Returns

• The script ID of the search as a string. Typical return values will be something like
customsearch_mysearch or customsearchnewinvoices. You will not receive values such as

SuiteScript Objects
nlobjSearch

682

SuiteScript Developer & Reference Guide

55 or 234 or 87. These are considered internal system IDs assigned by NetSuite when you
first save the search.

Since

• Version 2012.1

Example

This example shows how to load and existing saved search and get its internal system ID.

// Load the existing search and then get its developer-assigned script ID
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
var scriptId = mySearch.getScriptId();

Standard Objects | UI Objects | SuiteScript Functions

getSearchType()

Returns the record type that the search was based on. This method is helpful when you have the
internal ID of the search, but do not know the record type the search was based on.

Returns

• The internal ID name of the record type as a string. For example, if the search was on a
Customer record, customer will be returned; if the search was on the Sales Order record
type, salesorder will be returned.

Since

• Version 2012.1

Example

var searchId = ...;
var s = nlapiLoadSearch(null, searchId); // load a search with an unknown type
var t = s.getSearchType();

Standard Objects | UI Objects | SuiteScript Functions

runSearch()

Runs an ad-hoc search, returning the results. Be aware that calling this method does NOT save
the search. Using this method in conjunction with nlapiCreateSearch(type, filters, columns)
allows you to create and run ad-hoc searches that are never saved to the database, much like
nlapiSearchRecord.

SuiteScript Objects
nlobjSearch

683

SuiteScript Developer & Reference Guide

Note that this method returns the nlobjSearchResultSet object, which provides you with more
flexibility when working with or iterating through your search results. Therefore, you may
also want to use runSearchin conjunction with nlapiLoadSearch. By doing so you can load an
existing saved search, call runSearch, and then (if you choose):

• retrieve a slice of the search results from anywhere in the result list

• paginate through the search results.

Returns

• nlobjSearchResultSet

Since

• Version 2012.1

Example 1

This example shows how to load an existing saved search and re-run the search using
runSearch. After runSearch executes, the search's entire result set is returned in an
nlobjSearchResultSet object. You can then use the forEachResult(callback) method to
iterate through and process each result.

The callback function receives search result of the search. Remember that the callback
function must return true or false. True causes iteration to continue. False causes
iteration to stop.

Note: The work done in the context of the callback function counts towards the
governance of the script that called it. For example, if the callback function
is running in the context of a scheduled script, which has a 10,000 unit
governance limit, you must be sure the amount of processing within the
callback function does not put the entire script at risk of exceeding scheduled
script governance limits.

var search = nlapiLoadSearch('opportunity', 'customsearch_kr');
var resultSet = search.runSearch();
var sum = 0;
resultSet.forEachResult(function(searchResult)
 {
 sum += parseFloat(searchResult.getValue('total')); // process the search result
 return true; // return true to keep iterating
 });
alert('Sum: ' + sum);

Example 2

The second example shows another way to define a callback function.

SuiteScript Objects
nlobjSearch

684

SuiteScript Developer & Reference Guide

// Load a saved search
var search = nlapiLoadSearch('customer', 'customsearch15');

// Run the search to return the results in an nlobjSearchResultSet object
var resultSet = search.runSearch();
// For every result returned, execute the abc() function on the result
resultSet.forEachResult(abc);
/*
* Define function abc. Function abc is your callback function.
* This function takes an nlobjSearchResult, and for as long as there is a result returned,
* call getValue() on the search result column to get the value of the ‘fax' column.
*/
function abc(eachResult)
{
 var val = eachResult.getValue('fax');
 return true;
}

Standard Objects | UI Objects | SuiteScript Functions

saveSearch(title, scriptId)

Saves the search created by nlapiCreateSearch(type, filters, columns).

Executing this API consumes 5 governance units.

Important: Loading a search and saving it with a different title and/or script ID does
not create a new search. It only modifies the title and/or script ID for the
existing search. To create a new saved search based on an existing search, see
Example 2 for nlapiCreateSearch(type, filters, columns).

Parameters

• title {string} [optional] - The title you want to give the saved search. Note that title is
required when saving a new search, but optional when saving a search that was loaded
using nlapiLoadSearch(type, id) or has already been saved by calling saveSearch(title,
scriptId) before.

• scriptId {string} [optional] - The script ID you want to assign to the saved search. All
saved search script IDs must be prefixed with customsearch, for example:

• 'customsearch_my_new_search'

• 'customsearchmynewsearch'

Underscores are not required in your script ID, however, they do improve readability of
the script ID.

Also, if you do not provide a script ID for the saved search, the system will generate one
for you when the script runs, if the search is being saved for the first time.

SuiteScript Objects
nlobjSearch

685

SuiteScript Developer & Reference Guide

Returns

• The internal ID of the search as a number.

Since

• Version 2012.1

Example

This example shows how to create a saved search and assign a title and script ID to the
saved search.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
columns[3] = new nlobjSearchColumn('projectedamount');
columns[4] = new nlobjSearchColumn('probability');
columns[5] = new nlobjSearchColumn('email', 'customer');
columns[6] = new nlobjSearchColumn('email', 'salesrep');
// Create the saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

Standard Objects | UI Objects | SuiteScript Functions

setColumns(columns)

Sets the return columns for this search, overwriting any prior columns. If null is passed in it is
treated as if it were an empty array and removes any existing columns on the search.

Parameters

• columns {nlobjSearchColumn(name, join, summary)[]} [required] - The
nlobjSearchColumn[] you want to set in the search. Passing in null or [] removes all
columns from the search.

Returns

• void

Since

• Version 2012.1

SuiteScript Objects
nlobjSearch

686

SuiteScript Developer & Reference Guide

Example

This example shows how to create a saved search, load the search, and then redefine the
search's search return columns.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('projectedamount', null, 'between', 1000, 100000);
filters[2] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('expectedclosedate');
columns[2] = new nlobjSearchColumn('entity');
// Create a saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the search
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Define new search columns
var newcolumns = new Array();
newcolumns[0] = new nlobjSearchColumn('email');
newcolumns[1] = new nlobjSearchColumn('fax');
// Override columns from previous search and save new search
mySearch.setColumns(newcolumns);
mySearch.saveSearch('Opportunities email and fax info', 'customsearch_emailfax_kr');

Standard Objects | UI Objects | SuiteScript Functions

setFilterExpression(filterExpression)

Sets the search filter expression, overwriting any prior filters. If null is passed in, it is treated as
if it was an empty array and removes any existing filters on this search.

Note: This method can be followed by the addFilter(filter) and addFilters(filters) methods.
The additional filters will be appended with the current filters on the search through
an ‘AND' operator.

Parameters

• filterExpression {Object[]} [required] - The filter expression you want to set in the
search. Passing in null or [] removes all filters from the search.

A search filter expression is a JavaScript string array of zero or more elements. Each
element is one of the following:

• Operator - either ‘NOT', ‘AND', or ‘OR'

• Filter term

SuiteScript Objects
nlobjSearch

687

SuiteScript Developer & Reference Guide

• Nested search filter expression

For more information about search filter expression, see Search Filter Expression
Overview.

Returns

• void

Since

• Version 2012.2

Example

This example shows how to create a saved search, load the search, and then redefine the search
filter expression.

//Define search filter expression
var filterExpression = [['trandate', 'onOrAfter', 'daysAgo90'],
 'or',
 ['projectedamount', 'between', 1000, 100000],
 'or',
 'not', ['customer.salesrep', 'anyOf', -5]];

//Define search columns
var columns = newArray();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('entity');

//Create a saved search
var search = nlapiCreateSearch('opportunity', filterExpression, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');

//Load the search
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');

//Define new search filter expression
var newFilterExpression = [['customer.salesrep', 'anyOf', -5],
 'and',
 ['department', , 'anyOf', 3]];

//Override filters from previous search and save new search
mySearch.setFilterExpression(newFilterExpression);
mySearch.saveSearch('Opportunities salesrep dept', 'customsearch_kr2');

Standard Objects | UI Objects | SuiteScript Functions

setFilters(filters)

Sets the filters for this search, overwriting any prior filters. If null is passed in it is treated as if it
were an empty array and removes any existing filters on this search.

SuiteScript Objects
nlobjSearch

688

SuiteScript Developer & Reference Guide

Note: This method does not accept a search filter expression (Object[]) as parameter. Only
a search filter list (nlobjSearchFilter[]) is accepted. If you want to set a search filter
expression, see setFilterExpression(filterExpression).

Parameters

• filters {nlobjSearchFilter[]} [required] - The nlobjSearchFilter[] you want to set in the
search. Passing in null or [] removes all filters from the search.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to create a saved search, load the search, and then redefine the
search's filters.

// Define search filters
var filters = new Array();
filters[0] = new nlobjSearchFilter('trandate', null, 'onOrAfter', 'daysAgo90');
filters[1] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
// Define search columns
var columns = new Array();
columns[0] = new nlobjSearchColumn('salesrep');
columns[1] = new nlobjSearchColumn('entity');
// Create a saved search
var search = nlapiCreateSearch('opportunity', filters, columns);
var searchId = search.saveSearch('My Opportunities in Last 90 Days', 'customsearch_kr');
// Load the search
var mySearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
// Define new search filters
var newfilters = new Array();
newfilters[0] = new nlobjSearchFilter('salesrep', 'customer', 'anyOf', \-5, null);
newfilters[1] = new nlobjSearchFilter('department', null, 'anyOf', 3);

// Override filters from previous search and save new search
mySearch.setFilters(newfilters);
mySearch.saveSearch('Opportunities salesrep dept', 'customsearch_kr2');

Standard Objects | UI Objects | SuiteScript Functions

setIsPublic(type)

Sets whether the search is public or private. By default, all searches created through
nlapiCreateSearch(type, filters, columns) are private.

SuiteScript Objects
nlobjSearch

689

SuiteScript Developer & Reference Guide

Parameters

• type {boolean} [required] - Set to true to designate the search as a public search. Set to
false to designate the search as a private search.

Returns

• void

Since

• Version 2012.1

Example

This example shows how to create a public saved search.

var s = nlapiCreateSearch('Opportunity', filters, columns);
s.setIsPublic(true);
var searchId = s.saveSearch('My public opp search', 'customsearch_opp_public');

Standard Objects | UI Objects | SuiteScript Functions

setRedirectURLToSearch()

Acts like nlapiSetRedirectURL(type, identifier, id, editmode, parameters) but redirects end
users to a populated search definition page. You can use this method with any kind of search
that is held in the nlobjSearch object. This could be:

• an existing saved search,

• an ad-hoc search that you are building in SuiteScript, or

• a search you have loaded and then modified (using addFilter, setFilters, addFilters,
addColumn, addColumns, or setColumns) but do not save.

Note that this method does not return a URL. It works by loading a search into the session, and
then redirecting to a URL that loads the search definition page.

This method is supported in afterSubmit user event scripts, Suitelets, and client scripts.

Returns

• void

Since

• Version 2012.1

SuiteScript Objects
nlobjSearch

690

SuiteScript Developer & Reference Guide

Example

This example shows that when a user clicks Save in the UI (in an afterSubmit user event
script), an existing saved search is loaded into the system. In the UI, the user is taken to
the search definition page corresponding to the saved search. The user can then use the UI
to redefine the filters or columns for the existing saved search.

// Load the search and redirect user to search definition page in the UI
var oppSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
oppSearch.setRedirectURLToSearch();

Standard Objects | UI Objects | SuiteScript Functions

setRedirectURLToSearchResults()

Acts like nlapiSetRedirectURL(type, identifier, id, editmode, parameters) but redirects end
users to a search results page. You can use this method with any kind of search that is held in
the nlobjSearch object. This could be:

• an existing saved search,

• an ad-hoc search that you are building in SuiteScript, or

• a search you have loaded and then modified (using addFilter, setFilters, addFilters,
addColumn, addColumns, or setColumns) but do not save.

Note that this method does not return a URL. It works by loading a search into the session, and
then redirecting to a URL that loads the search results.

This method is supported in afterSubmit user event scripts, Suitelets, and client scripts.

Returns

• void

Since

• Version 2012.1

Example

This example shows that when a user clicks Save in the UI (in an afterSubmit user event
script), an existing saved search is loaded into the system. In the UI, the user is taken to
the search results page corresponding to the saved search.

// Load the search

SuiteScript Objects
nlobjSearch

691

SuiteScript Developer & Reference Guide

var oppSearch = nlapiLoadSearch('opportunity', 'customsearch_kr');
oppSearch.setRedirectURLToSearchResults();

Standard Objects | UI Objects | SuiteScript Functions

Search Filter Expression Overview

A search filter expression is a JavaScript string array of zero or more elements. Each element is
one of the following:

• Operator

• Filter term

• Nested search filter expression

Note: If any operator or nested search filter expression is found, then the expression must
be well-formed. You cannot throw one 'OR' in the middle of three filter terms. You
need to have an operator (either 'AND' or 'OR') between each filter term to ensure
that expressions are unambiguous and are read properly. Additionally, you are only
allowed a maximum depth of three adjacent parentheses, excluding the outermost
left and right parentheses. For example: [f1, 'and', [f2, 'and', [f3, 'and', [f4, 'and',
f5]]]].

Note: If there are no operators at all and the list contains nlobjSearchFilter objects,
then the search filter expression is treated as a search filter list. Filters are ANDed
together.

Note: Search filter expressions are supported in both client- and server-side scripts.

Operator

An operator (string) can be one of the following:

• 'AND'

• 'OR'

• 'NOT'

The following are the usage guidelines for operators:

• Operators are case insensitive. 'and', 'or', and 'not' work the same as 'AND', 'OR', and
'NOT'.

• 'NOT' must be followed by a filter term or a search filter expression.

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

692

SuiteScript Developer & Reference Guide

• 'AND' or 'OR' must be preceded and followed by a filter term or search filter expression.

Filter term

A filter term is a JavaScript array that is composed of three or more elements, as follows:

• Filter identifier - a JavaScript string of the form:

• filter_name (such as amount) - This is equivalent to new
nlobjSearchFilter('amount', null, ...) where 'amount' is the internal ID of the
search field.

• join_id.filter_name (such as customer.salesrep) - This is equivalent to new
nlobjSearchFilter('salesrep', 'customer', ...) where 'customer' is the search
join id used for the search field specified as filter name 'salesrep'. The filter name in
this case may not be a formula filter like “formulatext: ...”.

For a list of search join ids and filter names associated to a record, see the SuiteScript
Records Browser.

• formula_type: formula_text (such as formulatext: SUBSTR({custentity_myfield},
3))

• aggregate_function(filter_identifier) (such as max(amount)) - The filter_identifier
itself can contain a joined record, or can be a formula filter. However, it cannot be
both a joined record and a formula filter.

• Operator - a JavaScript string

• Operand - a JavaScript string or integer

• (Optional) Additional operands

nlobjSearchColumn(name, join, summary)
Primary object used to encapsulate search return columns. For information on executing
NetSuite searches using SuiteScript, see Searching Overview in the NetSuite Help Center.

Note: The columns argument in nlapiSearchRecord(type, id, filters, columns) returns a
reference to the nlobjSearchColumn object. With the object reference returned, you
can then use any of the nlobjSearchColumn methods against your search column
results.

The nlobjSearchColumn object is instantiated with the “new” keyword.

var col = new nlobjSearchColumn('email', 'customer');

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

693

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The search return column name

• join {string} [optional] - The join id for this search return column

• summary {string} [optional] - The summary type for this column; see Search Summary
Types for additional information

• group

• sum

• count

• avg

• min

• max

Important: If you have multiple search return columns and you apply grouping, all
columns must include a summary argument.

In the following example, the first search return column groups the results by tranid. The
second search return column returns the count of custbody256 per tranid.

filter = new nlobjSearchFilter('type', null, 'is', 'SalesOrd');

var col = new Array();
col[0] = new nlobjSearchColumn('tranid', null, 'group');
col[1] = new nlobjSearchColumn('custbody256', null, 'count');

var result = nlapiSearchRecord('transaction', null, filter, col);

nlobjSearchColumn Methods

• getFormula()

• getFunction()

• getJoin()

• getLabel()

• getName()

• getSort()

• getSummary()

• setFormula(formula)

• setFunction(functionid)

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

694

SuiteScript Developer & Reference Guide

• setLabel(label)

• setSort(order)

• setWhenOrderedBy(name, join)

Standard Objects | UI Objects | SuiteScript Functions

getFormula()

Returns

• Returns the formula used for this column as a string

Since

• Version 2009.1

Example

This sample runs a Customer saved search. It uses getLabel, getFormula, and getFunction
to return the values specified in the search return columns. In this case of this search, these
columns are Customer Names, Customer Names (Reverse), Customer Balance, and
Phone (see Figure 1).

Note that the Phone column is a “built-in” column type, so calling getLabel, which
returns UI label information for custom labels only, returns null.

// reference a Customer saved search
var results = nlapiSearchRecord('customer', 'customsearch81');
var result = results[0];

// return all columns associated with this search
var columns = result.getAllColumns();
var columnLen = columns.length;

// loop through all columns and pull UI labels, formulas, and functions that have
// been specified for columns
for (i = 0; i <= columnLen; i++)
{
 var column = columns[i];
 var label = column.getLabel();
 var formula = column.getFormula();
 var functionName = column.getFunction();
 var value = result.getValue(column);
}

To help illustrate the values that getLabel, getFormula, and getFunction are returning,
Figure 1 shows the values, as they have been set in the UI, for the formula columns, the
column that contains a function, and three of the columns that have custom UI labels.

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

695

SuiteScript Developer & Reference Guide

Figure 59.1. Figure 1

Figure 2 shows the search results after the search is run.

Figure 59.2. Figure 2

Figure 3 shows the values for label and formula for the Customer Names (Reverse)
column.

Figure 59.3. Figure 3

Figure 4 shows the values for label and functionName for the Customer Balance column.

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

696

SuiteScript Developer & Reference Guide

Figure 59.4. Figure 4

Standard Objects | UI Objects | SuiteScript Functions

getFunction()

Returns

• The function used in this search column as a string

Since

• Version 2009.1

Example

• See the sample in getFormula()

Standard Objects | UI Objects | SuiteScript Functions

getJoin()

Returns join id for this search column

Returns

• The join id as a string

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

697

SuiteScript Developer & Reference Guide

getLabel()

Returns the label used for the search column. Note that ONLY custom labels can be returned
using this method.

Returns

• The custom label used for this column as a string

Since

• Version 2009.1

Example

• See the sample in getFormula()

Standard Objects | UI Objects | SuiteScript Functions

getName()

Returns

• The name of the search column as a string

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getSort()

Returns the sort direction for this column

Returns

• string

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

698

SuiteScript Developer & Reference Guide

getSummary()

Returns the summary type (avg, group, sum, count) for this search column. In the NetSuite
Help Center, see Search Summary Types for a list of summary types.

Returns

• The summary type as a string

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

setFormula(formula)

Set the formula used for this column. Name of the column can either be formulatext,
formulanumeric, formuladatetime, formulapercent, or formulacurrency.

Parameters

• formula {string} [required] - The formula used for this column

Returns

• nlobjSearchColumn

Since

• Version 2011.1

Example

See the example in Using Formulas, Special Functions, and Sorting in Search.

Standard Objects | UI Objects | SuiteScript Functions

setFunction(functionid)

Sets the special function used for this column.

Parameters

• functionid {string} [required] - Special function used for this column. The following is a
list of supported functions and their internal IDs:

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

699

SuiteScript Developer & Reference Guide

.

ID Name Date Function Output

percentOfTotal % of Total No percent

absoluteValue Absolute Value No

ageInDays Age In Days Yes integer

ageInHours Age In Hours Yes integer

ageInMonths Age In Months Yes integer

ageInWeeks Age In Weeks Yes integer

ageInYears Age In Years Yes integer

calendarWeek Calendar Week Yes date

day Day Yes date

month Month Yes text

negate Negate No

numberAsTime Number as Time No text

quarter Quarter Yes text

rank Rank No integer

round Round No

roundToHundredths Round to Hundredths No

roundToTenths Round to Tenths No

weekOfYear Week of Year Yes text

year Year Yes text

Returns

• nlobjSearchColumn

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Set the label used for this column.

Parameters

• label {string} [required] - The label used for this column

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

700

SuiteScript Developer & Reference Guide

Returns

• nlobjSearchColumn

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

setSort(order)

Returns nlobjSearchColumn sorted in either ascending or descending order.

Parameters

• order {boolean} [optional] - If not set, defaults to false, which returns column data in
ascending order. If set to true, data is returned in descending order.

Returns

• nlobjSearchColumn

Since

• Version 2010.1

Example 1

Execute a customer search with the customer internal ID in the results. Set the internal ID
column to sort in ascending order.

var columns = new Array();
columns[0] = new nlobjSearchColumn('internalid');
columns[1] = new nlobjSearchColumn('altname');
columns[2]= columns[0].setSort();
var rec= nlapiSearchRecord('customer', null, null, columns);

Example 2

Execute a customer search with the customer internal ID and phone number in the results.
Set the results to sort first by phone number and then by internal ID.

var columns = new Array();
columns[1] = new nlobjSearchColumn('internalid');
columns[0] = new nlobjSearchColumn('phone');
columns[1].setSort();

SuiteScript Objects
nlobjSearchColumn(name, join, summary)

701

SuiteScript Developer & Reference Guide

columns[0].setSort();
var rec= nlapiSearchRecord('customer', null, null, columns);

Example 3

See the example in Using Formulas, Special Functions, and Sorting in Search.

Standard Objects | UI Objects | SuiteScript Functions

setWhenOrderedBy(name, join)

Returns the search column for which the minimal or maximal value should be found when
returning the nlobjSearchColumn value.

For example, can be set to find the most recent or earliest date, or the largest or smallest
amount for a record, and then the nlobjSearchColumn value for that record is returned.

Can only be used when min or max is passed as the summary parameter in the
nlobjSearchColumn constructor.

Parameters

• name {string} - The name of the search column for which the minimal or maximal value
should be found

• join {string} - The join id for this search column

Returns

• nlobjSearchColumn

Since

• Version 2012.1

Example

Execute a customer search that returns the amount of the most recent sales order per
customer.

var filters = new Array();
var columns = new Array();
filters[0] = new nlobjSearchFilter("recordtype","transaction","is","salesorder");
filters[1] = new nlobjSearchFilter("mainline","transaction","is","T");
columns[0] = new nlobjSearchColumn("entityid",null,"group");
columns[1] = new nlobjSearchColumn("totalamount","transaction","max");
columns[1].setWhenOrderedBy("trandate","transaction");
var results = nlapiSearchRecord("customer",null,filters,columns);

SuiteScript Objects
nlobjSearchFilter

702

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

nlobjSearchFilter
Primary object used to encapsulate search filters. For information on executing NetSuite
searches using SuiteScript, see Searching Overview in the NetSuite Help Center.

Note: By default, search filter list (nlobjSearchFilter[]) makes use only of an implicit
‘AND' operator for filters. This is contrary to search filter expression that can
explicitly use either ‘AND' or ‘OR' operators.

When searching on check box fields, use the is operator with a T or F value to search for
checked or unchecked fields, respectively.

To search for a “none of null” value, meaning do not show results without a value for the
specified field, use the @NONE@ filter. For example,

searchFilters[0] = new nlobjSearchFilter('class', null, 'noneof', '@NONE@');

Note that the filters argument in nlapiSearchRecord(type, id, filters, columns) refers to either
a search filter list (nlobjSearchFilter[]) or to a search filter expression (Object[]). With the
object reference returned, you can then use any of the followingnlobjSearchFilter methods to
filter your results.

Methods

• constructor(name, join, operator, value1, value2)

• getFormula()

• getJoin()

• getName()

• getSummaryType()

• getOperator()

• setFormula(formula)

• setSummaryType(type)

constructor(name, join, operator, value1, value2)

Constructor for a search filter object

SuiteScript Objects
nlobjSearchFilter

703

SuiteScript Developer & Reference Guide

Parameters

• name {string} - The internal ID of the search field. For example, if one of your filtering
criterion is Quantity Available, you will set the value of name to quantityavailable, which
is the search field ID for Quantity Available.

• join {string} - If you are executing a joined search, the join id used for the search field
specified in the name parameter. The join id is the internal ID of the record type the search
field appears on.

• operator {string} - The search operator used for this search field. For more information
about possible operator values, see Search Operators.

Note: If your search filter uses the contains search operator and your search times
out, use the haskeywords operator instead.

• value1 {string | date | string[] | int} - A filter value -or- A special date field value -or- Array
of values for select/multiselect fields -or- An integer value

• value2 {string | date} - A secondary filter value -or- special date field value for between/
within style operators * lastbusinessweek. Values are not case sensitive. For more
information about possible date filter values, see Search Date Filters.

Returns

• nlobjSearchFilter

Since

• Version 2007.0

Standard Objects | UI Objects | SuiteScript Functions

getFormula()

Returns the formula used for this filter

Returns

• The formula used for this filter

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearchFilter

704

SuiteScript Developer & Reference Guide

getJoin()

Returns the join id for this search filter

Returns

• The string value of the search join

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getName()

Returns the name for this search filter

Returns

• The string value of the search filter

Since

• Version 2007.0

Standard Objects | UI Objects | SuiteScript Functions

getSummaryType()

Returns the summary type used for this filter

Returns

• The summary type used for this filter

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

getOperator()

Returns the filter operator that was used

SuiteScript Objects
nlobjSearchFilter

705

SuiteScript Developer & Reference Guide

Returns

• The string value of the search operator

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setFormula(formula)

Sets the formula used for this filter. Name of the filter can either be formulatext,
formulanumeric, formuladatetime, formulapercent, or formulacurrency.

Parameters

• formula {string} [required] - The formula used for this filter

Returns

• nlobjSearchFilter

Since

• Version 2011.1

Example

var filters = new Array();
filters[0] = new nlobjSearchFilter('formulatext', null, 'startswith', 'a');
filters[0].setFormula('SUBSTR({custbody_stringfield}, 3)');

Standard Objects | UI Objects | SuiteScript Functions

Example

setSummaryType(type)

Sets the summary type used for this filter. Filter name must correspond to a search column if it
is to be used as a summary filter.

Parameters

• type {string} [required] - The summary type used for this filter. In your script, use one of
the following summary type IDs:

SuiteScript Objects
nlobjSearchResult

706

SuiteScript Developer & Reference Guide

Summary type ID (used in script) Summary Label (as seen in UI)

max Maximum

min Minimum

avg Average (only valid for numeric or currency fields)

sum Sum (only valid for numeric or currency fields)

count Count

Returns

• nlobjSearchFilter

Since

• Version 2011.1

Example

See the sample in Using Summary Filters in Search.

Standard Objects | UI Objects | SuiteScript Functions

nlobjSearchResult
Primary object used to encapsulate a search result row. For information on executing NetSuite
searches using SuiteScript, see Searching Overview in the NetSuite Help Center.

Methods

• getAllColumns()

• getId()

• getRecordType()

• getText(column)

• getText(name, join, summary)

• getValue(name, join, summary)

• getValue(column)

Note: The following functions return a reference to this object:

• nlapiSearchDuplicate(type, fields, id)

• nlapiSearchGlobal(keywords)

SuiteScript Objects
nlobjSearchResult

707

SuiteScript Developer & Reference Guide

• nlapiSearchRecord(type, id, filters, columns)

• nlobjSearchResultSet.getResults(start, end)

getAllColumns()

Returns an array of nlobjSearchColumn(name, join, summary) objects containing all the
columns returned in a specified search

Returns

• nlobjSearchColumn[]

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getId()

Returns the internal ID for the returned record

Returns

• The record internal ID as an integer

Standard Objects | UI Objects | SuiteScript Functions

getRecordType()

Returns the record type for the returned record

Returns

• The name of the record type as a string - for example, customer, assemblyitem, contact,
or projecttask

Standard Objects | UI Objects | SuiteScript Functions

getText(column)

Returns the text value for this nlobjSearchColumn(name, join, summary) if it is a select field

SuiteScript Objects
nlobjSearchResult

708

SuiteScript Developer & Reference Guide

Parameters

• column {nlobjSearchColumn} [required] - The name of the search result column.

Returns

• string

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getText(name, join, summary)

Returns the UI display name (ie,. the text value) for this nlobjSearchColumn. Note that this
method is supported on non-stored select, image, document fields only.

Parameters

• name {string} [required] - The name of the search column

• join {string} [optional] - The join internalId for this search column

• summary {string} [optional] - The summary type used for this search column. Use any of
the following types:

• group

• sum

• count

• avg

• min

• max

Returns

• The UI display name for this nlobjSearchColumn as a string

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearchResult

709

SuiteScript Developer & Reference Guide

getValue(name, join, summary)

Returns the value for the nlobjSearchColumn

Parameters

• name {string} [required] - The name of the search column

• join {string} [optional] - The join internalId for this search column

• summary {string} [optional] - The summary type used for this search column

• group

• sum

• count

• avg

• min

• max

Returns

• The value for a search return column as a string

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

getValue(column)

Can be used on formula fields and non-formula (standard) fields to get the value of a specified
search return column

Parameters

• column {nlobjSearchColumn(name, join, summary)} [required] - Search return column
object whose value you want to return

Returns

• String value of the search return column

SuiteScript Objects
nlobjSearchResultSet

710

SuiteScript Developer & Reference Guide

Since

• Version 2009.1

Example

The following is a Campaign search with joins to the Campaign Recipient record. This
sample defines the search return columns, and then uses getValue() to return the string
value of the email search return column.

var filters = new Array();
var columns = new Array();

// define column objects. See figure for visual representation
columns[0] = new nlobjSearchColumn('title', null, null);
columns[1] = new nlobjSearchColumn('type', 'campaignrecipient', null)
columns[2] = new nlobjSearchColumn('email', 'campaignrecipient', null)

// execute the campaign search
var searchresults = nlapiSearchRecord('campaign', null, filters, columns);

// get the value of the email search return column
var val = searchresults[0].getValue(column
s[2]);

Standard Objects | UI Objects | SuiteScript Functions

nlobjSearchResultSet
Primary object used to encapsulate a set of search results. The nlobjSearchResultSet object
provides both an iterator interface, which allows you to process each result of the search, and
stop at any time, and a slice interface, which allows you to retrieve an arbitrary segment of the
search results, up to 1000 results at a time.

A nlobjSearchResultSet object is returned by a call to nlobjSearch.runSearch(), as in:

SuiteScript Objects
nlobjSearchResultSet

711

SuiteScript Developer & Reference Guide

var s = nlapiLoadSearch('opportunity', 'customsearch_cybermonday');
var resultSet = s.runSearch();

Methods:

• forEachResult(callback)

• getColumns()

• getResults(start, end)

forEachResult(callback)

Calls the developer-defined callback function for every result in this set. There is a limit of
4000 rows in the result set returned in forEachResult().

Your callback function must have the following signature:

boolean callback(nlobjSearchResult result);

Note that the work done in the context of the callback function counts towards the governance
of the script that called it. For example, if the callback function is running in the context of
a scheduled script, which has a 10,000 unit governance limit, you must be sure the amount
of processing within the callback function does not put the entire script at risk of exceeding
scheduled script governance limits.

Also be aware that the execution of the forEachResult(callback) method consumes 10
governance units.

Parameters

• callback [required] - A JavaScript function. This may be defined as a separate named
function, or it may be an anonymous inline function.

Returns

• void

Since

• Version 2012.1

Example

See Example 1 and Example 2 for nlobjSearch.runSearch().

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSearchResultSet

712

SuiteScript Developer & Reference Guide

getColumns()

Returns a list of nlobjSearchColumn objects for this result set. This list contains one
nlobjSearchColumn object for each result column in the nlobjSearchResult objects returned by
this search.

Returns

• nlobjSearchColumn(name, join, summary)[]

Since

• Version 2012.1

Standard Objects | UI Objects | SuiteScript Functions

getResults(start, end)

Retrieve a slice of the search result. The start parameter is the inclusive index of the first result
to return. The end parameter is the exclusive index of the last result to return. For example,
getResults(0, 10) retrieves 10 search results, at index 0 through index 9. Unlimited rows
in the result are supported, however you can only return 1,000 at at time based on the index
values.

If there are fewer results available than requested, then the array will contain fewer than end
- start entries. For example, if there are only 25 search results, then getResults(20, 30) will
return an array of 5 nlobjSearchResult objects.

Also be aware that the execution of the getResults(start, end) method consumes 10
governance units.

Parameters

• start {integer} [required] - The index number of the first result to return, inclusive.

• end {integer} [required] - The index number of the last result to return, exclusive.

Returns

• nlobjSearchResult[]

Throws

• SSS_INVALID_SEARCH_RESULT_INDEX if start is negative.

• SSS_SEARCH_RESULT_LIMIT_EXCEEDED if more than 1000 rows are requested.

SuiteScript Objects
nlobjSelectOption

713

SuiteScript Developer & Reference Guide

Since

• Version 2012.1

Example

// Load a search and get the first three results.
var search = nlapiLoadSearch('opportunity', 'customsearch_al');
var resultSet = search.runSearch();
var firstThreeResults = resultSet.getResults(0, 3);

Standard Objects | UI Objects | SuiteScript Functions

nlobjSelectOption
Primary object used to encapsulate available select options for a select field. This object is
returned after a call to nlobjField.getSelectOptions(filter, filteroperator). The object contains a
key, value pair that represents a select option, for example: 87, Abe Simpson

Methods:

• getId()

• getText()

getId()

Use this method to get the internal ID of a select option. For example, on a select field called
Colors, a call to this method might return 1, 2, 3 (to represent the internal IDs for options that
appear in a drop-down field as Red, White, Blue).

Returns

• The integer value of a select option, for example, 1, 2, 3.

Since

• Version 2009.2

Example

var myRec = nlapiCreateRecord('opportunity');
myRec.setFieldValue('entity','1');
var myFld = myRec.getField('billaddresslist');
var options = myFld.getSelectOptions('Jones');
nlapiLogExecution('DEBUG', options[0].getId() + ',' + options[0].getText());

SuiteScript Objects
nlobjSubrecord

714

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

getText()

Use this method to get the UI display label of a select option. For example, on a select field
called Colors, a call to this method might return Red, White, Blue.

Returns

• The UI display label of a select option

Since

• Version 2009.2

Example

var myRec = nlapiCreateRecord('opportunity');
myRec.setFieldValue('entity','1');
var myFld = myRec.getField('billaddresslist');
var options = myFld.getSelectOptions('Jones');
nlapiLogExecution('DEBUG', options[0].getId() + ',' + options[0].getText());

Standard Objects | UI Objects | SuiteScript Functions

nlobjSubrecord
Primary object used to encapsulate a NetSuite subrecord. To create a subrecord, you must first
create or load a parent record. You can then create or access a subrecord from a body field or
from a sublist field on the parent record.

For general information on subrecords, see Working with Subrecords in SuiteScript. For a list of
all APIs related to subrecords, see Subrecord APIs.

nlobjSubrecord Methods:

• cancel()

• commit()

cancel()

Use this method to cancel the current processing of the subrecord and revert subrecord data to
the last committed change (submitted in the last commit() call).

SuiteScript Objects
nlobjSubrecord

715

SuiteScript Developer & Reference Guide

Note that you will not be able to do any additional write or read operations on the subrecord
instance after you have canceled it. You must reload the subrecord from the parent to write any
additional data to the subrecord.

Returns

• void

Since

• Version 2011.2

Example

See Canceling an Inventory Detail Subrecord.

Standard Objects | UI Objects | SuiteScript Functions

commit()

Use this method to commit the subrecord to the parent record. See Saving Subrecords Using
SuiteScript for additional information on saving subrecords.

Returns

• void

Since

• Version 2011.2

Example

The following sample shows how to use the commit() method to commit a subrecord to
a parent record. Note that because the subrecord in this script was created from a sublist
field, the sublist (the Item sublist in this case), must also be committed to the parent
record. Finally, nlapiSubmitRecord() is called on the parent to commit all changes to the
database.

var record = nlapiCreateRecord('purchaseorder', {recordmode: 'dynamic'});
record.setFieldValue('entity', 38);
record.selectNewLineItem('item');
record.setCurrentLineItemValue('item', 'quantity', 1);
record.setCurrentLineItemValue('item', 'item', 108);

//create new subrecord from the Inventory Details field on the Items sublist
var subrecord = record.createCurrentLineItemSubrecord('item', 'inventorydetail');
subrecord.selectNewLineItem('inventoryassignment');
subrecord.setCurrentLineItemValue('inventoryassignment', 'issueinventorynumber', 'testinv2343')

SuiteScript Objects
UI Objects

716

SuiteScript Developer & Reference Guide

;
subrecord.setCurrentLineItemValue('inventoryassignment', 'quantity', 1);
subrecord.commitLineItem('inventoryassignment');
//commit Inventory Detail subrecord to parent record
subrecord.commit();

//commit changes to the Items sublist to the parent record
record.commitLineItem('item');

//commit parent record
var id =nlapiSubmitRecord(record);

Standard Objects | UI Objects | SuiteScript Functions

UI Objects
SuiteScript UI objects are a collection of objects that can be used as a UI toolkit for server
scripts such as Suitelets and user event scripts. UI objects encapsulate scriptable user interface
components such as NetSuite portlets, forms, fields, lists, sublists, tabs, and columns. They can
also encapsulate all components necessary for building a custom NetSuite-looking assistant
wizard. If you are not familiar with UI objects, see UI Objects Overview.

UI Objects:

• nlobjAssistant

• nlobjAssistantStep

• nlobjButton

• nlobjColumn

• nlobjField

• nlobjFieldGroup

• nlobjForm

• nlobjList

• nlobjPortlet

• nlobjSubList

• nlobjTab

• nlobjTemplateRenderer

Important Things to Note:

• When you add a UI object to an existing NetSuite page, the internal ID used to reference
the object must be prefixed with custpage. This minimizes the occurrence of field/

SuiteScript Objects
nlobjAssistant

717

SuiteScript Developer & Reference Guide

object name conflicts. See Creating Custom NetSuite Pages with UI Objects for more
information.

• While UI objects give developers a lot of control over the characteristics, placement, and
behaviors of UI elements, developer resources need to be spent creating and maintaining
them. During design time, application architects should carefully weigh the trade off
between customizing the NetSuite UI with SuiteBuilder, versus programmatically
customizing it with SuiteScript UI objects. (For information about working with
SuiteBuilder point-and-click customization tools, see the help topic SuiteBuilder Overview
in the NetSuite Help Center.)

nlobjAssistant
Primary object used to encapsulate all properties of a scriptable multi-step NetSuite assistant.
All data and state for an assistant is tracked automatically throughout the user's session up until
completion of the assistant.

For examples showing how to build and run an assistant in your NetSuite account, see Building
a NetSuite Assistant with UI Objects.

Methods

• addField(name, type, label, source, group)

• addFieldGroup(name, label)

• addStep(name, label)

• addSubList(name, type, label)

• getAllFields()

• getAllFieldGroups()

• getAllSteps()

• getAllSubLists()

• getCurrentStep()

• getField(name)

• getFieldGroup(name)

• getLastAction()

• getLastStep()

• getNextStep()

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2824008.html

SuiteScript Objects
nlobjAssistant

718

SuiteScript Developer & Reference Guide

• getStep(name)

• getStepCount()

• getSubList(name)

• hasError()

• isFinished()

• sendRedirect(response)

• setCurrentStep(step)

• setError(html)

• setFieldValues(values)

• setFinished(html)

• setNumbered(hasStepNumber)

• setOrdered(ordered)

• setScript(script)

• setShortcut(show)

• setSplash(title, text1,text2)

• setTitle(title)

addField(name, type, label, source, group)

Use this method to add a field to an assistant and return the field object.

Parameters

• name {string} [required] - The internal ID for this field

• type {string} [required] - The field type. Any of the following field types can be specified:

• text

• email

• radio - See Working with Radio Buttons for details on this field type.

• label - This is a field type that has no values. In Working with Radio Buttons, see the
first code sample that shows how to set this field type.

• phone

• date

SuiteScript Objects
nlobjAssistant

719

SuiteScript Developer & Reference Guide

• currency

• float

• integer

• checkbox

• select - Note that if you want to add your own (custom) options on a select field, you
must set the source parameter to NULL. Then, when a value is specified, the value
will populate the options from the source.

• url - See Create a Form with a URL Field for an example how to use this type.

• timeofday

• textarea

• multiselect

• image

• inlinehtml

• password

• help

• percent

• longtext

• richtext

• label {string} [optional] - The UI label for this field

• source {int | string} [optional] - The internalId or scriptId of the source list for this field if
it is a select (List/Record) field. In the NetSuite Help Center, see List/Record Type IDs for
the internal IDs of all supported list/record types.

Note that if you have set the type parameter to select, and you want to add your own
(custom) options to the select field, you must set source to NULL. Then, when a value is
specified, the value will populate the options from the source.

• group {string} [optional] - If you are adding the field to a field group, specify the internal
ID of the field group

Returns

• nlobjField

Since

• Version 2009.2

SuiteScript Objects
nlobjAssistant

720

SuiteScript Developer & Reference Guide

Example

This snippet shows the addition of a field group to an assistant object. In the UI, the field
group appear as the Company Information group. Two text fields (Company Name and
Legal Name) are added to the Company Information field group. Help text is added to
the Legal Name field.

assistant.addFieldGroup("companyinfo", "Company Information")
assistant.addField("companyname", "text", "Company Name", null, "companyinfo");
assistant.addField("legalname", "text", "Legal Name", null, "companyinfo");

assistant.getField("legalname").setHelpText("Enter a Legal Name if it differs from your company
 name")

Standard Objects | UI Objects | SuiteScript Functions

addFieldGroup(name, label)

Use this method to add a field group to an assistant page. Note that when a field group
is added to an assistant, by default it is collapsible. Also, by default, it will appear as
uncollapsed when the page loads. If you want to change these behaviors, you will use the
nlobjFieldGroup.setCollapsible(collapsible, hidden) method.

Parameters

• name {string} [required] - The internal ID for the field group

• label {string} [required] - The UI label for the field group

Returns

• nlobjFieldGroup

Since

• Version 2009.2

Example 1

This snippet shows how to add a field group called Company Info an assistant page. It also
shows how to add fields to the field group. Finally, the nlobjAssistant.getField(name)
method is used to return the legalname and shiptoattention field objects. Once returned,
help text is added to each of these fields.

assistant.addFieldGroup("companyinfo", "Company Information")
 .setHelpText("Setup your important company information in the fields below.");
assistant.addField("companyname", "text", "Company Name", null, "companyinfo");
assistant.addField("legalname", "text", "Legal Name", null, "companyinfo");

SuiteScript Objects
nlobjAssistant

721

SuiteScript Developer & Reference Guide

assistant.addField("shiptoattention", "text", "Ship To Attention", null, "companyinfo");
assistant.addField("address1", "text", "Address 1", null, "companyinfo").setLayoutType("normal"
, "startcol");
assistant.addField("address2", "text", "Address 2", null, "companyinfo");
assistant.addField("city", "text", "City", null, "companyinfo");

assistant.getField("legalname").setHelpText("Enter a Legal Name if it differs from your company
 name");
assistant.getField("shiptoattention").setHelpText("Enter the name of someone
 who can sign for packages or important documents. This is important because
 otherwise many package carriers will not deliver to your corporate address");

Standard Objects | UI Objects | SuiteScript Functions

addStep(name, label)

Use this method to add a step to an assistant.

Parameters

• name {string} [required] - The internal ID for this step (for example, 'entercontacts').

• label {string} [required] - The UI label for the step (for example, 'Enter Contacts'). By
default, the step will appear vertically in the left panel of the assistant (see figure).

Note: You can position your steps horizontally (directly below the title of the
assistant) by setting nlobjAssistant.setOrdered(ordered) to false. Note that if
you do this, users will be able to complete steps in a random order.

Returns

• nlobjAssistantStep

Since

• Version 2009.2

SuiteScript Objects
nlobjAssistant

722

SuiteScript Developer & Reference Guide

Example 1

This snippet shows how to add a step to the left panel. Steps must include an internal ID
and a UI label. Once the step is added, a nlobjAssistantStep object is returned. Through
this object you can use setHelpText(help) if you want to create help text for the step.

assistant.addStep('companyinformation', 'Setup Company Information').setHelpText("Setup your important company information in the fields below.");

Standard Objects | UI Objects | SuiteScript Functions

addSubList(name, type, label)

Use this method to add a sublist to an assistant page and return an nlobjSubList object. Note
that only inlineeditor sublists can be added to assistant pages.

Parameters

• name {string} [required] - The internal ID for the sublist

• type {string} [required] - The sublist type. Currently, only a value of inlineeditor can be
set.

• label {string} [required] - The UI label for the sublist

Returns

• nlobjSubList

SuiteScript Objects
nlobjAssistant

723

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

This snippet shows that when a user navigates to a step that has the internal ID
entercontacts, a sublist called Contacts is added to the page. Notice the use of the
nlobjSubList.setUniqueField(name) method in this example. This method is used to
define the Name field as a unique field in the sublist. This means that when users enter
values into this field, the values must be unique. In other words, users cannot enter two
instances of Sally Struthers in the Name field.

else if (step.getName() == "entercontacts")
{
var sublist = assistant.addSubList("contacts", "inlineeditor", "Contacts")
sublist.addField("name", "text", "Name");
sublist.addField("phone", "phone", "Phone");
sublist.addField("email", "email", "E-mail");
sublist.addField("address", "textarea", "Address");
sublist.setUniqueField("name");
}

Standard Objects | UI Objects | SuiteScript Functions

getAllFields()

Use this method to get all fields in an assistant. Regardless of which page or step the fields have
been added to, all fields will be returned. Also note that where you call this method matters. If
you call getAllFields() early in your script, and then add ten more fields at the end of your
script, getAllFields() will return only those fields that were added prior to the call.

Returns

• String[] of all fields in a custom assistant

SuiteScript Objects
nlobjAssistant

724

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

See Example 2 for getField(name). Also see UI Object Assistant Code Sample, which
shows how to use getAllFields() within the context of an assistant workflow.

Standard Objects | UI Objects | SuiteScript Functions

getAllFieldGroups()
Use this method to get all field groups on an assistant page. Also note that where you call this
method matters. If you call getAllFieldGroups() early in your script, and then add three more
field groups at the end of your script, getAllFieldGroups() will return only those field groups
that were added prior to the call.

Returns

• String[] of all field groups in the assistant

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

getAllSteps()
Use this method to return an array of all the assistant steps for this assistant.

Returns

• nlobjAssistantStep[]

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getAllSubLists()
Use this method to get all sublist names that appear on an assistant page. Also note that where
you call this method matters. If you call getAllSubLists() early in your script, and then add

SuiteScript Objects
nlobjAssistant

725

SuiteScript Developer & Reference Guide

three more sublists at the end of your script, getAllSubLists() will return only those sublists
that were added prior to the call.

Returns

• String[] of all sublists in an assistant

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

getCurrentStep()

Use this method to get the current step that was set via nlobjAssistant.setCurrentStep(step).
After getting the current step, you can add fields, field groups, and sublists to the step.

Returns

• nlobjAssistantStep

Since

• Version 2009.2

Example

For examples that show how to use getCurrentStep() within the context of an assistant
workflow, see UI Object Assistant Code Sample.

getField(name)

Use this method to return a field on an assistant page.

Parameters

• name {string} [required] - The internal ID of the field

Returns

• nlobjField

Since

• Version 2009.2

SuiteScript Objects
nlobjAssistant

726

SuiteScript Developer & Reference Guide

Example 1

This snippet shows how to add a text field called Legal Name. The field is being added
to a field group with the internal ID companyinfo. After the field has been added, an
nlobjField object is returned. The getField(name) method is then used to get the field
object and set help text. The help text appears directly below the field.

assistant.addField("legalname", "text", "Legal Name", null, "companyinfo");
assistant.getField("legalname").setHelpText("Enter a Legal Name if it differs from your company
 name")

Example 2

This snippet shows how to use getField(name) for something other than adding
help text to a field. In the case, getField(name) is used in conjunction with the
nlobjAssistant.getAllFields() method. Once all field objects in the assistant are returned,
the getField(name) method is used to loop through each field so that values can be set for
the fields.

var fields = assistant.getAllFields()
for (var i = 0; i < fields.length; i++)
{
assistant.getField(fields[i]).setDefaultValue(nlapiGetContext().getSessionObject(fields[i]))
}

Standard Objects | UI Objects | SuiteScript Functions

getFieldGroup(name)

Use this method to return a field group on an assistant page.

Parameters

• name {string} [required] - The internal ID for the field group

Returns

• nlobjFieldGroup

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjAssistant

727

SuiteScript Developer & Reference Guide

getLastAction()

Use this method to get the last submitted action that was performed by the user. Typically you
will use getNextStep() to determine the next step (based on the last action).

Possible assistant submit actions that can be specified are:

• next - means that the user has clicked the Next button in the assistant

• back - means that the user has clicked the Back button

• cancel - means that the user has clicked the Cancel button

• finish - means that the user has clicked the Finish button. By default, inline text then
appears on the finish page saying “Congratulations! You have completed the <assistant
title>” - where <assistant title> is the title set in nlapiCreateAssistant(title, hideHeader) or
nlobjAssistant.setTitle(title).

• jump - if nlobjAssistant.setOrdered(ordered) has been set to false (meaning that steps can
be completed in random order), then jump is used to get the user's last action in a non-
sequential process.

Returns

• The last submit action (as a string)

Since

• Version 2009.2

Example

For examples that show how to use getLastAction() within the context of an assistant
workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

getLastStep()

Use this method to get the step the last submitted action came from.

Returns

• nlobjAssistantStep

Since

• Version 2009.2

SuiteScript Objects
nlobjAssistant

728

SuiteScript Developer & Reference Guide

Example

For examples that show how to use getLastStep() within the context of an assistant
workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

getNextStep()

Use this method to return the next logical step corresponding to the user's last submitted
action. You should only call this method after you have successfully captured all the
information from the last step and are ready to move on to the next step. You would use the
return value to set the current step prior to continuing.

Returns

• {nlobjAssistantStep} Returns the next logical step based on the user's last submit action,
assuming there were no errors. Typically you will call setCurrentStep(step) using the
returned step if the submit was successful.

Since

• Version 2009.2

Example

For examples that show how to use getNextStep() within the context of an assistant
workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

getStep(name)

Use this method to return an nlobjAssistantStep object on an assistant page.

Parameters

• name {string} [required] - The internal ID of the step

Returns

• nlobjAssistantStep

Since

• Version 2009.2

SuiteScript Objects
nlobjAssistant

729

SuiteScript Developer & Reference Guide

Example 1

This sample shows how to create a step and then set the step as the current step in the
assistant.

//create a step that has an internal ID of 'companyinformation'
assistant.addStep('companyinformation', 'Setup Company Information');

// later in the script, set the current step to the step identified as companyinformation
assistant.setCurrentStep(assistant.getStep('companyinformation'));

Example 2

For examples that show how to use getStep() within the context of an assistant workflow,
see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

getStepCount()

Use this method to get the total number of steps in an assistant.

Returns

• The total number of steps in an assistant. Value returned as an integer.

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

getSubList(name)

Use this method to return a sublist on an assistant page .

Parameters

• name {string} [required] - The internal ID for the sublist

Returns

• nlobjSubList

SuiteScript Objects
nlobjAssistant

730

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

hasError()

Use this method to determine if an assistant has an error message to display for the current
step.

Returns

• Returns true if setError(html) was called

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

isFinished()

Use this method to determine when all steps in an assistant are completed.

Returns

• Returns true if all steps in the assistant have been completed or if setFinished(html) has
been called.

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

sendRedirect(response)

Use this method to manage redirects in an assistant. In most cases, an assistant redirects to
itself as in:

nlapiSetRedirectURL('suitelet', nlapiGetContext().getScriptId(), nlapiGetContext().getDeploymen
tId());

SuiteScript Objects
nlobjAssistant

731

SuiteScript Developer & Reference Guide

The sendRedirect(response) method is like a wrapper method that performs this redirect.
This method also addresses the case in which one assistant redirects to another assistant. In this
scenario, the second assistant must return to the first assistant if the user Cancels or the user
Finishes. This method, when used in the second assistant, ensures that the user is redirected
back to the first assistant.

Parameters

• response {nlobjResponse} [required] - The response object

Returns

• void

Since

• Version 2009.2

Example

For examples that show how to use sendRedirect(response) within the context of an
assistant workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

setCurrentStep(step)

Use this method to mark a step as the current step. In the UI, the step will be highlighted when
the user is on that step (see figure).

Parameters

• step {nlobjAssistantStep} [required] - The name of the step object

Returns

• void

Since

• Version 2009.2

Example 1

This snippet sets the user's current step to the companyinformation step. Notice the step
is automatically highlighed in the left panel.

SuiteScript Objects
nlobjAssistant

732

SuiteScript Developer & Reference Guide

assistant.setCurrentStep(assistant.getStep("companyinformation"));

Example 2

For examples that show how to use setCurrentStep(step) within the context of an
assistant workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

setError(html)

Use this method to set an error message for the current step. If you choose, you can use HTML
tags to format the message.

Parameters

• html {string} [required] - Error message text

Returns

• void

Since

• Version 2009.2

Example

This snippet shows how to use setError(html) to display an error message on a step.

SuiteScript Objects
nlobjAssistant

733

SuiteScript Developer & Reference Guide

 else if (step.getName() == "entercontacts")
{
assistant.setError("You have not completed Step 1. Please go back.");
var sublist = assistant.addSubList("contacts", "inlineeditor", "Contacts")
sublist.addField("name", "text", "Name");

// remainder of code...

}

Standard Objects | UI Objects | SuiteScript Functions

setFieldValues(values)

Use this method to set values for fields on an assistant page.

Parameters

• values {hashtable<string, string>} [required] - An associative array containing name/
value pairs that map field names to field values

Returns

• void

Since

• Version 2009.2

Example

This snippet shows how to add two text fields to an assistant, and then programmatically
set the value of each field.

assistant.addField("companyname", "text", "Company Name", null, "companyinfo");
assistant.addField("address1", "text", "Address 1", null, "companyinfo")
assistant.setFieldValues({companyname: "Wolfe Electronics", address1: "123 Main St., Anytown, U
SA"});

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjAssistant

734

SuiteScript Developer & Reference Guide

setFinished(html)

Use this method to mark the last page in an assistant. Set the rich text to display a completion
message on the last page.

Parameters

• html {string} [required] - The text to display once the assistant has finished. For example,
“Congratulations! You have successfully set up your account.”

Returns

• void

Since

• Version 2009.2

Example

For examples that show how to use setFinished(html) within the context of an assistant
workflow, see UI Object Assistant Code Sample.

Standard Objects | UI Objects | SuiteScript Functions

setNumbered(hasStepNumber)

Use this method to display steps without numbers.

Parameters

• hasStepNumber {boolean} [optional] - Set to false to turn step numbering off.

Returns

• void

Since

• Version 2010.1

Standard Objects | UI Objects | SuiteScript Functions

setOrdered(ordered)

Use this method to enforce a sequential ordering of assistant steps. If steps are ordered, users
must complete the current step before the assistant will allow them to proceed to the next step.

SuiteScript Objects
nlobjAssistant

735

SuiteScript Developer & Reference Guide

From a display perspective, ordered steps will always appear in the left panel of the assistant
(see first figure). Note that by default, steps in an assistant are ordered.

If steps are unordered, they can be completed in any order. Additionally, unordered steps are
always displayed horizontally under the assistant title (see second figure).

Parameters

• ordered {boolean} [required] - A value of true means steps must be completed
sequentially, and that they will appear vertically in the left panel of the assistant. A value
of false means steps do not need to be completed sequentially, and they will appear
horizontally, directly below the assistant title.

ordered parameter set to true:

ordered parameter set to false :

SuiteScript Objects
nlobjAssistant

736

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setScript(script)

Use this method to set the scriptId for a global client script you want to run on an assistant
page.

Parameters

• script {string | int} [required] - The scriptId of the global client script

Returns

• void

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setShortcut(show)

Use this method to show/hide the Add to Shortcuts link that appears in the top-right corner of
an assistant page. Note that if you do not call this method in your script, the default is to show
the Add to Shortcuts link at the top of all assistant pages. Therefore, it is recommended that you
use this method only if you want to hide this link.

Note: The Add to Shortcuts link is always hidden on external pages.

Parameters

• show {boolean} [required] - A value of false means that the Add to Shortcuts link does not
appear on the assistant. A value of true means that it will appear.

Returns

• void

SuiteScript Objects
nlobjAssistant

737

SuiteScript Developer & Reference Guide

Since

• Version 2009.2

Example

This snippet shows that with setShortcut(show) set to false, the Add to Shortcuts link will
not display on assistant pages.

var assistant = nlapiCreateAssistant("Small Business Setup Assistant", true);
assistant.setOrdered(true);
assistant.setShortcut(false);

Standard Objects | UI Objects | SuiteScript Functions

setSplash(title, text1,text2)

Use this method to set the splash screen for an assistant page.

Parameters

• title {string} [required] - The title of the splash screen

• text1 {string} [required] - Text for the splash screen

• text2 {string} [optional] - If you want splash content to have a two-column appearance,
provide content in the text2 parameter.

Returns

• void

Since

• Version 2009.2

Example

The following figure show a splash page that appears when setSplash() is set. Note the
two-column layout in this example. The second column appears because text has been
passed to the text2 parameter.

assistant.setCurrentStep(assistant.getStep("companyinformation"));
assistant.setSplash("Welcome to the Small Business Setup Assistant!",
 "What you'll be doing
The Small Business Setup Assistant will
 walk you through the process of configuring your NetSuite account for
 your initial use..", "When you finish
your account will be ready
 for you to use to run your business.");

SuiteScript Objects
nlobjAssistant

738

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

setTitle(title)

Use this method to set the title for the assistant. If you have already defined the title using
nlapiCreateAssistant(title, hideHeader), you do not need to call the setTitle(title) method.
Also note that the title you provide using setTitle(title) will override the title specified in the
nlapiCreateAssistant() function.

Parameters

• title {string} [required] - Assistant title

Returns

• void

Since

• Version 2009.2

Example

This sample shows that if you set the title using setTitle(title), you will override the
title specified in nlapiCreateAssistant().

function showAssistant(request, response)
{
 /* first create assistant object and define its steps. */
 var assistant = nlapiCreateAssistant("Small Business Setup Assistant");
 assistant.setTitle("Small Business Setup Assistant");

 //remainder of code
}

SuiteScript Objects
nlobjAssistantStep

739

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

nlobjAssistantStep
Primary object used to encapulate a step within a custom NetSuite assistant.

For information on working with nlobjAssistantStep objects, as well as information on
building an assistant using other UI objects, see Building a NetSuite Assistant with UI Objects.

Methods

• getAllFields()

• getAllLineItemFields(group)

• getAllLineItems()

• getFieldValue(name)

• getFieldValues(name)

• getLineItemCount(group)

• getLineItemValue(group, name, line)

• getStepNumber()

• setHelpText(help)

• setLabel(label)

getAllFields()

Use this method to get all fields entered by the user during the step.

Returns

• String[] of all fields entered by the user during the step

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getAllLineItemFields(group)

Use this method to get all sublist fields entered by the user during this step.

SuiteScript Objects
nlobjAssistantStep

740

SuiteScript Developer & Reference Guide

Parameters

• group {string} [required]- The sublist internal ID

Returns

• String[] of all sublist fields entered by the user during the step

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getAllLineItems()

Use this method to get all sublists entered by the user during this step.

Returns

• String[] of all sublists entered by the user during this step

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getFieldValue(name)

Use this method to get the value of a field entered by the user during this step.

Parameters

• name {string} [required] - The internal ID of the field whose value is being returned

Returns

• The internal ID (string) value for the field

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjAssistantStep

741

SuiteScript Developer & Reference Guide

getFieldValues(name)

Use this method to get the selected values of a multi-select field as an Array.

Parameters

• name {string} [required]- The name of the multi-select field

Returns

• String[] of field IDs. Returns null if field is not on the record. Note the values returned are
read-only.

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getLineItemCount(group)

Use the method to get the number of lines previously entered by the user in this step.

Important: The first line number on a sublist is 1 (not 0).

Parameters

• group {string} [required]- The sublist internal ID

Returns

• The integer value of the number of line items on a sublist. Note that -1 is returned if the
sublist does not exist.

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getLineItemValue(group, name, line)

Use this method to get the value of a line item (sublist) field entered by the user during this
step.

Parameters

• group {string} [required] - The sublist internal ID

SuiteScript Objects
nlobjAssistantStep

742

SuiteScript Developer & Reference Guide

• name {string} [required]- The name of the sublist field whose value is being returned

• linenum {int} [required]- The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• The string value of the sublist field

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

getStepNumber()

Use this method to get a step number. The number returned represents where this step appears
sequentially in the assistant.

Returns

• The index of this step in the assistant page (1-based)

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

setHelpText(help)

Use this method to set help text for an assistant step.

Parameters

• help {string} [required] - The help text for the step

Returns

• nlobjAssistantSte

Since

• Version 2009.2

SuiteScript Objects
nlobjButton

743

SuiteScript Developer & Reference Guide

Example

See the sample provided in nlobjAssistant.addStep(name, label).

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Use this method to set the label for an assistant step. Note that you can also create a label for a
step when the step is first added to the assistant. Do this using nlobjAssistant.addStep(name,
label).

Parameters

• label {string} [required] - The UI label for this step

Returns

• nlobjAssistantStep

Since

• Version 2009.2

Example

Standard Objects | UI Objects | SuiteScript Functions

nlobjButton
Primary object used to encapsulate custom buttons. Note that custom buttons only appear in
the UI when the record is in Edit mode. Custom buttons do not appear in View mode. Also
note that in SuiteScript, buttons are typically added to a record or form in beforeLoad user
event scripts.

Note: Currently you cannot use SuiteScript to add or remove a custom button to or from
the More Actions menu. You can, however, do this using SuiteBuilder point-and-
click customization. See the help topic Configuring Buttons and Actions in the
NetSuite Help Center for details.

Methods

• setDisabled(disabled)

• setLabel(label)

• setVisible(visible)

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2857647.html

SuiteScript Objects
nlobjButton

744

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

setDisabled(disabled)

Disables the button. When using this API, the assumption is that you have already defined the
button's UI label when you created the button using nlobjForm.addButton(name, label, script).
The setDisabled() method grays-out the button's appearance in the UI.

Important: This method is not currently supported for standard NetSuite buttons. This
method can be used with custom buttons only.

Parameters

• disabled {boolean} - If set to true, the button will still appear on the form, however, the
button label will be grayed-out.

Returns

• nlobjButton

Since

• Version 2008.2

Example

function disableUpdateOrderButton(type, form)
{
//Get the button
var button = form.getButton('custpage_updateorder');

//Disable the button in the UI
button.setDisabled(true);
}

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Sets the UI label for the button. When using this API, the assumption is that you have already
defined the button's UI label when you created the button using nlobjForm.addButton(name,
label, script). You can set setLabel() to trigger based on the execution context. For example,
based on the user viewing a page, you can use setLabel() to re-label a button's UI label so that
the label is meaningful to that particular user.

This API is supported on standard NetSuite buttons as well as on custom buttons. For a list of
standard buttons that support this API, see Button IDs in the NetSuite Help Center.

SuiteScript Objects
nlobjButton

745

SuiteScript Developer & Reference Guide

Parameters

• label {string} - The UI label for the custom button

Returns

• nlobjButton

Since

• Version 2008.2

Example

function relabelUpdateOrderButton(type, form)
{
//Get the button
var button = form.getButton('custpage_updateorderbutton');

//Relabel the button's UI label
button.setLabel('Modify Order');
}

Standard Objects | UI Objects | SuiteScript Functions

setVisible(visible)

Sets the button as hidden in the UI. This API is supported on custom buttons and on some
standard NetSuite buttons. For a list of standard buttons that support this API, see Button IDs
in the NetSuite Help Center.

Parameters

• visible {boolean} - Defaults to true if not set. If set to false, the button will be hidden in
the UI.

Returns

• nlobjButton

Since

• Version 2010.2

Example

function hideSaveAndPrintButton(type, form)
{
//Get the button

SuiteScript Objects
nlobjColumn

746

SuiteScript Developer & Reference Guide

var button = form.getButton('saveprint');

//Make sure that the button is not null
if(button != null)
 //Hide the button in the UI
 button.setVisible(false);
}

Standard Objects | UI Objects | SuiteScript Functions

nlobjColumn
Primary object used to encapsulate list columns. To add a column, you must first create a
custom list using nlapiCreateList(title, hideNavbar), which returns an nlobjList object.

Once the list object is instantiated, you can add a standard column using the
nlobjList.addColumn(name, type, label, align) method.

You can also add an “Edit | View” column using the nlobjList.addEditColumn(column,
showView, showHrefCol) method. Both methods return an nlobjColumn object.

nlobjColumn Methods

• addParamToURL(param, value, dynamic)

• setLabel(label)

• setURL(url, dynamic)

Standard Objects | UI Objects | SuiteScript Functions

addParamToURL(param, value, dynamic)

Adds a URL parameter (optionally defined per row) to this column's URL. Should only be
called after calling setURL(url, dynamic)

Parameters

• param {string} [required] - The parameter name added to the URL

• value {string} [required] - The parameter value added to the URL - or - a column in the
data source that returns the parameter value for each row

• dynamic {boolean} [optional] - If true, then the parameter value is actually an alias that is
calculated per row

Returns

• void

SuiteScript Objects
nlobjColumn

747

SuiteScript Developer & Reference Guide

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Sets the UI label for this column

Parameters

• label {string} [required] - The UI label used for this column

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setURL(url, dynamic)

Sets the base URL (optionally defined per row) for this column

Parameters

• url {string} [required] - The base URL or a column in the data source that returns the base
URL for each row

• dynamic {boolean} [optional] - If true, then the URL is actually an alias that is calculated
per row

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjField

748

SuiteScript Developer & Reference Guide

nlobjField
Primary object used to encapsulate a NetSuite field.

Important Things to Note about nlobjField:

• To add a nlobjField object to an existing NetSuite form (that appears on a record), use a
beforeLoad user event script. See Enhancing NetSuite Forms with User Event Scripts for
an example.

• To add a nlobjField object to a Suitelet, you must create a custom form using
nlapiCreateForm(title, hideNavbar), which returns an nlobjForm object. Once the form
object is instantiated, add a new field to the form using the nlobjForm.addField(name,
type, label, sourceOrRadio, tab) method, which returns a reference to nlobjField.

• To return a reference to an nlobjField object, use nlapiGetField(fldnam) (for body fields)
or nlapiGetLineItemField(type, fldnam, linenum) (for sublist fields). If you do not know
the difference between a body field and a sublist field, see Working with Fields Overview
in the NetSuite Help Center.

• If you use nlapiGetField(fldnam) in a client script to return a nlobjField object, the
object returned is read-only. This means that you can use nlobjField getter methods on
the object, however, you cannot use nlobjField setter methods to set field properties.

• Be aware of any special permissions that might be applied to a field. For example, a
permission error will be thrown if you attempt to get select options on a field that has been
disabled on a form.

Methods

• addSelectOption(value, text, selected)

• getLabel()

• getName()

• getSelectOptions(filter, filteroperator)

• getType()

• setAlias(alias)

• setBreakType(breaktype)

• setDefaultValue(value)

• setDisplaySize(width, height)

• setDisplayType(type)

• setHelpText(help, inline)

SuiteScript Objects
nlobjField

749

SuiteScript Developer & Reference Guide

• setLabel(label)

• setLayoutType(type, breaktype)

• setLinkText(text)

• setMandatory(mandatory)

• setMaxLength(maxlength)

• setPadding(padding)

• setRichTextHeight(height)

• setRichTextWidth(width)

addSelectOption(value, text, selected)

Adds a select option to a SELECT field

Parameters

• value {string} [required] - The internal ID of this select option

• text {string} [required] - The UI label for this option

• selected {boolean} [optional] - If true, then this option is selected by default

Returns

• void

Since

• Version 2008.2

Example

This snippet shows how to add a select field to a form. Use addSelectOption() to define
the options that will be available to this field.

// add a select field and then add the select options that will appear in the dropdown
var select = form.addField('selectfield', 'select', 'My Custom Select Field');
select.addSelectOption('','');
select.addSelectOption('a','Albert');
select.addSelectOption('b','Baron');
select.addSelectOption('c','Chris');
select.addSelectOption('d','Drake');
select.addSelectOption('e','Edgar');

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjField

750

SuiteScript Developer & Reference Guide

getLabel()

Returns field UI label

Returns

• String value of the field's UI label

Since

• Version 2009.1

Example

function getFieldInfo(type, form)
{
var field = nlapiGetField('memo'); // specifiy internalId of Memo field on a Sales Order
alert(field.getType()); // returns text as the field type for memo
alert(field.getLabel()); // returns Memo as the field UI label
}

Standard Objects | UI Objects | SuiteScript Functions

getName()

Returns the field internal ID

Returns

• String value of a field's internal ID

Since

• Version 2009.1

Standard Objects | UI Objects | SuiteScript Functions

getSelectOptions(filter, filteroperator)

Use this API to obtain a list of available options on a select field. This API can be used on both
standard and custom select fields. Only the first 1,000 available options will be returned by this
API.

This method can only be used in server contexts against a record object. Also note that a call to
this method may return different results for the same field for different roles.

If you attempt to get select options on a field that is not a select field, or if you reference a field
that does not exist on the form, null is returned.

SuiteScript Objects
nlobjField

751

SuiteScript Developer & Reference Guide

Parameters

• filter {string} [optional] - A search string to filter the select options that are returned. For
example, if there are 50 select options available, and 10 of the options contains 'John', e.g.
“John Smith” or “Shauna Johnson”, only those 10 options will be returned.

Note: Filter values are case insensitive. The filters 'John' and 'john' will return the
same select options.

• filteroperator {string} [optional] - Supported operators are contains | is | startswith. If
not specified, defaults to the contains operator.

Returns

• An array of nlobjSelectOption objects. These objects represent the key-value pairs
representing a select option (for example: 87, Abe Simpson).

Since

• Version 2009.2

Example 1

This sample shows how to get a filtered set of select options available to the Customer
(entity) field on an Opportunity record. Only the select options that start with the letter C
will be returned.

var myRec = nlapiLoadRecord('opportunity', 333);
var myField = myRec.getField('entity');
var options = myField.getSelectOptions('C', 'startswith');

Example 2

This sample shows how to create a Sales Order record and then set the Customer (entity)
field to a specific customer (87). Based on the customer specified, the script then gets
available select options on the Bill To Select (billaddresslist) field.

var myRec = nlapiCreateRecord('salesorder');
myRec.setFieldValue('entity', '87');
var myFld = myRec.getField('billaddresslist');
var options = myFld.getSelectOptions();

Standard Objects | UI Objects | SuiteScript Functions

getType()

Returns the field type - for example, text, date, currency, select, checkbox, etc.

SuiteScript Objects
nlobjField

752

SuiteScript Developer & Reference Guide

Returns

• String value of field's SuiteScript type

Since

• Version 2009.1

Example

function getFieldInfo(type, form)
{
var field = nlapiGetField('memo'); // specifiy internalId of Memo field on a Sales Order
alert(field.getType()); // returns text as the field type for memo
alert(field.getLabel()); // returns Memo as the field UI label
}

Standard Objects | UI Objects | SuiteScript Functions

setAlias(alias)

Sets the alias used to set the value for this field. By default the alias is equal to the field's name.
The method is only supported on scripted fields via the UI Object API.

Parameter:

• alias {string} [required] - The value used to override the alias

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setBreakType(breaktype)

Use this method to set the layout type for a field and optionally the break type. This method is
only supported on scripted fields that have been created using the UI Object API.

Parameter:

• breaktype {string} [required] - The break type used to add a break in flow layout for this
field. Available types are:

SuiteScript Objects
nlobjField

753

SuiteScript Developer & Reference Guide

• startcol - This starts a new column (also disables automatic field balancing if set for
any field)

• startrow - For outside fields, this places the field on a new row. The
startrow breaktype is only used for fields with a layout type of outside. See
setLayoutType(type, breaktype).

• none - (default)

Returns

• nlobjField

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

setDefaultValue(value)

Sets the default value for this field. This method is only supported on scripted fields via the UI
object API.

Parameters

• value {string} [required] - The default value for this field. Note that if you pass an empty
string, the field will default to a blank field in the UI.

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setDisplaySize(width, height)

Sets the height and width for the field. Only supported on multi-selects, long text, rich text, and
fields that get rendered as INPUT (type=text) fields. This API is not supported on list/record
fields. This method is only supported on scripted fields via the UI object API.

Parameters

• width {int} [required]- The width of the field (cols for textarea, characters for all others)

SuiteScript Objects
nlobjField

754

SuiteScript Developer & Reference Guide

• height {int} [optional]- The height of the field (rows for textarea and multiselect fields)

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setDisplayType(type)

Sets the display type for this field.

Be aware that this method cannot be used in client scripts. In other words, if you use
nlapiGetField(fldnam) in a client script to return a field object that has been added to a form,
you cannot use setDisplayType to set the field's display type. The nlobjField object returned
from nlapiGetField(fldnam) is read-only.

Parameters

• type {string} [required]- The display type for this field

• inline - This makes the field display as inline text

• hidden - This hides the field on the form.

• readonly - This disables the field but it is still selectable and scrollable (for textarea
fields)

• entry - This makes the sublist field appear as a data entry input field (for non
checkbox, select fields)

• disabled - This disables the field from user-changes

• normal - (default) This makes the field appear as a normal input field (for non-sublist
fields)

Returns

• nlobjField

Since

• Version 2008.2

SuiteScript Objects
nlobjField

755

SuiteScript Developer & Reference Guide

Example

This sample shows a user event script, which specifies the hidden parameter to hide
a check box field on a beforeLoad event. When the record is loaded (for example, an
Estimate or Customer record), the check box referenced in this script will be hidden from
the user.

function beforeLoad(type, form)
{
 form.getField('custbody_myspecialcheckbox').setDisplayType('hidden');
}

Standard Objects | UI Objects | SuiteScript Functions

setHelpText(help, inline)

Use this method to set help text for this field.

Parameters

• help {string} [required]- Help text for the field. When the field label is clicked, a field help
popup will open to display the help text.

• inline {boolean} [optional]- If not set, defaults to false. This means that field help will
appear only in a field help popup box when the field label is clicked. If set to true, field
help will display in a field help popup box, as well as inline below the field (see figure).

Important: The inline parameter is available only to nlobjField objects that
have been added to nlobjAssistant objects. The inline parameter is not
available to fields that appear on nlobjForm objects.

Returns

• nlobjField

Since

• Version 2009.2

Example

The following snippet shows how to use the getField(name) method to get a field object
that has been added to an assistant. Then setHelpText(help, inline) is used to add field
help. The help will appear in a field help popup when the field is clicked. Because the
inline parameter has been set to true, the field help will also appear inline, directly below
the field.

SuiteScript Objects
nlobjField

756

SuiteScript Developer & Reference Guide

assistant.getField("legalname").setHelpText("Enter a Legal Name if it differs from your
 company name", true);

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Sets the UI label for this field. The method is available only on scripted fields via the UI object
API.

Parameters

• label {string} [required]- The UI label used for this field

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjField

757

SuiteScript Developer & Reference Guide

setLayoutType(type, breaktype)
Sets the display type for this field and optionally the break type. This method is only supported
on scripted fields via the UI Object API.

Parameters

• type {string} [required] - The layout type for this field. Use any of the following layout
types:

• outside - This makes the field appear outside (above or below based on form default)
the normal field layout area

• outsidebelow - This makes the field appear below the normal field layout area

• outsideabove - This makes the field appear above the normal field layout area

• startrow - This makes the field appear first in a horizontally aligned field group in
normal field layout flow

• midrow - This makes the field appear in the middle of a horizonatally aligned field
group in normal field layout flow

• endrow - This makes the field appear last in a horizonatally aligned field group in
normal field layout flow

• normal - (default)

• breaktype {string} [required] - The layout break type. Use any of the following break
types.

• startcol - This starts a new column (also disables automatic field balancing if set for
any field)

• startrow - For outside fields, this places the field on a new row

• none - (default)

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setLinkText(text)
Sets the text that gets displayed in lieu of the field value for URL fields.

SuiteScript Objects
nlobjField

758

SuiteScript Developer & Reference Guide

Parameters

• text {string} [required] - The displayed value (in lieu of URL)

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setMandatory(mandatory)
Sets the field to mandatory. The method is only supported on scripted fields via the UI Object
API.

Parameters

• mandatory {boolean} [required]- If true, then the field will be defined as mandatory

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setMaxLength(maxlength)
Sets the max length for this field (only valid for text, rich text, long text, and textarea fields).
This method is only supported on scripted fields via the UI Object API.

Parameters

• maxlength {int} [required]- The max length for this field

Returns

• nlobjField

Since

• Version 2008.2

SuiteScript Objects
nlobjField

759

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

setPadding(padding)
Sets the number of empty field spaces before/above this field. This method is only supported on
scripted fields via the UI Object API.

Parameters

• padding {int} [required] - The number of empty vertical spaces (rows) before this field

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setRichTextHeight(height)
If Rich Text Editing is enabled, you can use this method to set the height of the rich text field
only. You can set a separate height for the text area using setDisplaySize(width, height). When
setting the height, the minimum value is 100 pixels and the maximum value is 500 pixels.

For information on enabling the Rich Text Editor, see the help topic Setting Preferences for
Appearance.

Parameters

• height {int} [optional]- The height of the field (pixels).

Returns

• nlobjField

Since

• Version 2015.1

Example

function demoSimpleForm(request,response) {
 var form = nlapiCreateForm('Simple Form');

 var field = form.addField('custpage_richtext','richtext','Rich Text', null,null);

 field.setDisplaySize(200,50);
 field.setRichTextWidth(500);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N479574.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N479574.html

SuiteScript Objects
nlobjFieldGroup

760

SuiteScript Developer & Reference Guide

 field.setRichTextHeight(200);

 response.writePage(form);
}

setRichTextWidth(width)
If Rich Text Editing is enabled, you can use this method to set the width of the rich text field
only. You can set a separate width of the text area using setDisplaySize(width, height). When
setting the width, the minimum value is 250 pixels and the maximum value is 800 pixels.

For information on enabling the Rich Text Editor, see the help topic Setting Preferences for
Appearance

Parameters

• width {int} [optional]- The width of the field (pixels).

Returns

• nlobjField

Since

• Version 2015.1

Example

See the example for setRichTextHeight(height).

nlobjFieldGroup
Primary object used to encapsulate a field group on a custom NetSuite assistant page and on
nlobjForm objects.

You can create an assistant by calling nlapiCreateAssistant(title, hideHeader), which returns a
reference to the nlobjAssistant object. On the assistant object, call addFieldGroup to instantiate
a new nlobjFieldGroup object.

To learn more about field groups, see Building a NetSuite Assistant with UI Objects.

Methods

• setCollapsible(collapsible, hidden)

• setLabel(label)

• setShowBorder(show)

• setSingleColumn(column)

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N479574.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N479574.html

SuiteScript Objects
nlobjFieldGroup

761

SuiteScript Developer & Reference Guide

setCollapsible(collapsible, hidden)

Use this method to define whether a field group can be collapsed. You can also use this method
to define if the field group will display as collapsed or expanded when the page first loads.

Note: This method is not currently supported on field groups that have been added
to nlobjForm objects. This method can only be used on field groups added on
nlobjAssistant objects.

Parameters

• collapsible {boolean} [required] - A value of true means that the field group can be
collapsed. A value of false means that the field group cannot be collapsed - the field group
displays as a static group that cannot be opened or closed.

• hidden {boolean} [optional] - If not set, defaults to false. This means that when the page
loads, the field group will not appear collapsed. Note: If you set the collapsible parameter
to false (meaning the field group is not collapsible), then any value you specify for hidden
will be ignored.

Returns

• nlobjFieldGroup

Since

• Version 2009.2

Examples

The following figure shows three field groups.

Field group 1 has been set to:

assistant.addFieldGroup("companyprefs", "Company Preferences").setCollapsible(true, false);

This means that the field group is collapsible, and that when the page loads, the field
group will display as uncollapsed. Note that this is the default appearance of a field group.
If you add a field group and do not call setCollapsible, the field group will appear as it
does in field group 1 in the figure below.

Field group 2 has been set to:

assistant.addFieldGroup("accountingprefs", "Accounting Preferences").setCollapsible(true, true)
;

This means that the field group is collapsible, and that when the page loads, the field
group will display as collapsed.

SuiteScript Objects
nlobjFieldGroup

762

SuiteScript Developer & Reference Guide

Field group 3 has been set to:

assistant.addFieldGroup("accountingprefsmore", "Even More Accounting Preferences").setCollapsib
le(false);

This means that the field group is not collapsible. Notice that field group 3 does not
contain the triangle icon that controls collapsibility.

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Use this method to create a UI label for a field group.

Parameters

• label {string} [required] - The UI label for the field group

Returns

• nlobjFieldGroup

Since

• Version 2009.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjFieldGroup

763

SuiteScript Developer & Reference Guide

setShowBorder(show)

Use this method to conditionally show or hide the border of a field group. A field group border
consists of the field group title and the gray line that frames the group by default.

Parameters

• show {boolean} [required] - Set to true to show a field group border. Set to false to hide the
border.

Returns

• void

Since

• Version 2011.1

Example

See the sample for nlobjForm.addFieldGroup(name, label, tab).

Standard Objects | UI Objects | SuiteScript Functions

setSingleColumn(column)

Use this method to determine how your field group is aligned. You can choose to align it into a
single column or allow NetSuite to auto-align it.

Parameters

• column {boolean} [required] - Set to true to place all fields in the field group into a single
column. Set to false to allow NetSuite to auto-align your field group fields into one, two, or
three columns, depending on the number of fields and the width of your screen.

Returns

• void

Since

• Version 2011.1

Example

See the sample for nlobjForm.addFieldGroup(name, label, tab).

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjForm

764

SuiteScript Developer & Reference Guide

nlobjForm
Primary object used to encapsulate a NetSuite-looking form. Note that the
nlapiCreateForm(title, hideNavbar) function returns a reference to this object.

Methods

• addButton(name, label, script)

• addCredentialField(id, label, website, scriptId, value, entityMatch, tab)

• addField(name, type, label, sourceOrRadio, tab)

• addFieldGroup(name, label, tab)

• addPageLink(type, title, url)

• addResetButton(label)

• addSubList(name, type, label, tab)

• addSubmitButton(label)

• addSubTab(name, label, tab)

• addTab(name, label)

• getButton(name)

• getField(name, radio)

• getSubList(name)

• getSubTab(name)

• getTab(name)

• getTabs()

• insertField(field, nextfld)

• insertSubList(sublist, nextsub)

• insertSubTab(subtab, nextsub)

• insertTab(tab, nexttab)

• removeButton(name)

• setFieldValues(values)

• setScript(script)

• setTitle(title)

addButton(name, label, script)
Adds a button to a form

SuiteScript Objects
nlobjForm

765

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID name of the button. The internal ID must be in
lowercase, contain no spaces, and include the prefix custpage if you are adding the button
to an existing page. For example, if you add a button that appears as Update Order, the
button internal ID should be something similar to custpage_updateorder.

• label {string} [required] - The UI label used for this button

• script {string} [optional]- The onclick script used for this button

Returns

• nlobjButton

Since

• Version 2008.2

Example:

function SimpleFormWithButton(request, response)
{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form with Button');

 var script = "alert('Hello World')";

 form.addButton('custombutton', 'Click Me', script);

 response.writePage(form);
 }
 else
 dumpResponse(request,response);
}

Standard Objects | UI Objects | SuiteScript Functions

addCredentialField(id, label, website, scriptId, value, entityMatch, tab)

Adds a field that lets you store credentials in NetSuite to be used when invoking services
provided by third parties. For example, merchants need to store credentials in NetSuite used to
communicate with Payment Gateway providers when executing credit card transactions.

This method is supported in client and server scripts.

Additional things to note about this method:

• Credentials associated with this field are stored in encrypted form.

• No piece of SuiteScript holds a credential in clear text mode.

SuiteScript Objects
nlobjForm

766

SuiteScript Developer & Reference Guide

• NetSuite reports or forms will never provide to the end user the clear text form of a
credential.

• Any exchange of the clear text version of a credential with a third party must occur over
SSL.

• For no reason will NetSuite ever log the clear text value of a credential (for example, errors,
debug message, alerts, system notes, and so on).

Parameters

• id {string} [required] - The internal ID of the credential field.

• label {string} [required] - The UI label for the credential field.

• website {string} [optional] - The domain the credentials can be sent to. For example,
'www.mysite.com'. This value can also be an array of strings representing a list of
domains to which the credentials can be sent using nlapiRequestUrlWithCredentials.
Note that although no exception is thrown if this parameter value is not passed,
nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod) will
not work without it.

• scriptId {string} [optional] - The scriptId of the script that is allowed
to use this credential field. For example, 'customscript_my_script'. Note
that although no exception is thrown if this parameter value is not passed,
nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod) will
not work without it.

• value {string} [optional] - If you choose, you can set an initial value for this field. This
value is the handle to the credentials.

• entityMatch {boolean} [optional] - Controls whether use of
nlapiRequestUrlWithCredentials with this credential is restricted to the same entity
that originally entered the credential. An example where you would not want this (you
would set to false) is with a credit card processor, where the credential represents the
company an employee is working for and multiple entities will be expected to make secure
calls out to the processor (clerks, for example). An example where you might want to set
entityMatch to true is when each user of the remote call has his or her own credentials.

• tab {string} [optional] - The tab parameter can be used to specify either a tab or a field
group (if you have added nlobjFieldGroup objects to your form). If tab is empty, then the
field is added to the “main” section of the form.

Returns

• nlobjField object

Since

• Version 2012.1

SuiteScript Objects
nlobjForm

767

SuiteScript Developer & Reference Guide

Example

This sample shows how to create a form and add a credential field to the form. In the UI,
the credential field will appear to users as Username. Once the user submits the form, the
credentials will be sent to a website called www.mysite.com. Additionally, only a script with the
script ID 'customscript_a' can use this credential field. Finally, the entityMatch parameter is set
to false. This means that when nlapiRequestURLWithCredentials(credentials, url, postdata,
headers, httpsMethod) is used with this credential there is no restriction to the same entity that
originally entered the credential.

function demoSimpleForm(request, response)
{
 if (request.getMethod() == "GET")
 {
 var form = nlapiCreateForm('Simple Form');
 form.addCredentialField('username', 'Username', 'www.mysite.com', 'customscript_a', null,
 false, null);
 form.addSubmitButton('Save');
 response.writePage(form);
 }
}

This code shows how to retrieve the credential in a Suitelet.

function demoSimpleForm(request, response)
{
 if (request.getMethod() == "POST")
 {
 var handle = request.getParameter("username");
 }
}

This code shows how to use the credential.

var creds= [record.getFieldValue("username")];
var sUrl = "https://www.mysite.com/serviceA?user=" +"{" + record.getFieldValue("username") +"}"
;

response = nlapiRequestURLWithCredentials(creds, sUrl, null, null, null);

Standard Objects | UI Objects | SuiteScript Functions

addField(name, type, label, sourceOrRadio, tab)

Adds an nlobjField object to a form and returns a reference to it

Parameters

• name {string} [required] - The internal ID name of the field. The internal ID must be in
lowercase, contain no spaces, and include the prefix custpage if you are adding the field

SuiteScript Objects
nlobjForm

768

SuiteScript Developer & Reference Guide

to an existing page. For example, if you add a field that appears as Purchase Details,
the field internal ID should be something similar to custpage_purchasedetails or
custpage_purchase_details.

• type {string} [required] - The field type for this field. Use any of the following enumerated
field types:

• text

• radio - See Working with Radio Buttons for details on adding this field type.

• label - This is a field type that has no values. It is used for placing a label next to
another field. In Working with Radio Buttons, see the first code sample that shows
how to set this field type and how it will render in the UI.

• email

• phone

• date

• datetimetz - This field type lets you combine date and time values in one field. For
example, you may want a single field to contain date and time “timestamp” data.
After a user enters a date/time value, the data is rendered in the user's preferred date
and time format, as well as the user's time zone. Also note that time values are stored
in NetSuite down to the second.

• currency

• float

• integer

• checkbox

• select

• url - See Create a Form with a URL Field for an example how to use this type.

• timeofday

• textarea

• multiselect

• image - This field type is available only for fields appearing on list/staticlist sublists.
You cannot specify an image field on a form.

• inlinehtml

• password

• help

• percent

SuiteScript Objects
nlobjForm

769

SuiteScript Developer & Reference Guide

• longtext

• richtext

• file - This field type is available only for Suitelets and will appear on the main tab
of the Suitelet page. Setting the field type to file adds a file upload widget to the
page and changes the form encoding type for the form to multipart/form-data. See
Uploading Files to the File Cabinet Using SuiteScript for an example of creating a
file field type, and then later retrieving this file using the nlobjRequest.getFile(id)
method.

• label {string} [optional] - The UI label for this field (this is the value displayed for help
fields)

• source {int | string} [optional] - The internalId or scriptId of the source list for this field if
it is a select (List/Record) or multi-select field. See List/Record Type IDs for the internal
IDs of all supported list/record types.

Important: If you are adding a field of type 'radio', the value of the source parameter
will be the radio button's unique ID. See the first code sample in Working
with Radio Buttons for details.

• tab {string} [optional]- The tab parameter can be used to specify either a tab or a field
group (if you have added nlobjFieldGroup objects to your form). If tab is empty, then the
field is added to the “main” section of the form.

Returns

• nlobjField

Since

• Version 2008.2

Example

This samples shows how to create a new form using nlapiCreateForm, add two tabs
to the form using nlobjForm.addTab, and then add one field to each new tab using
nlobjForm.addField.

//Create a form called Interns.
var newForm = nlapiCreateForm('Interns');

//Add a tab to the Intern form.
var firstTab = newForm.addTab('custpage_academichistorytab', 'Academic History');

//Add a text field to the first tab.
newForm.addField('custpage_universityname', 'text', 'University Name', null, 'custpage_academic
historytab');

//Add a second tab to the Intern form.

SuiteScript Objects
nlobjForm

770

SuiteScript Developer & Reference Guide

var secondTab = newForm.addTab('custpage_studentcontacttab', 'Student Contact');

//Add an email field to the second tab.
newForm.addField('custpage_studentemail', 'email', 'Student Email', null, 'custpage_studentcont
acttab');

List/Record Type IDs

If you are adding a select (List/Record) field, refer to the following IDs when providing a value
for the source parameter. You can use the IDs specified in either the Internal ID or the Internal
ID (number) columns. Many people reference the Internal ID because it is easier to remember
and makes more sense in the context of their code.

Note: When referencing a custom record as the source, use the record's custom
scriptid. This will prevent naming conflicts should you later share your script using
SuiteBundler capabilities. (For information on bundling scripts, see the help topic
SuiteBundler Overview in the NetSuite Help Center).

Record Type Internal ID Internal ID (number)

Account account -112

Accounting Period accountingperiod -105

Call phonecall -22

Campaign campaign -24

Campaign Event campaignevent -107

Case supportcase -23

Class classification -101

Competitor competitor -108

Contact contact -6

Currency currency -122

Customer customer -2

Customer Category customercategory -109

Department department -102

Email Template emailtemplate -120

Employee employee -4

Employee Type employeetype -111

Entity Status customerstatus -104

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N3363483.html

SuiteScript Objects
nlobjForm

771

SuiteScript Developer & Reference Guide

Record Type Internal ID Internal ID (number)

Event calendarevent -20

Field customfield -124

Issue issue -26

Item item -10

Item Type itemtype -106

Location location -103

Module issuemodule -116

Opportunity opportunity -31

Partner partner -5

Product issueproduct -115

Product Build issueproductbuild -114

Product Version issueproductversion -113

Project job -7

Project Task projecttask -27

Promotion Code promotioncode -121

Record Type -123

Role -118

Saved Search -119

Scripted Record Type -125

Solution solution -25

Subsidiary subsidiary -117

Task task -21

Transaction transaction -30

Transaction Type transactiontype -100

Vendor vendor -3

Vendor Category vendorcategory -110

Working with Radio Buttons

Through SuiteScript you can add fields of type 'radio' to both nlobjForm and nlobjAssistant
objects. The 'radio' field type is unique in that if you add a series of radio fields, the name
parameter in nlobjForm.addField(name, type, label, sourceOrRadio, tab) must be the same for
each field. (Typically, the value of name is unique among all fields in a script.)

Fields of type 'radio' are differentiated by the values set in the source parameter. For radio fields
only, the source parameter contains the internal ID for the field.

See these sections for more information:

SuiteScript Objects
nlobjForm

772

SuiteScript Developer & Reference Guide

• Adding Radio Fields

• Getting Radio Fields

• Setting Radio Fields

• Getting Radio Options

Adding Radio Fields

The following sample shows two sets of radio buttons added to a Suitelet. One set is called
'orgtype', which will display vertically on the form; the second set is called 'companysize',
which will display horizontally. The name parameter for each set is the same, while the
value of source is different for all radio fields.

function radioButtonSamples(request, response)
{
var form = nlapiCreateForm('Sample Form');

// create a field of type 'label' - this field type holds no data and is used for display purpo
ses only
form.addField('orgtypelabel','label','What type of organization are you?').setLayoutType('start
row');

/* add fields of type 'radio'. Notice that this set of radio buttons all specify 'orgtype' as t
he field
* name for each button. Each radio button is distinguished by the value specified in
* the 'source' parameter. By default, this set of radio fields will appear vertically since
* no layout type has been specified
*/
form.addField('orgtype', 'radio', 'Business To Consumer', 'b2c');
form.addField('orgtype', 'radio','Business To Business','b2b');
form.addField('orgtype', 'radio','Non-Profit','nonprofit');

//default the “Business to Business” radio button as selected when the page loads
form.getField('orgtype', 'b2b').setDefaultValue('b2b');

/* now add the second set of radio buttons. Notice that this group also shares the same
* value for name, which is 'companysize'. Also note the use of the setLayoutType method.
* Use this when you want to position the buttons horizontally.
*/
form.addField('companysizelabel','label','How big is your organization?').setLayoutType('startr
ow');
form.addField('companysize', 'radio','Small (0-99 employees)', 's').setLayoutType('midrow');
form.addField('companysize', 'radio','Medium (100-999 employees)','m').setLayoutType('midrow');

form.addField('companysize', 'radio','Large (1000+ employees)','l').setLayoutType('endrow');

response.writePage(form);
}

SuiteScript Objects
nlobjForm

773

SuiteScript Developer & Reference Guide

Notice that if you set the radio button using setLayoutType('midrow'), the radio button
appears to the left of the text. If setLayoutType is not used, the buttons will appear to the
right of the text.

Getting Radio Fields

The following snippet shows how to get values for a radio button using
nlobjForm.getField(). Note that you must specify the radio button name, as well as its
source parameter, which represents its internal ID.

form.assistant.getField('orgtype','b2c');

Setting Radio Fields

You can set the value of a radio button using either of these approaches:

form.getField('orgtype', 'b2c').setDefaultValue('b2c');

- or -

form.setFieldValues({ orgtype : 'b2c'});

In either case, when the page loads the radio button with the ID 'b2c' (Business To
Consumer) will appear as selected.

Getting Radio Options

This sample shows that you can also use nlobjField.getSelectOptions(filter, filteroperator)
on radio buttons as well as on select fields. When this method is used on radio buttons,
you will get an array of nlobjSelectOption values representing each radio button.

form.addField('orgtype', 'radio', 'Business To Consumer', 'b2c').setLayoutType('endrow');
form.addField('orgtype', 'radio', 'Business To Business','b2b').setLayoutType('midrow');
form.addField('orgtype', 'radio', 'Non-Profit','nonprofit').setLayoutType('endrow');

var orgtypeoptions = form.getField('orgtype').getSelectOptions();

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjForm

774

SuiteScript Developer & Reference Guide

addFieldGroup(name, label, tab)

Adds a field group to the form.

Parameters

• name {string} [required] - Provide an internal ID for the field group.

• label {string} [required] - The UI label for the field group

• tab {string} [optional] - Specify the tab you the field group to appear on. If no tab is
specified, the field group is placed on the “main” area of the form.

Returns

• nlobjFieldGroup

Since

• Version 2011.1

Example

function formWithFieldGroups(request, response)
{
 if (request.getMethod() == 'GET')
 {
 var form = nlapiCreateForm('Simple Form');
 var group = form.addFieldGroup('myfieldgroup', 'My Field Group');
 form.addField('companyname', 'text', 'Company Name', null,'myfieldgroup');
 form.addField('legalname', 'text', 'Legal Name', null, 'myfieldgroup');
 form.addField('datefield','date', 'Date', null,'myfieldgroup');
 form.addField('currencyfield','currency', 'Currency', null,'myfieldgroup');
 form.addField('textareafield','textarea', 'Textarea', null,'myfieldgroup');
 group.setShowBorder(true);

 //Add a tab to the form.
 var firstTab = form.addTab('academichistorytab', 'Academic History');

 //Add a second tab to the form.
 var secondTab = form.addTab('studentcontacttab', 'Student Contact');

 //Add a field group to the first tab and align all field group fields in a single column
 var fieldGroupUniv = form.addFieldGroup("universityinfo", "Univeristy Information",
 'academichistorytab');
 fieldGroupUniv.setSingleColumn(true);

 //Add fields to the University Information field group.
 form.addField('universityname', 'text', 'University Name', null, "universityinfo");
 form.addField('universityaddr', 'text', 'University Address', null, "universityinfo");

SuiteScript Objects
nlobjForm

775

SuiteScript Developer & Reference Guide

 //Add a field group to the second tab.
 form.addFieldGroup('studentinfogroup', "Student Information", 'studentcontacttab');

 //Add fields to the Student Information field group.
 form.addField('studentemail', 'email', 'Student Email', null, "studentcontacttab");
 form.addField('studentphone1', 'text', 'Student Phone 1', null, "studentcontacttab");
 form.addField('studentphone2', 'text', 'Student Phone 2', null, "studentcontacttab");
 form.addField('studentphone3', 'text', 'Student Phone 3', null, "studentcontacttab");
 form.addField('studentphone4', 'text', 'Student Phone 4', null, "studentcontacttab");

 form.addSubmitButton('Submit');
 response.writePage(form);
 }
 else
 dumpResponse(request,response);
}

Standard Objects | UI Objects | SuiteScript Functions

addPageLink(type, title, url)
Adds a navigation cross-link to the form

Parameters

• type {string} [required] - The type of navbar link to add. Possible values include:

• breadcrumb - appears on top left corner after system bread crumbs

• crosslink - appears on top right corner

• title {string} [required] - The text displayed in the link

• url {string} [required] - The URL used for this link

SuiteScript Objects
nlobjForm

776

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addResetButton(label)

Adds a reset button to a form

Parameters

• label {string} [optional]- The UI label used for this button. If no label is provided, the
label defaults to Reset.

Returns

• nlobjButton

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addSubList(name, type, label, tab)

Adds an nlobjSubList object to a form and returns a reference to it. Note that sorting (in the
UI) is not supported on static sublists created using the addSubList() method if the row count
exceeds 25.

Parameters

• name {string} [required] - The internal ID name of the sublist. The internal ID must
be in lowercase, contain no spaces, and include the prefix custpage if you are adding
the sublist to an existing page. For example, if you add a sublist that appears on the
UI as Purchase Details, the sublist internal ID should be something equivalent to
custpage_purchasedetails or custpage_purchase_details.

• type {string} [required] - The sublist type. Use any of the following types:

• editor - An edit sublist with non-inline form fields (similar to the Address sublist)

• inlineeditor - An edit sublist with inline fields (similar to the Item sublist)

SuiteScript Objects
nlobjForm

777

SuiteScript Developer & Reference Guide

• list - A list sublist with editable fields (similar to the Billable Items sublist)

• staticlist - A read-only segmentable list sublist (similar to the search results sublist)

• label {string} [required] - The UI label for this sublist

• tab {string} [optional] - The tab under which to display this sublist. If empty, the sublist is
added to the main tab.

Returns

• nlobjSubList

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addSubmitButton(label)
Adds a submit button to a form

Parameters

• label {string} [optional] - The UI label for this button. If no label is provided, the label
defaults to Save.

Returns

• nlobjButton

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addSubTab(name, label, tab)
Adds a subtab to a form and returns an nlobjTab object reference to it.

Important: If you add only one subtab, the UI label you define for the subtab will not
appear in the UI. You must define two subtabs for subtab UI labels to appear.

Parameters

• name {string} [required] - The internal ID name of the subtab. The internal ID must be in
lowercase, contain no spaces, and include the prefix custpage if you are adding the subtab
to an existing page. For example, if you add a subtab that appears on the UI as Purchase

SuiteScript Objects
nlobjForm

778

SuiteScript Developer & Reference Guide

Details, the subtab internal ID should be something similar to custpage_purchasedetails
or custpage_purchase_details.

• label {string} [required] - The UI label of the subtab

• tab {string} [optional] - The tab under which to display this subtab. If empty, it is added to
the main tab.

Returns

• nlobjTab

Since

• Version 2008.2

Example

See the sample in the section Adding Subtabs with SuiteScript.

Standard Objects | UI Objects | SuiteScript Functions

addTab(name, label)

Adds a tab to a form and returns an nlobjTab object reference to the tab

Parameters

• name {string} [required] - The internal ID name of the tab. The internal ID must be in
lowercase, contain no spaces, and include the prefix custpage if you are adding the tab
to an existing page. For example, if you add a tab that appears on the UI as Purchase
Details, the tab internal ID should be something equivalent to custpage_purchasedetails
or custpage_purchase_details.

• label {string} [required] - The UI label of the tab

Returns

• nlobjTab

Since

• Version 2008.2

Example

This sample shows how to create a new form using nlapiCreateForm(title, hideNavbar),
add two tabs to the form using nlobjForm.addTab(name, label), and then add one field to
each new tab using nlobjForm.addField.

SuiteScript Objects
nlobjForm

779

SuiteScript Developer & Reference Guide

//Create a form called Interns.
var newForm = nlapiCreateForm('Interns');

//Add a tab to the Intern form.
var firstTab = newForm.addTab('custpage_academichistorytab', 'Academic History');

//Add a text field to the first tab.
newForm.addField('custpage_universityname', 'text', 'University Name', null, 'custpage_academic
historytab');

//Add a second tab to the Intern form.
var secondTab = newForm.addTab('custpage_studentcontacttab', 'Student Contact');

//Add an email field to the second tab.
newForm.addField('custpage_studentemail', 'email', 'Student Email', null, 'custpage_studentcont
acttab');

Standard Objects | UI Objects | SuiteScript Functions

getButton(name)

Returns an nlobjButton object by name

Parameters

• name {string} [required] - The internal ID of the button. Internal IDs must be in lowercase
and contain no spaces.

Returns

• nlobjButton

Since

• Version 2008.2

Example

function disableUpdateOrderButton(type, form)
{
//Get the button before relabeling or disabling
var button = form.getButton('custpage_updateorderbutton');

SuiteScript Objects
nlobjForm

780

SuiteScript Developer & Reference Guide

//Disable the button in the UI
button.setDisabled(true);
}

Standard Objects | UI Objects | SuiteScript Functions

getField(name, radio)

Returns an nlobjField object by name

Parameters

• name {string} [required] - The internal ID name of the field. Internal ID names must be in
lowercase and contain no spaces.

• radio {string} - If this is a radio field, specify which radio field to return based on the radio
value.

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getSubList(name)

Returns an nlobjSubList object by name

Parameters

• name {string} [required] - The internal ID name of the sublist. Internal ID names must be
in lowercase and contain no spaces.

Returns

• nlobjSubList

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjForm

781

SuiteScript Developer & Reference Guide

getSubTab(name)

Returns an nlobjTab object by name

Parameters

• name {string} [required] - The internal ID name of the subtab. Internal ID names must be
in lowercase and contain no spaces.

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getTab(name)

Returns an nlobjTab object by name

Parameters

• name {string} [required] - The internal ID name of the tab. Internal ID names must be in
lowercase and contain no spaces.

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

getTabs()

Returns an array of nlobjTab objects containing all the tabs in a form.

Returns

• nlobjTab[]

SuiteScript Objects
nlobjForm

782

SuiteScript Developer & Reference Guide

Since

• Version 2012.2

Example

This sample shows how to create a new form using nlapiCreateForm, add two tabs to the
form using nlobjForm.addTab, add one field to each new tab using nlobjForm.addField,
and then get all tabs in the new form using nlobjForm.getTabs.

//Create a form called Interns.
var newForm = nlapiCreateForm('Interns');

//Add a tab to the Interns form.
var firstTab = newForm.addTab('custpage_academichistorytab', 'Academic History');

//Add a text field to the first tab.
newForm.addField('custpage_universityname', 'text', 'University Name', null, 'custpage_academic
historytab');

//Add a second tab to the Interns form.
var secondTab = newForm.addTab('custpage_studentcontacttab', 'Student Contact');

//Add an email field to the second tab.
newForm.addField('custpage_studentemail', 'email', 'Student Email', null, 'custpage_studentcont
acttab');

//Get all tabs in the Interns form.
var tabs = newForm.getTabs();

Standard Objects | UI Objects | SuiteScript Functions

insertField(field, nextfld)

Inserts a field (nlobjField) in front of another field and returns a reference to it

Parameters

• field {nlobjField} [required] - nlobjField object to insert

• nextfield {string} [required] - The name of the field you are inserting in front of

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjForm

783

SuiteScript Developer & Reference Guide

insertSubList(sublist, nextsub)

Inserts a sublist (nlobjSubList) in front of another sublist/subtab and returns a reference to it

Parameters

• sublist {nlobjSubList} [required]- nlobjSubList object to insert

• nextsub {string} [required] - The internal ID name of the sublist/subtab you are inserting
in front of

Returns

• nlobjSubList

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

insertSubTab(subtab, nextsub)

Inserts a subtab (nlobjTab) in front of another sublist/subtab and returns a reference to it

Parameters

• name {string} [required] - The internal ID name of the subtab. Internal ID names must be
in lowercase and contain no spaces.

• nextsub {string} [required] - The name of the sublist/subtab you are inserting in front of

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

insertTab(tab, nexttab)

Inserts a tab (nlobjTab) in front of another tab and returns a reference to it

Parameters

• tab {nlobjTab} [required] - nlobjTab object to insert

SuiteScript Objects
nlobjForm

784

SuiteScript Developer & Reference Guide

• nexttab {string} [required] - The tab name for the tab you are inserting in front of

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

removeButton(name)

Removes an nlobjButton object. This method can be used on custom buttons and certain built-
in NetSuite buttons. For a list of built-in buttons that support this method, see the list of buttons
in the section Button IDs in the NetSuite Help Center.

Parameters

• name {string} [required] - The internal ID of the button to be removed. Internal IDs must
be in lowercase and contain no spaces.

Returns

• void

Since

• Version 2008.2

Example

function removeUpdateOrderButton(type, form)
{
 form.removeButton('custpage_updateorderbutton');
}

Standard Objects | UI Objects | SuiteScript Functions

setFieldValues(values)

Sets the values of multiple fields on the current form. This API can be used in beforeLoad
scripts to initialize field scripts on new records or non-stored fields. (See User Event beforeLoad
Operations in the NetSuite Help Center for information on beforeLoad user event triggers.)

SuiteScript Objects
nlobjForm

785

SuiteScript Developer & Reference Guide

Parameters

• values {hashtable<string, string>} [required] - An associative array containing name/
value pairs, which maps field names to field values

Returns

• void

Since

• Version 2008.2

Example

var form = nlapiCreateForm('Tax Form');
form.addField('name', 'text', 'Name');
form.addField('email', 'email', 'Email');
form.addField('phone', 'phone', 'Phone');
form.setFieldValues({ name:'Jane', email:'JWolfe@netsuite.com', phone:'650.123.4567' })

Standard Objects | UI Objects | SuiteScript Functions

setScript(script)

Sets the Client SuiteScript file used for this form

Parameters

• script {string | int} [required] - The scriptId or internal ID for the global client script used
to enable Client SuiteScript on this form

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setTitle(title)

Sets the title for this form

SuiteScript Objects
nlobjList

786

SuiteScript Developer & Reference Guide

Parameters

• title {string} [required] - The title used for this form

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjList
Primary object used to encapsulate a list page. Note that the nlapiCreateList(title, hideNavbar)
function returns a reference to this object.

Methods

• addButton(name, label, script)

• addColumn(name, type, label, align)

• addEditColumn(column, showView, showHrefCol)

• addPageLink(type, title, url)

• addRow(row)

• addRows(rows)

• setScript(script)

• setStyle(style)

• setTitle(title)

addButton(name, label, script)

Adds an nlobjButton object to the footer of the page

Parameters

• name {string} [required] - The internal ID name of the button. Internal ID names must be
in lowercase and contain no spaces. For example, if you add a button that appears on the
UI as Update Order, the internal ID should be something equivalent to updateorder.

SuiteScript Objects
nlobjList

787

SuiteScript Developer & Reference Guide

• type {string} [required] - The UI label used for this button

• script {string} [optional] - The onclick button script function name

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addColumn(name, type, label, align)

Adds an nlobjColumn object to a list and returns a reference to this column

Parameters

• name {string} [required] - The internal ID name of this column. Note that internal ID
names must be in lowercase and contain no spaces.

• type {string} [required]- The field type for this column. Use any of the following field
types:

• text

• email

• phone

• date

• currency

• float

• integer

• checkbox

• select

• url

• timeofday

• textarea

• percent

• inlinehtml

SuiteScript Objects
nlobjList

788

SuiteScript Developer & Reference Guide

• label {string} [required] - The UI label for this column

• align {string} [optional] - The layout justification for this column. Possible values include:

• center

• right

• left (default)

Returns

• nlobjColumn

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addEditColumn(column, showView, showHrefCol)

Adds an Edit or Edit/View column to Portlets (created with the nlobjPortlet object) and Suitelet
and Portlet lists (created with the nlobjList object). Note that the Edit or Edit/View column will
be added to the left of a previously existing column.

This figure shows Edit | View links added to a Portlet. These links appear to the left of the Due
Date column.

Parameters

• column {nlobjColumn} [required] - An nlobjColumn object to the left of which the Edit/
View column will be added

• showView {boolean} [optional] - If true then an Edit/View column will be added.
Otherwise only an Edit column will be added.

SuiteScript Objects
nlobjList

789

SuiteScript Developer & Reference Guide

• showHrefCol {boolean} [optional] - If set, this value must be included in row data provided
for the list and will be used to determine whether the URL for this link is clickable (specify
T for clickable, F for non-clickable)

Returns

• nlobjColumn

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

addPageLink(type, title, url)

Adds a navigation cross-link to the list page

Parameters

• type {string} [required] - The type of navbar link to add. Use any of the following types:

• breadcrumb - appears on top-left corner after system bread crumbs

• crosslink - appears on top-right corner

• title {string} [required] - The UI text displayed in the link

• url {string} [required] - The URL used for this link

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addRow(row)

Adds a row (Array of name/value pairs or nlobjSearchResult) to this portlet.

Parameters

• row {hashtable<string, string> | nlobjSearchResult} [required] - An Array of rows
containing name/value pairs containing the values for corresponding nlobjColumn objects
in this list -or- an nlobjSearchResult. Note that several special fields: recordtype, id, and

SuiteScript Objects
nlobjList

790

SuiteScript Developer & Reference Guide

fieldname_display (UI display value for select fields) are automatically added for each
search result.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addRows(rows)

Adds multiple rows (Array of nlobjSearchResult objects or name/value pair Arrays) to a
portlet.

Parameters

• rows {hashtable<string, string>[] | nlobjSearchResult[]} [required] - An Array of Arrays
containing name/value pairs containing column values for multiple rows -or- an Array of
nlobjSearchResult objects containing the results of a search with columns matching the
columns on the list.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setScript(script)

Sets the Client SuiteScript used for this page.

Parameters

• script {string, int} [required] - scriptId or internal ID for global client script used to
enable Client SuiteScript on page

Returns

• void

SuiteScript Objects
nlobjList

791

SuiteScript Developer & Reference Guide

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setStyle(style)

Sets the display style for this list

Parameters

• style {string} [required] - The display style value. Use any of the following styles:

• grid

• report

• plain

• normal

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setTitle(title)

Sets the title for this list

Parameters

• title {string} [required] - The title for a list

Returns

• void

Since

• Version 2008.2

SuiteScript Objects
nlobjPortlet

792

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

nlobjPortlet
Primary object used to encapsulate scriptable dashboard portlets. Using SuiteScript you can
create a LIST, FORM, HTML, or LINKS type of portlet.

Note: In the NetSuite Help Center, see Portlet Scripts for definitions and examples of each
portlet type. This section also describes how to set the portlet type on the Script
page in the NetSuite UI.

To create a portlet using SuiteScript, pass the portlet and column arguments to your user-
defined function. The system then automatically instantiates a nlobjPortlet object (via the
portlet argument) and provides a placeholder for you to specify the portlet's column position
on the NetSuite dashboard (via the column argument). Available column position values are 1 =
left column, 2 = middle column, 3 = right column.

The following is an example of a user-defined function that includes the portlet and column
arguments:

function myPortlet(portlet, column)
{
portlet.setTitle(‘Portlet Title');
portlet.addLine(‘This is my SuiteScript portlet', null, 1);
}

Note: argument is optional. If you do not plan on setting a column position value, you do
not need to pass the column argument. For example:

function myPortlet(portlet)
{
portlet.setTitle(‘Portlet Title');
portlet.writeLine(‘This is my SuiteScript portlet', null, 1);
}

Once you have instantiated a portlet object, use any of the following methods to set or add
values.

nlobjPortlet Methods

• addColumn(name, type, label, just)

• addEditColumn(column, showView, showHrefCol)

• addField(name, type, label, source)

• addLine(text, url, indent)

• addRow(row)

SuiteScript Objects
nlobjPortlet

793

SuiteScript Developer & Reference Guide

• addRows(rows)

• setHtml(html)

• setRefreshInterval(n)

• setScript(scriptid)

• setSubmitButton(url, label, target)

• setTitle(title)

addColumn(name, type, label, just)

Adds an nlobjColumn object to a list and returns a reference to this column. Note that this
API is only available if the portlet type is a LIST type. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• name {string} [required] - The internal ID name of this column. Internal ID names must be
in lowercase and contain no spaces.

• type {string} [required] - The field type for this column. Use any of the following field
types:

• text

• email

• phone

• date

• currency

• float

• integer

• checkbox

• select

• url

• timeofday

• textarea

• percent

• inlinehtml

SuiteScript Objects
nlobjPortlet

794

SuiteScript Developer & Reference Guide

• label {string} [required] - The UI label for this column

• just {string} [optional] - The layout justification for this column. Use any of the following
layout types:

• center

• right

• left - (default)

Returns

• nlobjColumn

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addEditColumn(column, showView, showHrefCol)

Adds an Edit or Edit|View column to LIST portlets (see figure). This method can also be used
with nlobjList when creating Suitelet lists and portlet lists. Note that the Edit or Edit|View
column will be added to the left of a previously existing column.

The following figure shows Edit|View links added to a portlet. These links appear to the left of
the Due Date column.

Parameters

• column {nlobjColumn} [required] - An nlobjColumn object to the left of which the Edit|
View column will be added

• showView {boolean} [optional] - If true then an Edit|View column will be added.
Otherwise only an Edit column will be added.

SuiteScript Objects
nlobjPortlet

795

SuiteScript Developer & Reference Guide

• showHrefCol {string} [optional] - If set, this value must be included in row data provided
for the list and will be used to determine whether the URL for this link is clickable (specify
T for clickable, F for non-clickable)

Returns

• nlobjColumn

Since

• Version 2008.1

Standard Objects | UI Objects | SuiteScript Functions

addField(name, type, label, source)

Adds an nlobjField object to a portlet and returns a reference to it.

This API is only available if the portlet type is FORM. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• name {string} [required] - The internal ID name of this field. Internal ID names must be in
lowercase and contain no spaces.

• type {string} [required] - The field type for this field. Use any of the following fields types:

• text

• email

• phone

• date

• currency

• float

• integer

• checkbox

• select

• url

• timeofday

• textarea

SuiteScript Objects
nlobjPortlet

796

SuiteScript Developer & Reference Guide

• percent

• inlinehtml

• label {string} [required] - The UI label for this field

• source {int | string} [optional] - The internalId or scriptId of the source list for this field if
it's a select (List/Record) field, or radio value for radio fields. In the NetSuite Help Center,
see List/Record Type IDs for the internal IDs of all supported list/record types.

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addLine(text, url, indent)

Adds a line (containing text or basic HTML) with optional indenting and URL to a LINKS
portlet.

This API is only available if the portlet type is LINKS. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• text {string} [required] - Content written to this line (can contain basic HTML
formatting)

• url {string} [optional] - URL if this line should be clickable (if NULL then line will not be
clickable)

• indent {int} [optional] - Indent level used for this line. Valid values are 0 to 5.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjPortlet

797

SuiteScript Developer & Reference Guide

addRow(row)

Adds a row (nlobjSearchResult) or Array of name/value pairs) to a LIST portlet.

This API is only available if the portlet type is LIST. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• row {hashtable<string, string> | nlobjSearchResult} [required] - An Array of rows
containing name/value pairs containing the values for corresponding nlobjColumn objects
in this list -or- an nlobjSearchResult. Note that several special fields: recordtype, id, and
fieldname_display (display value for select fields) are automatically added for each search
result.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addRows(rows)

Adds multiple rows (Array of nlobjSearchResult objects or name/value pair Arrays) to a LIST
portlet.

This API is only available if the portlet type is LIST. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• rows {hashtable<string, string>[] | nlobjSearchResult[]} [required] - An Array of Arrays
containing name/value pairs containing column values for multiple rows -or- an Array of
nlobjSearchResult objects containing the results of a search with columns matching the
columns on the list.

Returns

• void

SuiteScript Objects
nlobjPortlet

798

SuiteScript Developer & Reference Guide

Important: Ensure there is a search column or name/value pair that corresponds to every
column added to this portlet.

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setHtml(html)

Sets the entire content of an HTML portlet (content will be placed inside <TD>...</TD> tags).

This API is only available if the portlet type is HTML. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• html {string} [required] - Raw HTML containing the contents of an HTML portlet. The
content must start and end with a TD tag.

Note: The recommended approach is to wrap the interior content inside an HTML
container such as a DIV, TABLE, or SPAN.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setRefreshInterval(n)

Sets the regular interval when a FORM portlet automatically refreshes itself.

This API is only available if the portlet type is FORM. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• n {int} [required] - Number of seconds. In production mode, this value must be at least 60
seconds. An error is raised if this value is less than zero, and in production if it is less than
60.

SuiteScript Objects
nlobjPortlet

799

SuiteScript Developer & Reference Guide

Returns

• void

Since

• Version 2011.1

Standard Objects | UI Objects | SuiteScript Functions

setScript(scriptid)

Sets the client-side script for a FORM portlet. For example, you can use this method to call a
script to implement client-side validation, dynamically calculate field totals, and change data
based on the value of another field. Note that you can only set one script. Setting another script
implicitly removes the previous script.

This API is only available if the portlet type is FORM. (In the NetSuite Help Center, see Portlet
Scripts for portlet type definitions. This section also shows how to define your portlet type on
the portlet Script record page in the NetSuite UI.)

Parameters

• scriptid {int | string} [required] - The script internalId or custom scriptId of a record-
level client script. Scripts of this type are deployed globally and run against an entire
record type. For more information, see Form-level and Record-level Client Scripts.

Returns

• void

Since

• Version 2011.1

Example

For an example use of this method, see the example for nlapiResizePortlet().

Standard Objects | UI Objects | SuiteScript Functions

setSubmitButton(url, label, target)

Adds a SUBMIT button with an optional custom label to this FORM portlet.

This API is only available if the portlet type is a FORM type. (In the NetSuite Help Center, see
Portlet Scripts for portlet type definitions. This section also shows how to define your portlet
type on the portlet Script record page in the NetSuite UI.)

SuiteScript Objects
nlobjPortlet

800

SuiteScript Developer & Reference Guide

Parameters

• url {string} [required] - The URL that the FORM will be POST-ed to when the user clicks
this submit button

• label {string} [optional] - The UI label used for displaying this button. If a value is not
specified, the default value is Save.

• target {string} [optional] - The target attribute of the portlet's FORM element, if it is
different from the portlet's own embedded iframe. Supported values include standard
HTML target attributes such as '_top', '_parent', and '_blank', frame names, and the
special NetSuite-specific identifier '_hidden'.

Setting the target to '_hidden' allows submission to a backend that returns results to a
hidden child iframe within the portlet's embedded iframe, so that these results do not
replace portlet content. For example, a custom form portlet could submit to a backend
suitelet, and if the suitelet returns an error, it is displayed in the hidden child iframe and
does not change other portlet contents.

The following code provides an example:

 portlet.setSubmitButton(nlapiResolveURL('SUITELET', 'customscript_suitelet', 'customdeploy_su
itelet'), 'Save', '_hidden');

Note: The target parameter was added as of Version 2011.1.

Returns

• nlobjButton

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjPortlet

801

SuiteScript Developer & Reference Guide

setTitle(title)

Sets the portlet title

Parameters

• title {string} [required] - The title used for this portlet

Returns

• void

Since

• Version 2008.2

Example

function demoSimpleFormPortlet(portlet, column)
{
 portlet.setTitle('Simple Form Portlet')

//remainder of code...

}

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjSubList

802

SuiteScript Developer & Reference Guide

nlobjSubList
Primary object used to encapsulate a NetSuite sublist. This object is read-only except for
instances created via the UI Object API using Suitelets or beforeLoad user event scripts.

To add a sublist, you must first create a custom form using nlapiCreateForm(title, hideNavbar),
which returns an nlobjForm object.

Once the form object is instantiated, you can add a new sublist to the form using the
nlobjForm.addSubList(name, type, label, tab) method, which returns a reference to nlobSublist.

nlobjSubList Methods

• addButton(name, label, script)

• addField(name, type, label, source)

• addMarkAllButtons()

• addRefreshButton()

• getLineItemCount()

• getLineItemValue(group, fldnam, linenum)

• setAmountField(field)

• setDisplayType(type)

• setHelpText(help)

• setLabel(label)

• setLineItemValue(name, linenum,value)

• setLineItemValues(values)

• setUniqueField(name)

addButton(name, label, script)

Adds a button to a sublist

Parameters

• name {string} [required] - The internal ID name of the button. Internal ID names must be
in lowercase and contain no spaces.

• type {string} [required] - The UI label for the button

• script {string} [optional] - The onclick script function name

SuiteScript Objects
nlobjSubList

803

SuiteScript Developer & Reference Guide

Returns

• nlobjButton

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addField(name, type, label, source)

Adds a field (column) to a sublist

Parameters

• name {string} [required] - The internal ID name of the field. Internal ID names must be in
lowercase and contain no spaces.

• type {string} [required] - The field type for this field. Use any of the following types:

• text

• email

• phone

• date

• datetimetz - This field type lets you combine date and time values in one field. For
example, you may want a single field to contain date and time “timestamp” data.
After a user enters a date/time value, the data is rendered in the user's preferred date
and time format, as well as the user's time zone. Also note that time values are stored
in NetSuite down to the second.

• currency

• float

• integer

• checkbox

• select

• url

• image - This field type is available only for fields appearing on list/staticlist sublists.
You cannot specify an image field on a form.

• timeofday

• textarea

SuiteScript Objects
nlobjSubList

804

SuiteScript Developer & Reference Guide

• percent

• radio - only supported for sublists of type list

• label {string} [required] - The UI label for this field

• source - {int | string} [optional] - The internalId or scriptId of the source list for this field
if it's a select (List/Record) field. In the NetSuite Help Center, see List/Record Type IDs for
the internal IDs of all supported list/record types.

Returns

• nlobjField

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addMarkAllButtons()
Adds a "Mark All" and an "Unmark All" button to a sublist. Only valid on scriptable sublists
of type LIST. Requires a check box column to exist on the form, which will be automatically
checked/unchecked depending on what the end user does.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

addRefreshButton()

Adds a Refresh button to sublists of type list or staticlist to auto-refresh the sublist if its
contents are dynamic. In this case, the sublist is refreshed without having to reload the contents
of the entire page.

Returns

• nlobjButton

Since

• Version 2009.1

SuiteScript Objects
nlobjSubList

805

SuiteScript Developer & Reference Guide

Standard Objects | UI Objects | SuiteScript Functions

getLineItemCount()

Returns the number of lines on a sublist

Important: The first line number on a sublist is 1 (not 0).

Returns

• The integer value of the number of line items on a sublist

Example

function request(request, response)
{
var form = nlapiCreateForm('myform');
var list = form.addSubList('results', 'staticlist', 'My Sublist', 'resultsTab');
list.addField("rownum","text","#");

var i=1;
for(var i=1; i< 10; i++)
 list.setLineItemValue("rownum", i, "val"+i);

var count = list.getLineItemCount();
form.addSubmitButton("Count#:"+count);

response.writePage(form);
}

Standard Objects | UI Objects | SuiteScript Functions

getLineItemValue(group, fldnam, linenum)

Returns string value of a sublist field. Note that you cannot set default line item values when the
line is not in edit mode.

Note: Normally custom transaction column fields that are not checked to show on a
custom form are not available to get/setLineItemValue APIs. However, if you set
them to show, but then set the label to empty, they will be available on the form
but will not appear on the sublist. Note this does not apply to fields that are marked
as Hidden on the custom field definition. These fields are always available on every
form.

Parameters

• group {string} [required] - The sublist internal ID (for example, use addressbook as the
ID for the Address sublist). In the NetSuite Help Center, see Scriptable Sublists for a list of
sublists that support SuiteScript, sublist internal IDs, and sublist field IDs.

SuiteScript Objects
nlobjSubList

806

SuiteScript Developer & Reference Guide

• fldnam {string} [required] - The internal ID of the field (line item) whose value is being
returned

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

Returns

• The string value of a sublist line item field

Since

• Version 2010.1

Standard Objects | UI Objects | SuiteScript Functions

setAmountField(field)

Designates a particular column as the totalling column, which is used to calculate and display a
running total for the sublist

Parameters

• field {string} [required] - The internal ID name of the field on this sublist used to
calculate running total

Returns

• void

Standard Objects | UI Objects | SuiteScript Functions

setDisplayType(type)

Sets the display style for this sublist. This method is only supported on scripted or staticlist
sublists via the UI Object API.

Parameters

• type {string} [required] - The display type for this sublist. Use either of the following two
values:

• hidden

• normal - (default)

Returns

• void

SuiteScript Objects
nlobjSubList

807

SuiteScript Developer & Reference Guide

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setHelpText(help)

Adds inline help text to this sublist. This method is only supported on sublists via the UI Object
API.

Parameters

• help {string} [required] - Inline help text used for this sublist

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setLabel(label)

Sets the label for this sublist. This method is only supported on sublists via the UI Object API.

Parameters

• label {string} [required] - The UI label for this sublist

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setLineItemValue(name, linenum,value)

Sets the value of a cell in a sublist field.

SuiteScript Objects
nlobjSubList

808

SuiteScript Developer & Reference Guide

Parameters

• name {string} [required] - The internal ID name of the line item field being set

• linenum {int} [required] - The line number for this field. Note the first line number on a
sublist is 1 (not 0).

• value {string} [required] - The value the field is being set to

Returns

• void

Tip: Normally custom transaction column fields that are not checked to show on a custom
form are not available to get/setLineItemValue APIs. However, if you set them to show,
but then set the label to empty, they will be available on the form but will not appear
on the sublist. Note this does not apply to fields that are marked as Hidden on the
custom field definition. These fields are always available on every form.

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setLineItemValues(values)

Sets values for multiple lines (Array of nlobjSearchResult objects or name/value pair Arrays)
in a sublist.

Parameters

• values {nlobjSearchResult[] | hashtable<string, string>[]} [required] - An Array of Arrays
containing name/value pairs containing column values for multiple rows -or- an Array of
nlobjSearchResult objects containing the results of a search with columns matching the
fields on the sublist. Note that several special fields: recordtype, id, and fieldname_display
(UI display value for select fields) are automatically added for each search result.

Returns

• void

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript Objects
nlobjTab

809

SuiteScript Developer & Reference Guide

setUniqueField(name)

Use this method to designate that a certain field on a sublist must contain a unique value. This
method is available on inlineeditor and editor sublists only.

Parameters

• name {string} [required] - The internal ID of the sublist field that you want to make unique

Returns

• nlobjField

Since

• Version 2009.2

Example

The following sample shows an instance of a new Contacts sublist. Four line item fields
are added to the sublist. Use setUniqueField(name) to set the name field as unique. This
means, for example, that a user will not be able to enter two contacts that have a name of
"Joe Smith," since the value of the name field must be unique.

var sublist = assistant.addSubList("contacts", "inlineeditor", "Contacts")
sublist.addField("name", "text", "Name");
sublist.addField("phone", "phone", "Phone");
sublist.addField("email", "email", "E-mail");
sublist.addField("address", "textarea", "Address");
sublist.setUniqueField("name");

Standard Objects | UI Objects | SuiteScript Functions

nlobjTab
Primary object used to encapsulate tabs and subtabs. Note that to add a tab or subtab, you
must first create a custom form using nlapiCreateForm(title, hideNavbar), which returns an
nlobjForm object.

Once the form object is instantiated, you can add a new tab or subtab to the form using the
nlobjForm.addTab(name, label) or nlobjForm.addSubTab(name, label, tab) methods, which
both return a reference to nlobjTab.

Use the following nlobjTab methods to set tab values.

Methods

• setLabel(label)

SuiteScript Objects
nlobjTemplateRenderer

810

SuiteScript Developer & Reference Guide

• setHelpText(help)

setLabel(label)

Sets the tab UI label

Parameters

• label {string} [required] - The UI label used for this tab or subtab

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

setHelpText(help)

Sets the inline help used for this tab or subtab

Parameters

• help {string} [required] - Inline help used for this tab or subtab

Returns

• nlobjTab

Since

• Version 2008.2

Standard Objects | UI Objects | SuiteScript Functions

nlobjTemplateRenderer
Template engine that produces HTML and PDF printed forms utilizing advanced PDF/HTML
template capabilities. This object uses FreeMarker syntax to interpret a template passed in as
string. Interpreted content can be rendered in two different formats: as HTML output to an
nlobjResponse object or as XML string that can be passed to nlapiXMLToPDF(xmlstring) to
produce a PDF.

SuiteScript Objects
nlobjTemplateRenderer

811

SuiteScript Developer & Reference Guide

This object is available when the Advanced PDF/HTML Templates feature is enabled. For
information about this feature, see the help topic Advanced PDF/HTML Templates.

Note: The advanced template API expects your template string to conform to
FreeMarker syntax. FreeMarker documentation is available from http://
freemarker.sourceforge.net/docs/index.html.

Note: As stated above, the nlapiXMLToPDF API can be used to produce a PDF from
the string rendered by this object's methods. This API is used in conjunction
with the Big Faceless Report Generator, a third-party library built by Big Faceless
Organization (BFO). See nlapiXMLToPDF(xmlstring) for links to BFO documentation.

Use the following nlobjTemplateRenderer methods to produce printed forms.

Methods

• setTemplate(template)

• addRecord(var, record)

• addSearchResults(var, searchResult)

• renderToString()

Examples

The following sample transforms a sales order into HTML which is written to an HTTP
response object:

function renderRecord(request, response)
{
var salesOrderID = 3;
var salesOrder = nlapiLoadRecord(‘salesorder', salesOrderID);
var renderer = nlapiCreateTemplateRenderer();
renderer.setTemplate(…);
renderer.addRecord(‘record', salesOrder);
response.setContentType(‘HTMLDOC');
renderer.renderToResponse(response);
}

The following sample transforms search results into HTML which is written to an HTTP
response object:

function renderSearchResults(request, response)
{
var searchID = 3;
var runTimeFilter = new nlobjSearchFilter(...);
var results = nlapiSearchRecord(null, searchID, runTimeFilter, null);
var renderer = nlapiCreateTemplateRenderer();
renderer.setTemplate(…);
renderer.addSearchResults(‘results', results);
response.setContentType(‘HTMLDOC');
renderer.renderToResponse(response);

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4453550706.html
http://freemarker.sourceforge.net/docs/index.xml
http://freemarker.sourceforge.net/docs/index.xml

SuiteScript Objects
nlobjTemplateRenderer

812

SuiteScript Developer & Reference Guide

}

The following sample transforms a sales order into XML, which is further transformed by
nlapiXMLToPDF to produce an nlobjFile with PDF file type:

function renderInlinePDF(request, response)
{
var salesOrderID = 3;
var salesOrder = nlapiLoadRecord(‘salesorder', salesOrderID);
var renderer = nlapiCreateTemplateRenderer();
renderer.setTemplate(…);
renderer.addRecord(‘record', salesOrder);
var xml = renderer.renderToString();
var file = nlapiXMLToPDF(xml);
response.setContentType(‘PDF', ‘SORD'+salesOrder.getFieldValue(‘tranid)+'.pdf', ‘inline');
response.write(file.getValue());
}

Note that the (...) parameter for setTemplate represents the raw template string.

You can also use nlobjTemplateRenderer to print a large volume of documents. For more
information, see the help topic Using SuiteScript for Transaction Records.

Note: See the help topic Using SuiteScript to Apply Advanced Templates to Non-
Transaction Records for a code sample and an explanation of how to use this object
to print a record type that is not a transaction.

setTemplate(template)

Passes in raw string of template to be transformed by FreeMarker.

Parameters

• template {string} [required] - raw string of template

Returns

• void

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

addRecord(var, record)

Binds nlobjRecord object to variable name used in template.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4453706706.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4259402776.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4259402776.html

SuiteScript Objects
nlobjTemplateRenderer

813

SuiteScript Developer & Reference Guide

Parameters

• var {string} [required] - variable name that represents record

• record {nlobjRecord} [required] - NetSuite record

Returns

• void

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

addSearchResults(var, searchResult)

Binds nlobjSearchResult object to variable name used in template.

Parameters

• var {string} [required] - variable name that represents search result

• searchResult {nlobjSearchResult} [required] - NetSuite search result

Returns

• void

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

renderToString()

Returns template content interpreted by FreeMarker as XML string that can be passed to
nlapiXMLToPDF(xmlstring) to produce PDF output.

Note: The nlapiXMLToPDF API is used in conjunction with the Big Faceless Report
Generator, a third-party library built by Big Faceless Organization (BFO). See
nlapiXMLToPDF(xmlstring) for links to BFO documentation.

Parameters

• none

SuiteScript Objects
nlobjTemplateRenderer

814

SuiteScript Developer & Reference Guide

Returns

• XML string of template interpreted by FreeMarker

Since

• Version 2013.1

Standard Objects | UI Objects | SuiteScript Functions

SuiteScript API - Alphabetized Index 815

SuiteScript Developer & Reference Guide

Chapter 60 SuiteScript API - Alphabetized
Index

The following is an alphabetized list of all SuiteScript functions and objects. Click these links to
see either Functions or Objects.

For a task-based grouping of all APIs, see SuiteScript Functions. For a high-level overview of
the SuiteScript API, see SuiteScript API Overview.

Functions

• nlapiAddDays(d, days)

• nlapiAddMonths(d, months)

• nlapiAttachRecord(type, id, type2, id2, attributes)

• nlapiCancelLineItem(type)

• nlapiCommitLineItem(type)

• nlapiCopyRecord(type, id, initializeValues)

• nlapiCreateAssistant(title, hideHeader)

• nlapiCreateCSVImport()

• nlapiCreateCurrentLineItemSubrecord(sublist, fldname)

• nlapiCreateSearch(type, filters, columns)

• nlapiCreateSubrecord(fldname)

• nlapiCreateError(code, details, suppressNotification)

• nlapiCreateFile(name, type, contents)

• nlapiCreateForm(title, hideNavbar)

• nlapiCreateList(title, hideNavbar)

• nlapiCreateRecord(type, initializeValues)

• nlapiCreateReportDefinition()

• nlapiCreateReportForm(title)

• nlapiCreateTemplateRenderer()

• nlapiDateToString(d, format)

• nlapiDeleteFile(id)

SuiteScript API - Alphabetized Index 816

SuiteScript Developer & Reference Guide

• nlapiDeleteRecord(type, id)

• nlapiDetachRecord(type, id, type2, id2, attributes)

• nlapiDisableField(fldnam, val)

• nlapiDisableLineItemField(type, fldnam, val)

• nlapiEditCurrentLineItemSubrecord(sublist, fldname)

• nlapiEditSubrecord(fldname)

• nlapiEncrypt(s, algorithm, key)

• nlapiEscapeXML(text)

• nlapiExchangeRate(sourceCurrency, targetCurrency, effectiveDate)

• nlapiFindLineItemMatrixValue(type, fldnam, val, column)

• nlapiFindLineItemValue(type, fldnam, val)

• nlapiFormatCurrency(str)

• nlapiGetContext()

• nlapiGetCurrentLineItemDateTimeValue(type, fieldId, timeZone)

• nlapiGetCurrentLineItemIndex(type)

• nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

• nlapiGetCurrentLineItemText(type, fldnam)

• nlapiGetCurrentLineItemValue(type, fldnam)

• nlapiGetCurrentLineItemValues(type, fldnam)

• nlapiGetDateTimeValue(fieldId, timeZone)

• nlapiGetDepartment()

• nlapiGetJobManager(jobType)

• nlapiGetField(fldnam)

• nlapiGetFieldText(fldnam)

• nlapiGetFieldTexts(fldnam)

• nlapiGetFieldValue(fldnam)

• nlapiGetFieldValues(fldnam)

• nlapiGetLineItemCount(type)

• nlapiGetLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

• nlapiGetLineItemField(type, fldnam, linenum)

SuiteScript API - Alphabetized Index 817

SuiteScript Developer & Reference Guide

• nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

• nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

• nlapiGetLineItemText(type, fldnam, linenum)

• nlapiGetLineItemValue(type, fldnam, linenum)

• nlapiGetLineItemValues(type, fldname, linenum)

• nlapiGetLocation()

• nlapiGetLogin()

• nlapiGetMatrixCount(type, fldnam)

• nlapiGetMatrixField(type, fldnam, column)

• nlapiGetMatrixValue(type, fldnam, column)

• nlapiGetNewRecord()

• nlapiGetOldRecord()

• nlapiGetRecordId()

• nlapiGetRecordType()

• nlapiGetRole()

• nlapiGetSubsidiary()

• nlapiGetUser()

• nlapiInitiateWorkflow(recordtype, id, workflowid, initialvalues)

• nlapiInsertLineItem(type, line)

• nlapiInsertLineItemOption(type, fldnam, value, text, selected)

• nlapiInsertSelectOption(fldnam, value, text, selected)

• nlapiIsLineItemChanged(type)

• nlapiLoadFile(id)

• nlapiLoadRecord(type, id, initializeValues)

• nlapiLoadSearch(type, id)

• nlapiLogExecution(type, title, details)

• nlapiLookupField(type, id, fields, text)

• nlapiMergeRecord(id, baseType, baseId, altType, altId, fields)

• nlapiMergeTemplate(id, baseType, baseId, altType, altId, fields)

• nlapiOutboundSSO(id)

SuiteScript API - Alphabetized Index 818

SuiteScript Developer & Reference Guide

• nlapiPrintRecord(type, id, mode, properties)

• nlapiRefreshLineItems(type)

• nlapiRefreshPortlet()

• nlapiRemoveCurrentLineItemSubrecord(sublist, fldname)

• nlapiRemoveLineItem(type, line)

• nlapiRemoveLineItemOption(type, fldnam, value)

• nlapiRemoveSelectOption(fldnam, value)

• nlapiRemoveSubrecord(fldname)

• nlapiRequestURL(url, postdata, headers, callback, httpMethod)

• nlapiRequestURLWithCredentials(credentials, url, postdata, headers, httpsMethod)

• nlapiResizePortlet()

• nlapiResolveURL(type, identifier, id, displayMode)

• nlapiScheduleScript(scriptId, deployId, params)

• nlapiSearchDuplicate(type, fields, id)

• nlapiSearchGlobal(keywords)

• nlapiSearchRecord(type, id, filters, columns)

• nlapiSelectLineItem(type, linenum)

• nlapiSelectNewLineItem(type)

• nlapiSelectNode(node, xpath)

• nlapiSelectNodes(node, xpath)

• nlapiSelectValue(node, xpath)

• nlapiSelectValues(node, path)

• nlapiSendCampaignEmail(campaigneventid, recipientid)

• nlapiSendEmail(author, recipient, subject, body, cc, bcc, records, attachments,
notifySenderOnBounce, internalOnly, replyTo)

• nlapiSendFax(author, recipient, subject, body, records, attachments)

• nlapiSetCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

• nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value, firefieldchanged,
synchronous)

• nlapiSetCurrentLineItemText(type, fldnam, text, firefieldchanged, synchronous)

SuiteScript API - Alphabetized Index 819

SuiteScript Developer & Reference Guide

• nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous)

• nlapiSetCurrentLineItemValues(type, fldnam, values, firefieldchanged, synchronous)

• nlapiSetDateTimeValue(fieldId, dateTime, timeZone)

• nlapiSetFieldText(fldname, txt, firefieldchanged, synchronous)

• nlapiSetFieldTexts (fldname, txts, firefieldchanged, synchronous)

• nlapiSetFieldValue(fldnam, value, firefieldchanged, synchronous)

• nlapiSetFieldValues (fldnam, value, firefieldchanged, synchronous)

• nlapiSetLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

• nlapiSetLineItemValue(type, fldnam, linenum, value)

• nlapiSetMatrixValue(type, fldnam, column, value, firefieldchanged, synchronous)

• nlapiSetRecoveryPoint()

• nlapiSetRedirectURL(type, identifier, id, editmode, parameters)

• nlapiStringToDate(str, format)

• nlapiStringToXML(text)

• nlapiSubmitCSVImport(nlobjCSVImport)

• nlapiSubmitField(type, id, fields, values, doSourcing)

• nlapiSubmitFile(file)

• nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

• nlapiTransformRecord(type, id, transformType, transformValues)

• nlapiTriggerWorkflow(recordtype, id, workflowid, actionid, stateid)

• nlapiViewCurrentLineItemSubrecord(sublist, fldname)

• nlapiViewLineItemSubrecord(sublist, fldname, linenum)

• nlapiViewSubrecord(fldname)

• nlapiXMLToPDF(xmlstring)

• nlapiXMLToString(xml)

• nlapiYieldScript()

Objects

• nlobjAssistant

• nlobjAssistantStep

SuiteScript API - Alphabetized Index 820

SuiteScript Developer & Reference Guide

• nlobjButton

• nlobjColumn

• nlobjConfiguration

• nlobjContext

• nlobjCredentialBuilder(string, domainString)

• nlobjCSVImport

• nlobjError

• nlobjField

• nlobjFieldGroup

• nlobjFile

• nlobjForm

• nlobjList

• nlobjLogin

• nlobjPivotColumn

• nlobjPivotRow

• nlobjPivotTable

• nlobjPivotTableHandle

• nlobjPortlet

• nlobjRecord

• nlobjReportColumn

• nlobjReportColumnHierarchy

• nlobjReportDefinition

• nlobjReportForm

• nlobjReportRowHierarchy

• nlobjResponse

• nlobjRequest

• nlobjSearch

• nlobjSearchColumn(name, join, summary)

• nlobjSearchFilter

• nlobjSearchResult

SuiteScript API - Alphabetized Index 821

SuiteScript Developer & Reference Guide

• nlobjSelectOption

• nlobjSubList

• nlobjSubrecord

• nlobjTab

• nlobjTemplateRenderer

SuiteScript Reference 822

SuiteScript Developer & Reference Guide

Chapter 61 SuiteScript Reference
The following topics are covered in this section. If you are new to SuiteScript, these topics
should be read in order.

• How to Use SuiteScript Records Help

• SuiteScript References Overview

• Working with the SuiteScript Records Browser

How to Use SuiteScript Records Help

The SuiteScript reference guide must be used in conjunction with the SuiteScript Records
Browser. Each record listed in this guide includes a link to the Records Browser. Within the
Records Browser, you will find all available fields, sublists, and search filter fields for that
record. The Records Browser also provides field level help for many fields that appears on the
record. Within this guide, the description of each record often includes the following types of
information:

• Supported script types — a description of whether the record is supported in both client
and server SuiteScript, and whether the user events are supported.

• Supported functions — a list of all functions that can be used with the record.

• Field definitions — provides a link to the Records Browser and, in some cases, additional
explanations about how to work with particular fields.

• Usage notes — additional details or context about working with the record.

• Code samples — examples of how to structure your scripts.

Important: For a list of all NetSuite records that are supported in SuiteTalk, see
SuiteScript Supported Records.

Working Online

If you are working online, using either the PDF or online help version of this guide, click the
links to the SuiteScript Records Browser that are provided with each record description. The
Records Browser will open in your default browser.

Downloading the SuiteScript Records Browser

If you want to use the SuiteScript Records Browser while working offline, you must download
the SuiteScript Records Browser .zip file

https://system.netsuite.com/download/2014_1_Schema_and_Records_Browser.zip

SuiteScript Reference
SuiteScript References Overview

823

SuiteScript Developer & Reference Guide

After downloading the .zip file to your local machine, extract the .zip and navigate to the script
directory. To view the Records Browser content, open index.html file in the browser of your
choice.

Note: For information on using the Records Browser, see Working with the SuiteScript
Records Browser.

SuiteScript References Overview

The NetSuite Help Center provides all the internal IDs you will need when referencing NetSuite
records, fields, sublists, search filters, permissions, features, etc., in SuiteScript.

Important: When writing SuiteScript, you must use the internal IDs listed in the NetSuite
Help Center. Although you can access internal IDs by viewing page source
on a NetSuite record, there is no guarantee that all IDs in the source code
are supported in SuiteScript. If you create a script that references an
unsupported/undocumented ID, and the ID is later changed by NetSuite,
your script may break.

To find SuiteScript-supported records and internal IDs:

1. Open the SuiteScript Records Browser. Only records that officially support SuiteScript
are listed in the SuiteScript Records Browser. (For information on using the SuiteScript
Records Browser, see Working with the SuiteScript Records Browser.)

2. Click the record you want to reference in SuiteScript.

You will see all internal IDs currently supported for this record. These IDs can include:

• field IDs - used when referencing Field APIs

• sublist internal IDs - used when referencing Sublist APIs

• sublist field internal IDs - used when referencing Sublist APIs

• search join IDs - used when referencing Search APIs

• search filter IDs - used when referencing Search APIs

• search column IDs - used when referencing Search APIs

• transformation IDs - used when working with nlapiTransformRecord(type, id,
transformType, transformValues)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

SuiteScript Reference
Working with the SuiteScript Records Browser

824

SuiteScript Developer & Reference Guide

Important: Not every field that appears in the SuiteScript Records Browser is settable
through SuiteScript. Some fields are read-only. You will need to look at the
NetSuite UI to know whether a field is settable. The general rule is that if you
can set a field in the UI, you can set it in SuiteScript. If you cannot set a field
in the UI, you cannot set it using SuiteScript. You can, however, still get the
field's value using SuiteScript.

In the NetSuite Help Center, also see these links for additional internal ID information. The IDs
listed in these sections do not pertain to specific NetSuite records.

Working with the SuiteScript Records Browser
The SuiteScript Records Browser provides a summary of all records, fields, sublists, search
joins, search filters, search columns, and record transformations that are supported in
SuiteScript. Information about elements is displayed as a series of tables. For more details, see
the following topics:

• Finding a Record or Subrecord

• Understanding the Record Summary

Note: You can use the Records Browser online, or you can download it. For help
downloading the browser, see Downloading the SuiteScript Records Browser.

Note: For information on governance applied to individual SuiteScript APIs, as well as to
various SuiteScript script types, see SuiteScript Governance.

Note: Only the 2015.1 Records Browser is supported. Older version may still be accessible,
but they are not supported.

Finding a Record or Subrecord

To find a record or subrecord in the SuiteScript Records Browser, use the A-Z index at the top
of the browser window.

To find a record or subrecord:

1. Click the appropriate letter at the top of the browser window.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

SuiteScript Reference
Working with the SuiteScript Records Browser

825

SuiteScript Developer & Reference Guide

The pane at the left updates to include a list of all records whose names begin with the
letter you selected. The center pane updates to show details of the first record in the list.

2. In the left-hand pane, click the name of the record you are interested in.

The center pane updates to show details of the record.

Understanding the Record Summary

In the SuiteScript Records Browser, for each record exposed to SuiteScript, you can find a
reference page, such as the one in the following illustration.

Summary of the Record

For each record, the browser displays a series of tables summarizing the following:

• Fields — The record’s fields.

• Sublists — A table representing each supported sublist.

• Tabs — A list of tabs available on the record in the user interface.

• Search Joins — A list of other searches you can access while searching this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

SuiteScript Reference
Working with the SuiteScript Records Browser

826

SuiteScript Developer & Reference Guide

• Search Filters — Fields in the record that you can use as search criteria.

• Search Columns — Fields that you can include search results.

• Transform Types — A list of records that this record can be transformed into using
nlapiTransformRecord.

Some of the column names used by these tables are described below.

Column Label Description

Name The internal ID of the field.

Type The data type of the field.

nlapiSubmitField A boolean value indicating whether the field supports the nlapiSubmitField
function, which enables you to do the equivalent of direct line editing. For details
on this function, see Inline Editing Using nlapiSubmitField.

Label The label for the field as shown in the user interface.

Help Additional details about working with the field.

Comparing SuiteScript, SuiteTalk, and SuiteAnalytics Connect
Exposure

To check whether the record you are currently viewing is also supported in SuiteTalk or
SuiteAnalytics Connect, click the Schema Browser tab or the Connect Browser tab at the top of
the page.

If the record is supported in SuiteTalk or SuiteAnalytics Connect, you are directed to the
corresponding page in the SuiteTalk Schema Browser or SuiteAnalytics Connect Browser.
Otherwise, you are directed to the first page of the respective browser. To compare record types
support across SuiteScript, SuiteTalk, and SuiteAnalytics Connect, see the help topic SuiteCloud
Supported Records.

https://system.netsuite.com/app/help/helpcenter.nl?fid=book_N2807494.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=book_N2807494.html

SuiteScript Supported Records 827

SuiteScript Developer & Reference Guide

Chapter 62 SuiteScript Supported Records
The following table lists all NetSuite records that support SuiteScript. Also provided are record
IDs, which are often referenced in SuiteScript APIs.

Note that a scripting level defined as Full means that the record can be created, updated,
copied, deleted, and searched using SuiteScript.

All subrecords are scriptable from the line item level, unless stated otherwise.

Memorized transactions do not support SuiteScript.

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Account account List Full Record-lev
el Client
SuiteScript only

X

Accounting Book accountingbook List Copy Not Allowed X

Address

See Using
SuiteScript
 with Address
Subrecords.

addressbookaddress Subrecord See Using SuiteScript
with Address
Subrecords.

X Server-side
 scripts must
access through
the parent
record.

Amortization
 Schedule

amortizationschedule List Copy, Create, and
Delete Not Allowed

 X

Amortization
 Template

amortizationtemplate List Full X

Activity activity Activity Search Only X X

Assembly Build assemblybuild Transaction Full X

Assembly
Unbuild

assemblyunbuild Transaction Full X

Billing Class billingclass List Full X

Billing Schedule billingschedule List Full X

Bin bin List Full X

Bin Putaway
Worksheet

binworksheet Transaction Copy and Update Not
Allowed

 Dynamic Mode
Only

Bin Transfer bintransfer Transaction Full X

Blanket Purchase
Order

blanketpurchaseorder Transaction Full X X

Build/Assembly assemblyitem Item Full X

Campaign campaign Marketing Full X X

Campaign
Template

campaigntemplate Marketing Search Not Allowed X

Case supportcase Support Full X X

Cash Refund cashrefund Transaction Full X X

SuiteScript Supported Records 828

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Cash Sale cashsale Transaction Full X X

Charge charge Transaction Full X

Check check Transaction Full X X

Class classification List Full X X

Competitor competitor Entity Full X X

Contact contact Entity Full X X

Coupon Code couponcode Marketing Full X X

Credit Memo creditmemo Transaction Full X X

Currency currency List Full — with Multiple
Currencies feature
enabled

Read Only — without
Multiple Currencies
feature

 X

Customer customer Entity Full X X

Customer
Category

customercategory List Search Not Available X X

Customer
Deposit

customerdeposit Transaction Full X X

Customer
Payment

customerpayment Transaction Copy and Create Not
Allowed

 X

Customer Refund customerrefund Transaction Full X

Custom List customlist * Custom Search Only X X

Department department List Full X X

Deposit deposit Transaction Copy Not Allowed

Dynamic mode is not
supported

X X

Deposit
Application

depositapplication Transaction Create Not Allowed X X

Description descriptionitem Item Full X X

Discount discountitem Item Full X X

Download Item downloaditem Item Full X X

Email Template emailtemplate Marketing Search Not Allowed X

Employee employee Entity Full X X

Entity entity Entity Search Only

Estimate / Quote estimate Transaction Full X X

Event calendarevent Activity Full X X

Expense
Category

expensecategory List Full X

Expense Report expensereport Transaction Full X X

SuiteScript Supported Records 829

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Folder folder File Cabinet Full X

Generic Resource genericresource Entity Copy Not Allowed X X

Gift Certificate giftcertificate List Full X X

Gift Certificate
 Item

giftcertificateitem Item Full X X

Global Account
Mapping

globalaccountmapping List Full X

Group entitygroup List Full X

Intercompany
 Journal Entry

intercompanyjournale
ntry

Transaction Full X X

Intercompany
 Transfer Order

intercompanytransfer
order

Transaction Full X X

Inventory
Adjustment

inventoryadjustment Transaction Full X X

Inventory Cost
Revaluation

inventorycostrevaluat
ion

Transaction Full X X

Inventory Count inventorycount Transaction Full X X

Inventory Detail inventorydetail Subrecord See Scripting the
Inventory Detail
Subrecord.

X Server-side
 scripts must
access through
the parent
record

Inventory Item

(Also referred
to in the UI as
Inventory Part)

inventoryitem Item Full X X

Inventory
Number

inventorynumber List Copy, Create, and
Delete Not Allowed

 X

Inventory
Transfer

inventorytransfer Transaction Full X

Invoice invoice Transaction Full X X

Issue issue Support Full X X

Item Account
Mapping

itemaccountmapping List Full X

Item Search item Item Search Only

Item Demand
Plan

itemdemandplan Transaction Copy Not Allowed, No
Available Transforms

X X

Item Fulfillment itemfulfillment Transaction Copy and Create Not
Allowed

X X

Item Group itemgroup Item Full X X

Item Receipt itemreceipt Transaction Copy and Create Not
Allowed

X X

Item Revision itemrevision List Full X

SuiteScript Supported Records 830

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Item Supply Plan itemsupplyplan Transaction Full X X

Journal Entry journalentry Transaction Full X X

Kit kititem Item Full X X

Landed Cost landedcost Subrecord Full X

Lead lead Entity Full X X

Location location List Full X

Lot Numbered
Assembly Item

lotnumberedassembly
item

Item Full X X

Lot Numbered
Inventory Item

lotnumberedinventory
item

Item Full X X

Manufacturing
 Cost Template

manufacturingcosttem
plate

List Full X

Manufacturing
 Planned Time

mfgplannedtime Transaction Search Only X X

Manufacturing
 Operation Task

manufacturingoperati
ontask

Transaction Copy Not Allowed X X

Manufacturing
 Routing

manufacturingrouting List Full X

Markup markupitem Item Full X X

Message message Communication New Messages — Full

Existing Messages —
Edit Not Allowed

 X

Multi-Book
 Accounting
 Transaction

accountingtransaction Transaction Search Only X X

Nexus nexus List Copy Not Allowed X

Non-Inventory
 Part

noninventoryitem Item Full X X

Note note Communication Full X

Opportunity opportunity Transaction Full X X

Other Charge
Item

otherchargeitem Item Full

Other Name othername Entity Full X

Partner partner Entity Full X X

Paycheck Journal paycheckjournal Transaction Full X X

Payment paymentitem Item Full X X

Payroll Item payrollitem List Full X X

Phone Call phonecall Activity Full X X

Price Level pricelevel Lists Search Not Available X X

Project (Job) job Entity Full X X

SuiteScript Supported Records 831

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Project Expense
Type

projectexpensetype List Full X

Project Task projecttask Event Full X X

Project Template projecttemplate Entity Copy Not Allowed X X

Promotion promotioncode Marketing Full X X

Prospect prospect Entity Full X X

Purchase
Contract

purchasecontract Transaction Full X X

Purchase Order purchaseorder Transaction Full X X

Reallocate Items reallocateItem Item Only user event scripts
are supported on this
record

 X

Requisition purchaserequisition Transaction Full X X

Resource
Allocation

resourceallocation Activities Full X X

Return
Authorization

returnauthorization Transaction Full X X

Revenue
Commitment

revenuecommitment Transaction Create Not Allowed.
See Usage Notes.

X X

Revenue
Commitment
 Reversal

revenuecommitmentr
eversal

Transaction Create Not Allowed.
See Usage Notes.

X X

Revenue
Recognition
 Schedule

revrecschedule List Copy, Create, and
Delete Not Allowed

 X
(User Event
Scripts Not
Supported)

Revenue
Recognition
 Template

revrectemplate List Full X
(User Event
Scripts Not
Supported)

Role role List Search Only X

Sales Order salesorder Transaction Full X X

Sales Tax Item salestaxitem List Full X

Scheduled Script
Instance

 Customization Search Only X

Script Need Internal ID. See
Script description

Customization Copy, Create and
Delete Not Allowed.
See Usage Notes

 X

Script
Deployment

Need Internal ID. See
Script Deployment
description

Customization See Usage Notes X

Serialized
Assembly Item

serializedassemblyitem Item Full X X

SuiteScript Supported Records 832

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Serialized
Inventory Item

serializedinventoryitem Item Full X X

Service serviceitem Item Full X X

Shipping Item shipitem Item Create and Copy Not
Allowed

 X

Solution solution Support Full X X

Statistical
Journal Entry

statisticaljournalentry Transaction Full X X

Subsidiary subsidiary List Full X X

Subtotal subtotalitem Item Full X X

Task task Activity Full X X

Tax Control
Account

taxacct List Delete and Search Not
Allowed

X X

Tax Group taxgroup List Full X

Tax Period taxperiod List Full X

Tax Type taxtype List Full X

Term term List Search Not Available X X

Time timebill Transaction Full X X

Time Entry timeentry Subrecord See Using SuiteScript
with Timesheets.

X Server-side
 scripts must
access through
the parent
record.

Timesheet timesheet Transaction See Using SuiteScript
with Timesheets.

X X

Topic topic Support Full X

Transaction
 Search

transaction Transaction Search Only X X

Transfer Order transferorder Transaction

Unit of Measure unitstype List Full X

Vendor vendor Entity Full X X

Vendor Bill vendorbill Transaction Full X X

Vendor Category vendorcategory List Search Not Available X X

Vendor Credit vendorcredit Transaction Full X X

Vendor Payment vendorpayment Transaction Full X X

Vendor Return
Authorization

vendorreturnauthoriza
tion

Transaction Full X X

Web Site Setup website Website Not supported in
beforeLoad user event
scripts.

 X

Work Order workorder Transaction Full X X

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3203248.html

SuiteScript Supported Records 833

SuiteScript Developer & Reference Guide

Record Name Record ID Record
Category

Scripting Level Scriptable
 in Client
SuiteScript

Scriptable
 in Server
SuiteScript

Work Order Close workorderclose Transaction Copy and Create Not
Allowed. You must use
nlapiTransfomReco
rd to “create” a new
instance of this record.

 X

Work Order
Completion

workordercompletion Transaction Copy and Create Not
Allowed. You must use
nlapiTransfomReco
rd to “create” a new
instance of this record.

 X

Work Order Issue workorderissue Transaction Copy and Create Not
Allowed. You must use
nlapiTransfomReco
rd to “create” a new
instance of this record.

 X

Important: Each custom list and custom record will have a unique internal ID.
For example, a custom record's internal ID might be customrecord22
or customrecord5. A custom list's ID might be customlist7 or
customlist_shirtcolors, depending on whether you have accepted the
default ID assigned to the custom list (for example, customlist7) or you have
created your own customized script ID (for example, customlist_shirtcolors
).

To see a list of IDs for all your custom records, in the UI go to Customization
> Lists, Records, & Fields > Record Types. For custom list IDs, go to
Customization > Lists, Records, & Fields > Lists. If you have the Show Internal
IDs preference enabled, all internal IDs will appear in the ID column. To
enable the Show Internal IDs preference, go to Home > Set Preferences >
click the Show Internal IDs check box > click Save.

Activities
Activity

834

SuiteScript Developer & Reference Guide

Chapter 63 Activities
The following activity records are scriptable in SuiteScript:

• Activity

• Event

• Phone Call

• Project Task

• Resource Allocation

• Task

• Work Calendar

Activity
The internal ID for this record is activity.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Event
The internal ID for this record is calendarevent. Note that setting recurring events in SuiteScript
is not currently supported.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Phone Call
The internal ID for this record is phonecall.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/activity.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/calendarevent.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/phonecall.html

Activities
Project Task

835

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Project Task
The project task record can be used to keep track of specific activities and milestones associated
with a project.

The internal ID for this record is projecttask.

The project task record is available when the Project Management feature is enabled at Setup
> Company > Enable Features, on the Company subtab. When the feature is enabled, you can
access the project task record in the UI by navigating to an existing project and clicking the
New Project Task or New Milestone button. For details on working with this record in the UI,
see the help topic Project Tasks.

Project task records cannot be created as standalone records. Rather, you create a project task
for a specific project record, and the task remains attached to that record. For information on
working with the project record in SuiteScript, see Project (Job).

Project Tasks Versus Milestone Tasks

Every project task record is designated as either a project task or a milestone task. While a
project task is used to represent an activity, a milestone task is used to represent a checkpoint in
the overall progress of the project.

Although they are the same type of record, a milestone task cannot have values in the
estimatedwork body or sublist fields. Therefore, if you create a project task record and do not
include any estimated work, the record is automatically saved as a milestone task. If you do
include estimated work, the record is saved as a project task.

These same rules apply to the updating of records as well. In other words:

• To convert a project task into a milestone task, clear the estimatedwork body field and all
values from the Assignees sublist.

• To convert a milestone task into a project task, add a value to the estimatedwork body field
or add at least one record to the Assignees sublist, with a positive value of estimated work.

Note that the estimatedwork body field is populated by the sum of estimated work listed
for Assignees. If you explicitly set a value for the estimatedwork body field, and you also
include Assignees, the value you specify for the body field is overwritten based on the sublist’s
estimatedwork values. If you do not include Assignees, you can explicitly assign a value to the
estimatedwork body field.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1192913.html

Activities
Project Task

836

SuiteScript Developer & Reference Guide

Supported Script Types

The project record is scriptable in server SuiteScript only.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Field Definitions

When creating new project tasks you must set the Project (company) field to the project/job
ID. Project tasks are not standalone records, and therefore must be associated with a specific
project.

For other details on body fields and sublist fields, See the SuiteScript Records Browser, which
lists all internal IDs associated with this record. For information on using the SuiteScript
Records Browser, see Working with the SuiteScript Records Browser in the NetSuite Help
Center.

Code Sample

The following example shows how you might create both a project task and a milestone task.

// create a project
var project = nlapiCreateRecord('job');
project.setFieldValue('companyname', 'Reconstruction');
var projectId = nlapiSubmitRecord(project);

// create a project task
var task = nlapiCreateRecord('projecttask');
task.setFieldValue('estimatedwork', 2);
task.setFieldValue('title', 'Remove old furniture');
task.setFieldValue('company', projectId);
var task1Id = nlapiSubmitRecord(task);

// create another task depending on the first one with Finish-To-Start dependency

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/projecttask.html

Activities
Resource Allocation

837

SuiteScript Developer & Reference Guide

task = nlapiCreateRecord('projecttask');
task.setFieldValue('estimatedwork', 5);
task.setFieldValue('title', 'Paint walls');
task.setFieldValue('company', projectId);
task.selectNewLineItem('predecessor');
task.setCurrentLineItemValue('predecessor', 'task', task1Id);
task.setCurrentLineItemValue('predecessor', 'type', 'FS');
task.commitLineItem('predecessor');
var task2Id = nlapiSubmitRecord(task);

// create a milestone
task = nlapiCreateRecord('projecttask');
task.setFieldValue('estimatedwork', 0);
task.setFieldValue('title', 'Verify painting after the walls dry out');
task.setFieldValue('company', projectId);
task.selectNewLineItem('predecessor');
task.setCurrentLineItemValue('predecessor', 'task', task2Id);
task.setCurrentLineItemValue('predecessor', 'type', 'FS');
task.commitLineItem('predecessor');
var milestoneId = nlapiSubmitRecord(task);

Resource Allocation

Important: For information on the availability of the Resource Allocations feature, please
contact your account representative.

The resource allocation record allows you to reserve an employee's time for a particular project.

The internal ID for this record is resourceallocation.

In the UI, you access this record by going to Activities > Scheduling > Resource Allocations.
Alternatively, you can view the resource allocations for a specific project through the project
record's Resources subtab (Lists > Relationships > Projects, or Lists > Relationships > Jobs).

This record is available only if the Resource Allocations feature has been enabled at Setup >
Company > Enable Features, on the Company tab. Note that this option will not be visible
unless your account has been provisioned for this feature. For more details, contact your
account representative.

Supported Script Types

This record is scriptable in both client SuiteScript and server SuiteScript

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Activities
Resource Allocation

838

SuiteScript Developer & Reference Guide

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiLoadRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Field Definitions

To create a new resource allocation record, you must reference two existing NetSuite records, as
follows:

• project — A reference to a project record defined at Lists > Relationships > Projects. Note
that in some NetSuite accounts, projects are referred to as jobs.

• allocationresource — A reference to an employee record, defined at Lists > Employees >
Employees, for which the Project Record option has been checked. The Project Resource
box is located on the Human Resources tab of the employee record.

You are also required to provide values for several other fields. Refer to the SuiteScript Records
Browser for the internal IDs of all fields associated with this record.

Note also that numberhours and percentoffime are read-only fields. They are returned when
you load the record, but they cannot be modified.

For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser.

Code Samples

The following example shows how to create a resource allocation record:

var AMOUNT = "10.0";
var PROJECT1 = "43";
var RESOURCE1 = "45";
var ALLOCATIONTYPE1 = "1"; // Hard
var ALLOCATIONTYPE2 = "2"; // Soft
var ALLOCATIONUNIT1 = "H"; // Hours
var ALLOCATIONUNIT2 = "P"; // Percent of Time
var NOTES1 = "My notes 1";
var STARTDATE1 = "4/20/2013";
var ENDDATE1 = "4/28/2013";

var record = nlapiCreateRecord('resourceallocation');
record.setFieldValue('allocationamount', AMOUNT);

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/resourceallocation.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/resourceallocation.html

Activities
Task

839

SuiteScript Developer & Reference Guide

record.setFieldValue('allocationresource', RESOURCE1);
record.setFieldValue('allocationtype',ALLOCATIONTYPE1);
record.setFieldValue('allocationunit', ALLOCATIONUNIT1);
record.setFieldValue('startdate', STARTDATE1);
record.setFieldValue('notes', NOTES1);
record.setFieldValue('project', PROJECT1);
record.setFieldValue('enddate', ENDDATE1);
var recId = nlapiSubmitRecord(record);

Task
The internal ID for this record is task.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Work Calendar
The internal ID for this record is workcalendar.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/task.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

Entities
Competitor

840

SuiteScript Developer & Reference Guide

Chapter 64 Entities
The following entity records are scriptable in SuiteScript:

• Competitor

• Contact

• Customer

• Employee

• Entity

• Generic Resource

• Lead

• Other Name

• Partner

• Project (Job)

• Project Template

• Prospect

• Vendor

Competitor
The internal ID for this record is competitor.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Contact
The internal ID for this record is contact.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Customer
The internal ID for this record is customer.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/competitor.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/contact.html

Entities
Customer

841

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Notes on Scripting Customer Fields

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

datecreated Date Created This is a system-generated field that marks the date the record was
created in NetSuite. You cannot change or override this field.

Tip: If you need to capture “date created” information that is not
related to the date the record was created in NetSuite, create a custom
field and set it to auto-default to today's date.

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Search Filters and Search Columns

ccnumber Credit Card
Number

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Notes on Scripting Customer Sublists

You can update the contactaccessroles sublist to provide Customer Center access to contacts.
You can provide access to contacts that already exist in NetSuite and that have already been
attached to a customer that already exists in NetSuite. The workflow is as follows: 1) Add
customer. 2) Add contacts. 3) Attach contacts to customer. 4) Update customer with contact
access information.

The fields in this sublist map to the fields on the System Information, Access subtab in the UI.
These fields include: a Boolean field that indicates whether a contact has access to NetSuite,
contact name key field, email address used to log in to NetSuite, password used to log in to
NetSuite, NetSuite role (Customer Center), and a Boolean field that indicates whether the
contact should receive a notification email when access changes are made. If this Notify field is
set to true, an email is sent.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/customer.html

Entities
Employee

842

SuiteScript Developer & Reference Guide

Transform Types

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Target Record Type Target Record Internal ID Field Defaults

Cash Sale cashsale billdate

Customer Payment customerpayment

Quote estimate

Invoice invoice billdate

Opportunity opportunity

Sales Order salesorder

Employee
The internal ID for this record is employee.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Transform Types

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/employee.html

Entities
Entity

843

SuiteScript Developer & Reference Guide

Target Record Type Target Record Internal ID Field Defaults

Expense Report expensereport

Time timebill

Entity
The internal ID for this record is entity.

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser.

Generic Resource

The internal ID for this record is genericresource.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Use a generic resource as a placeholder for resource allocation and project task assignment.
This record is primarily used when a specific resource is not available. See the help topic
Generic Resources for additional information.

Supported Script Types

The generic resource record is supported in all client and server-side scripts.

Supported Functions

The following SuiteScript functionality is supported:

• Read

• Create

• Edit

• Delete

• Search

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/entity.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/prospect.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3897338492.html

Entities
Lead

844

SuiteScript Developer & Reference Guide

Note: Copy is not supported.

Lead
The internal ID for this record is lead.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

datecreated Date Created This is a system-generated field that marks the date the record was
created in NetSuite. You cannot change or override this field.

Tip: If you need to capture “date created” information that is not
related to the date the record was created in NetSuite, create a custom
field and set it to auto-default to today's date.

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Search Filters and Search Columns

ccnumber Credit Card
Number

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Transform Types

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Target Record Name Target Record Internal ID Field Defaults

Opportunity opportunity

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/lead.html

Entities
Other Name

845

SuiteScript Developer & Reference Guide

Other Name
The internal ID for this record is othername.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Partner
The internal ID for this record is partner.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Notes on Scripting Partner Fields

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Notes on Scripting Partner Sublists

You can update the contactaccessroles sublist to provide Partner Center access to contacts. You
can provide access to contacts that already exist in NetSuite and that have already been attached
to a partner that already exists in NetSuite. The workflow is as follows: 1) Add partner. 2) Add
contacts. 3) Attach contacts to partner. 4) Update partner with contact access information.

The fields in this sublist map to the fields on the System Information, Access subtab in the UI.
These fields include: a Boolean field that indicates whether a contact has access to NetSuite,
contact name key field, email address used to log in to NetSuite, password used to log in to

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/othername.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/partner.html

Entities
Project (Job)

846

SuiteScript Developer & Reference Guide

NetSuite, NetSuite role (Partner Center), and a Boolean field that indicates whether the contact
should receive a notification email when access changes are made. If this Notify field is set to
true, an email is sent.

Project (Job)
You use the project record to manage company initiatives.

The internal ID for this record is job.

To use the project record, you must have the Projects feature enabled at Setup > Company >
Enable Features, on the Company tab. If you plan to do advanced project tracking, you must
also enable Project Management. If you do not see the Project Management check box, your
company must first purchase the Project Management add-on from NetSuite.

To access the project record in the UI, choose Lists > Relationships > Projects (or Jobs). For
help working with projects manually, see the help topic Projects.

Supported Script Types

The project record is scriptable in both client and server SuiteScript.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

Field Definitions

Note that the datecreated body field is a system-generated field that marks the date the record
was created in NetSuite. You cannot change or override this field. If you need to capture “date
created” information that is not related to the date the record was created in NetSuite, create a
custom field and set it to auto-default to today's date.

For more details on available fields, see the SuiteScript Records Browser, which lists all internal
IDs associated with this record. For information on using the SuiteScript Records Browser, see
Working with the SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/app/help/helpcenter.nl?fid=preface_3714107248.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/job.html

Entities
Project Template

847

SuiteScript Developer & Reference Guide

Adding a Resource With Multiple Roles

When using SuiteScript, the behavior of the Resources sublist differs slightly from the behavior
in the UI. Specifically, in the UI, each line must have a unique value in the Name field. Further,
in the UI, you can specify more than one role for each resource.

With SuiteScript, if you want to add a resource that has two different roles, you set up your code
as if you are adding two sublist records for that resource -- one for each role. The jobresource
values are not required to be unique. The following example illustrates this technique. In this
example, only two unique resources are being added, but because one resource has two roles,
that resource is represented twice.

proj.setFieldValue('companyname', 'Launch');
proj.setFieldValue('subsidiary', '1');

proj.selectNewLineItem('jobresources');
proj.setCurrentLineItemText('jobresources', 'jobresource', 'Employee Resource 1');
proj.setCurrentLineItemText('jobresources', 'role', 'Staff');
proj.commitLineItem('jobresources');

proj.selectNewLineItem('jobresources');
proj.setCurrentLineItemText('jobresources', 'jobresource', 'Employee Resource 1');
proj.setCurrentLineItemText('jobresources', 'role', 'Project Manager');
proj.commitLineItem('jobresources');

var id = nlapiSubmitRecord(proj);
var savedProj = nlapiLoadRecord('job', id);
savedProj.selectLineItem('jobresources', '1');
savedProj.setCurrentLineItemText('jobresources', 'jobresource', 'Employee Resource 2');
savedProj.commitLineItem('jobresources');
nlapiSubmitRecord(savedProj);

Note that after you complete the add operation, the Resources sublist in the UI looks the same
as it would if you had manually added one line for the resource, with multiple roles specified on
that line, as shown in the illustration above.

Project Template

The internal ID for this record is projecttemplate.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/prospect.html

Entities
Prospect

848

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Use a project template as a standard starting point for projects and project items. Each record
instance is reusable. See the help topic Project Templates for information on using project
templates in the UI.

Supported Script Types

The project template record is supported in all client and server-side scripts.

Supported Functions

The following SuiteScript functionality is supported:

• Read

• Create

• Edit

• Delete

• Search

Note: Copy is not supported.

Prospect
The internal ID for this record is prospect.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3897375321.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/prospect.html

Entities
Vendor

849

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Search Filters and Search Columns

ccnumber Credit Card
Number

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

Transform Types

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Target Record Name Target Record Internal ID Field Defaults

Estimate/Quote estimate

Opportunity opportunity

Sales Order salesorder

Vendor
The internal ID for this record is vendor.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

password Password To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

password2 Confirm
Password

To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read in
beforeSubmit user event scripts for external role users (for example,
shoppers, online form users (anonymous users), customer center).

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendor.html

Entities
Vendor

850

SuiteScript Developer & Reference Guide

Transform Types

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Target Record Name Target Record Internal ID Field Defaults

Purchase Order purchaseorder

Vendor Bill vendorbill

Vendor Payment vendorpayment

Items
Using Item Records in SuiteScript

851

SuiteScript Developer & Reference Guide

Chapter 65 Items
The following item records are scriptable in SuiteScript:

• Build/Assembly

• Description

• Discount

• Download Item

• Gift Certificate Item

• Inventory Item

• Item Search

• Item Group

• Kit

• Lot Numbered Assembly Item

• Lot Numbered Inventory Item

• Markup

• Non-Inventory Part

• Other Charge Item

• Payment

• Reallocate Items

• Serialized Assembly Item

• Serialized Inventory Item

• Service

• Shipping Item

• Subtotal

Using Item Records in SuiteScript
This section includes the following topics:

• Loading Item Types

• Filtering Items by Type

Items
Using Item Records in SuiteScript

852

SuiteScript Developer & Reference Guide

Loading Item Types

When using nlapiLoadRecord(type, id, initializeValues), you can:

• set the type parameter to 'inventoryitem' to load the following types of item records:
inventoryitem, lotnumberedinventoryitem, serializedinventoryitem

• set the type parameter to 'assemblyitem' to load the following types of item records:
assemblyitem, lotnumberedassemblyitem, serializedassemblyitem

Filtering Items by Type

The following are valid search filter item type IDs. Note that the item filter IDs are case-
sensitive.

Item Type IDs

Assembly

Description

Discount

DwnLdItem

EndGroup

GiftCert

Group

InvtPart

Kit

Markup

NonInvtPart

OthCharge

Payment

Service

ShipItem

Subtotal

TaxGroup

TaxItem

To use these IDs:

1. Create a script that will search for items of a specific type or types (for example, search
for all non-inventory items).

2. Next, see any of the valid SuiteScript item type IDs.

Sample Code

//Create a script that will search for all non-inventory part items
function searchnoninventorypart()
{
var filters = new Array();
filters[0] = new nlobjSearchFilter('type', null, 'anyof', 'NonInvtPart');
var columns = new Array();
columns[0] = new nlobjSearchColumn('internalId');
var items = nlapiSearchRecord('item', null, filters, columns);
}

Items
Build/Assembly

853

SuiteScript Developer & Reference Guide

Build/Assembly
The internal ID for this record is assemblyitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Description
The internal ID for this record is descriptionitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Discount
The internal ID for this record is discountitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Download Item
The internal ID for this record is downloaditem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Gift Certificate Item
The internal ID for this record is giftcertificateitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/assemblyitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/descriptionitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/discountitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/downloaditem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/giftcertificate.html

Items
Inventory Item

854

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Inventory Item
The internal ID for this record is inventoryitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Item Group
The internal ID for this record is itemgroup.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Item Search
The internal ID for this record is item. Note that the item search record is a search record only.
You cannot create or copy this record.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Kit
The internal ID for this record is kititem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Lot Numbered Assembly Item
The internal ID for this record is lotnumberedassemblyitem.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventoryitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemgroup.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/kititem.html

Items
Lot Numbered Inventory Item

855

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Lot Numbered Inventory Item
The internal ID for this record is lotnumberedinventoryitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Markup
The internal ID for this record is markupitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Non-Inventory Part
The internal ID for this record is noninventoryitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Other Charge Item
The internal ID for this record is otherchargeitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Payment
The internal ID for this record is paymentitem.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/lotnumberedassemblyitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/lotnumberedinventoryitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/markupitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/noninventoryitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/otherchargeitem.html

Items
Reallocate Items

856

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Reallocate Items
The internal ID for this record is reallocateitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

This record does not support client scripts.

This record supports only user event scripts. You can execute beforeLoad, beforeSubmit, and
afterSubmit user event scripts on this record.

Serialized Assembly Item
The internal ID for this record is serializedassemblyitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Serialized Inventory Item
The internal ID for this record is serializedinventoryitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Service
The internal ID for this record is serviceitem.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/paymentitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/reallocateitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/serializedassemblyitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/serializedinventoryitem.html

Items
Shipping Item

857

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Shipping Item
The internal ID for this record is shipitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

A shipping item is a delivery method for a shipping carrier. It describes how to ship an item
and can include shipping rate information, handling rates, and rules for shipping and handling.
It can also specify when shipping is free. See the help topic Shipping Items for additional
information.

Supported Script Types

The shipping item record is supported in all server-side scripts. Client-side scripting is not
supported.

Supported Functions

The following SuiteScript functionality is supported:

• Read

• Edit

• Delete

• Search

Note: Create and copy are not supported. You can create this record only in the UI.

Usage Notes

The following shipping item record components are not scriptable:

• Handling Table

• Shipping Table

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/serviceitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/descriptionitem.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1258840.html

Items
Subtotal

858

SuiteScript Developer & Reference Guide

• Free Shipping Items Tab

Subtotal
The internal ID for this record is subtotalitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/subtotalitem.html

Communications
Message

859

SuiteScript Developer & Reference Guide

Chapter 66 Communications
The following communication records are scriptable in SuiteScript:

• Message

• Note

Message
The internal ID for this record is message.

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

User Notes

Message records can only be edited during the create operation. Once they are created and
submitted, existing message records cannot be edited.

Existing message records can be copied and deleted.

Only beforeLoad and afterSubmit user event scripts will execute on the Message record type
when a message is created by an inbound email case capture. Scripts set to execute on a
beforeSubmit event will not execute.

For example, if you have a test script like the following deployed to the Message record type:

 function beforeLoad(type, name)
 {
 nlapiLogExecution('DEBUG', 'Before Load');
 }
 function beforeSubmit(type, name)
 {
 nlapiLogExecution('DEBUG', 'Before Submit');
 }
 function afterSubmit(type, name)
 {
 nlapiLogExecution('DEBUG', 'After Submit');
 }

only the beforeLoad(...) and afterSubmit(...) functions will execute if the message was created as
a result of responding to an emailed case.

Note
The internal ID for this record is note.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/message.html

Communications
Note

860

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/note.html

Transactions 861

SuiteScript Developer & Reference Guide

Chapter 67 Transactions
The following transaction records are scriptable in SuiteScript.

• Assembly Build

• Assembly Unbuild

• Bin Putaway Worksheet

• Bin Transfer

• Blanket Purchase Order

• Cash Refund

• Cash Sale

• Charge

• Check

• Credit Memo

• Custom Transaction

• Customer Deposit

• Customer Payment

• Customer Refund

• Deposit

• Deposit Application

• Estimate / Quote

• Expense Report

• Intercompany Journal Entry

• Intercompany Transfer Order

• Inventory Adjustment

• Inventory Cost Revaluation

• Inventory Count

• Inventory Detail

• Inventory Transfer

• Invoice

Transactions 862

SuiteScript Developer & Reference Guide

• Item Demand Plan

• Item Fulfillment

• Item Receipt

• Item Supply Plan

• Journal Entry

• Landed Cost

• Manufacturing Operation Task

• Manufacturing Planned Time

• Multi-Book Accounting Transaction

• Opportunity

• Paycheck Journal

• Purchase Contract

• Purchase Order

• Requisition

• Return Authorization

• Revenue Commitment

• Revenue Commitment Reversal

• Sales Order

• Statistical Journal Entry

• Time

• Time Entry

• Timesheet

• Transaction Search

• Transfer Order

• Vendor Bill

• Vendor Credit

• Vendor Payment

• Vendor Return Authorization

• Work Order

Transactions
Assembly Build

863

SuiteScript Developer & Reference Guide

• Work Order Close

• Work Order Completion

• Work Order Issue

Warning: Memorized transactions do not support SuiteScript.

Assembly Build
The internal ID for this record is assemblybuild.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Assembly Unbuild
The internal ID for this record is assemblyunbuild.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Bin Putaway Worksheet
The internal ID for this record is binworksheet.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Copy and Update are not allowed for this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/assemblybuild.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/assemblyunbuild.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/binworksheet.html

Transactions
Bin Transfer

864

SuiteScript Developer & Reference Guide

This record can only be scripted in dynamic mode. For details about dynamic scripting, see the
following help topics:

• Working with Records in Dynamic Mode

• How do I enable dynamic mode?

• Is dynamic mode better than standard mode?

• Standard vs. Dynamic Mode Code Samples

Note that client (remote object) scripting does not support dynamic scripting.

Bin Transfer
The internal ID for this record is bintransfer.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

Blanket Purchase Order
With this record, you can take advantage of fixed pricing for a preset number of items that
you will buy during a specific time period. This approach lets you avoid sporadic pricing
negotiations with vendors. The internal ID of this record is blanketpurchaseorder.

This record is available only when the Blanket Purchase Order feature is enabled at Setup >
Company > Enable Features, on the Transactions subtab.

In the user interface, you access this record at Transactions > Purchases > Enter Blanket
Purchase Order. For help working with this record in the user interface, see the help topic
Creating a Blanket Purchase Order.

Supported Script Types

This record is scriptable in both client and server SuiteScript.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2942095.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2942381.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2942672.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/bintransfer.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4083950023.html

Transactions
Cash Refund

865

SuiteScript Developer & Reference Guide

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript. Refer to the following table for more details.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Cash Refund
The internal ID for this record is cashrefund.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

ccnumber Credit Card # To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/blanketpurchaseorder.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/cashrefund.html

Transactions
Cash Sale

866

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

in beforeSubmit user event scripts for external role users
(for example, shoppers, online form users (anonymous
users), customer center).

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

totalcostestimate Est. Extended
Cost

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

Cash Sale
The internal ID for this record is cashsale.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

ccnumber Credit Card # To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read
in beforeSubmit user event scripts for external role users (for
example, shoppers, online form users (anonymous users),
customer center).

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/cashsale.html

Transactions
Charge

867

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

isrecurringpayment Recurring
Payment

A value for this field is stored only if the value for
paymentmethod is a credit card.

totalcostestimate Est. Extended
Cost

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Charge
The charge record is used to represent a single billable amount that a client must pay.

The internal ID for this record is charge.

The charge record is available only when the Charge-Based Billing feature is enabled at Setup >
Company > Enable Features, on the Transactions subtab. When the feature is enabled, you can
access the charge record in the UI by choosing Transactions > Customers > Create Charges >
List.

Supported Script Types

The charge record is scriptable in server SuiteScript only.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiSearchRecord Yes

nlapiSubmitRecord Yes

Transactions
Check

868

SuiteScript Developer & Reference Guide

Function Supported?

nlapiTransformRecord No

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Code Sample

The following sample shows how to create a charge record.

var charge = nlapiCreateRecord('charge');
 charge.setFieldText('stage', 'Ready for billing');
 charge.setFieldValue('chargetype', 'Time');
 charge.setFieldValue('billto', '43');
 charge.setFieldValue('chargedate', '3/19/2013');
 charge.setFieldValue('salesorder', '122');
 charge.setFieldValue('salesorderline', '1');
 charge.setFieldValue('currency', '1');
 charge.setFieldValue('billingitem', '21');
 charge.setFieldValue('timerecord', '2');
 charge.setFieldValue('description', 'Charge description');
 charge.setFieldValue('rate', '2');
 charge.setFieldValue('quantity', '3');
 charge.setFieldValue('amount', '5');
 recId = nlapiSubmitRecord(charge);

Check
The internal ID for this record is check.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

usertotal Amount This field is not available via search or lookup for any
transactions.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/charge.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/check.html

Transactions
Credit Memo

869

SuiteScript Developer & Reference Guide

Using Landed Cost Fields

When you create a landed cost category, the associated field IDs for the first category are
landedcostamount1 and landedcostsource1. If you create a second category, the IDs will be
landedcostamount2 and landedcostsource2.

This pattern increments by one with each additional category. For example, the IDs for the next
landed cost category will be landedcostamount3 and landedcostsource3, and so on.

Credit Memo
The internal ID for this record is creditmemo.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Customer Deposit
The internal ID for this record is customerdeposit.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

ccnumber Credit Card # To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read
in beforeSubmit user event scripts for external role users (for
example, shoppers, online form users (anonymous users),
customer center).

isrecurringpayment Recurring
Payment

A value for this field is stored only if the value for
paymentmethod is a credit card.

Customer Payment
The internal ID for this record is customerpayment.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/creditmemo.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/customerdeposit.html

Transactions
Customer Refund

870

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

ccnumber Credit Card # To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read
in beforeSubmit user event scripts for external role users (for
example, shoppers, online form users (anonymous users),
customer center).

isrecurringpayment Recurring
Payment

A value for this field is stored only if the value for
paymentmethod is a credit card.

Customer Refund
The internal ID for this record is customerrefund.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

ccnumber Credit Card # To prevent users from accessing sensitive information such
as password and credit card data, this field cannot be read
in beforeSubmit user event scripts for external role users
(for example, shoppers, online form users (anonymous
users), customer center).

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/customerpayment.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/customerrefund.html

Transactions
Deposit

871

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

totalcostestimate Est. Extended
Cost

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

Deposit
You use the deposit record to adjust the balance of an account.

The internal ID of this record is deposit.

In the UI, you access this record at Transactions > Bank > Make Deposits.

Supported Script Types

The deposit record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

The deposit record cannot be copied, but otherwise it is fully scriptable. For more details, see
the following table.

Function Supported?

nlapiCopyRecord No

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiSubmitRecord Yes

nlapiTransformRecord No

Usage Notes

Be aware of the following:

Transactions
Deposit Application

872

SuiteScript Developer & Reference Guide

• To successfully add a new deposit record, you must include at least one line in one of the
following three sublists: Payments, Other Deposits, or Cash Back.

• If you use the Multi-Book Accounting feature, be aware that the Accounting Book Detail
sublist is read-only and not scriptable.

• The deposit record does not support dynamic mode.

Code Samples

The following samples show how to create, load, and delete deposit records.

function createBankDeposit(cashSaleId){
 var rec = nlapiCreateRecord("deposit");
 rec.setFieldValue("account","1");
 rec.setFieldValue("subsidiary","1");
 rec.setLineItemValue("payment","id",1,cashSaleId);
 rec.setLineItemValue("payment","deposit",1,"T");
 var recId = nlapiSubmitRecord(rec);
 return recId;
}

function testDeposit()
{
 var cashSaleId = null;
 var depositId = null;
 try{
 cashSaleId = createCashSale(); // or just type internalId of valid Cash Sale
 depositId = createBankDeposit(cashSaleId);
 var deposit = nlapiLoadRecord("deposit",depositId);
 }
 finally{
 if(depositId!=null)
 nlapiDeleteRecord("deposit",depositId);
 if(cashSaleId!= null)
 nlapiDeleteRecord("cashSale",cashSaleId);
 }
}

Deposit Application
The internal ID for this record is depositapplication.

In SuiteScript, you do not use the nlapiCreateRecord(...) to create a Deposit Application record.
Deposit applications are always created as a result of applying a Customer Deposit to an
invoice. The application can only be created by applying an open Customer Deposit from the
Deposit sublist of the Customer Payment. On submit, the backend creates a deposit application
in the amount applied.

You can use the doc field on the Apply sublist of the Customer Payment to get the internal ID
of the deposit or invoice.

Transactions
Estimate / Quote

873

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Estimate / Quote
The internal ID for this record is estimate.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

When this field appears on the sublist line level, this field
is not scriptable.

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

When this field appears on the sublist line level, this field
is not scriptable.

totalcostestimate Est. Extended Cost When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Expense Report
The internal ID for this record is expensereport.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/depositapplication.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/estimate.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/expensereport.html

Transactions
Intercompany Journal Entry

874

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Intercompany Journal Entry
Intercompany journal entries are a specialized type of journal available specifically for
OneWorld. An intercompany journal entry records debits and credits to be posted to ledger
accounts for transactions between two subsidiaries. These records adjust the value of any set of
accounts without the need for transactions such as invoices and bills.

The internal ID for this record is intercompanyjournalentry.

In the user interface, you can access this record at Transactions > Financial > Make
Intercompany Journal Entries.

If your account has the Multi-Book Accounting feature enabled, you can also work with
book specific intercompany journal entry records, which in the user interface are available at
Transactions > Financial > Make Book Specific Intercompany Journal Entries. Although they
have different entry forms, both book specific and regular intercompany journal entries are the
same record type. Within SuiteScript, they are differentiated by the accountingbook field. In
other words, a record that has a value set for accountingbook is book specific. Otherwise, the
record is a regular intercompany journal entry.

For help working with this record in the user interface, see the help topics Making
Intercompany Journal Entries and Book Specific Intercompany Journal Entries.

Supported Script Types

The intercompany journal entry record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1475891.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1475891.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_3867055067.html

Transactions
Intercompany Transfer Order

875

SuiteScript Developer & Reference Guide

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Code Sample

The following example shows how to create a book specific intercompany journal entry. The
record is book specific because a value has been set for the accountingbook field.

var rec = nlapiCreateRecord('intercompanyjournalentry');
rec.setFieldValue('accountingbook', 2); // Setting a value for this field makes the record book
 specific.
rec.setFieldValue('subsidiary', 1);
rec.setFieldValue('tosubsidiary', 3);

rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'linesubsidiary', 1);
rec.setCurrentLineItemValue('line', 'account', 1);
rec.setCurrentLineItemValue('line', 'credit', '2.00');
rec.commitLineItem('line');
rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'linesubsidiary', 1);
rec.setCurrentLineItemValue('line', 'account', 2);
rec.setCurrentLineItemValue('line', 'debit', '2.00');
rec.commitLineItem('line');

rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'linesubsidiary', 3);
rec.setCurrentLineItemValue('line', 'account', 6);
rec.setCurrentLineItemValue('line', 'credit', '2.00');
rec.commitLineItem('line');
rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'linesubsidiary', 3);
rec.setCurrentLineItemValue('line', 'account', 149);
rec.setCurrentLineItemValue('line', 'debit', '2.00');
rec.commitLineItem('line');

var id = nlapiSubmitRecord(rec);
;

Intercompany Transfer Order
In accounts using NetSuite OneWorld and the Multi-Location Inventory(MLI) feature, you can
use the Intercompany Transfer Order transaction to move inventory from a location for one
subsidiary to a location for another subsidiary .

The internal ID for this record is intercompanytransferorder.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/intercompanyjournalentry.html

Transactions
Intercompany Transfer Order

876

SuiteScript Developer & Reference Guide

In the user interface, you can access this record at Transactions > Inventory > Enter
Intercompany Transfer Orders..

For help working with this record in the user interface, see the help topic Intercompany
Inventory Transfers - Non-Arm's Length.

Supported Script Types

The intercompany transfer order record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes, when the transaction type is “Transfer Order” and Intercompany = “Yes”.

nlapiTransformRecord Yes, can be transformed into Item Fulfillment or Item Receipt records.

Usage Notes

Intercompany transfer orders are only available when transfer pricing is used, meaning the
Use Item Cost as Transfer Cost, at Setup > Accounting > Preferences > Accounting Preferences
(Administrator), on the Order Management subtab, must be disabled.

This record has available transforms. See the SuiteScript Records Browser for available
transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Code Sample

The following example shows how to create an intercompany transfer order.

...
NLRecordObject incoTransfer = nlapiCreateRecord(“intercompanytransferorder”, true);
incoTransfer.setFieldValue(“orderstatus”, expectedValues.get(orderstatus));
incoTransfer.setFieldValue(“subsidiary”, expectedValues.get(subsidiary));
incoTransfer.setFieldValue(“tosubsidiary”, expectedValues.get(tosubsidiary));
incoTransfer.setFieldText(“location”, sourceLocationName1);
incoTransfer.setFieldText(“transferlocation”, destinationLocationName1);
incoTransfer.selectNewLineItem(“item”);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2313577.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2313577.html

Transactions
Inventory Adjustment

877

SuiteScript Developer & Reference Guide

incoTransfer.setCurrentLineItemValue(“item”, “Item.item”, itemKey);
incoTransfer.setCurrentLineItemValue(“item”, “Item.rate”, rate);
incoTransfer.setCurrentLineItemValue(“item”,”quantity”, quantity);
incoTransfer.commitLineItem(“item”);
String key = nlapiSubmitRecord(incoTransfer);
...

Inventory Adjustment
The internal ID for this record is inventoryadjustment.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Inventory Cost Revaluation
The inventory cost revaluation record is used to recalculate the value of items configured to use
standard costing.

The internal ID for this record is inventorycostrevaluation.

This record is available when the Standard Costing feature is enabled at Setup > Company >
Enable Features, on the Items & Inventory subtab. When the feature is enabled, you can access
the inventory cost revaluation record in the UI by choosing Transactions > Inventory > Revalue
Inventory Cost.

Supported Script Types
The inventory cost revaluation record is scriptable in both client SuiteScript and Server
SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions
This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventoryadjustment.html

Transactions
Inventory Cost Revaluation

878

SuiteScript Developer & Reference Guide

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Code Sample

The following sample shows how to create and update inventory cost revaluation records.

function inventoryCostRevaluation(){
 var recId = null;
 var newId = null;
 var recType = 'INVENTORYCOSTREVALUATION';
 try{

 // Add
 var revaluationRec = nlapiCreateRecord(recType);
 revaluationRec.setFieldValue('subsidiary','1');
 revaluationRec.setFieldValue('item',itemId1); // Some assembly item
 revaluationRec.setFieldValue('account','1');
 revaluationRec.setFieldValue('location','1');
 revaluationRec.setLineItemValue('costcomponent', 'cost', 1, '2');
 revaluationRec.setLineItemValue('costcomponent', 'componentitem', 1, componentItemId1); //
Some inv. item
 revaluationRec.setLineItemValue('costcomponent', 'quantity', 1, '3');

 recId = nlapiSubmitRecord(revaluationRec);
 var revaluationAddedRec = nlapiLoadRecord(recType, recId);

 // Update
 // Note you cannot change subsidiary and item
 revaluationAddedRec.setFieldValue('account','2');
 revaluationAddedRec.setLineItemValue('costcomponent', 'quantity', 1, '5');
 nlapiSubmitRecord(revaluationAddedRec);

 var revaluationUpdatedRec = nlapiLoadRecord(recType, recId2);

 // Copy
 var copiedRecord = nlapiCopyRecord(recType, recId);
 newId = nlapiSubmitRecord(copiedRecord);
 copiedRecord = nlapiLoadRecord(recType,newId);

 //Search columns
 var arrSearchColumns = new Array();
 arrSearchColumns[0] = new nlobjSearchColumn('memo');
 arrSearchColumns[1] = new nlobjSearchColumn('subsidiary');

 // Filters
 var arrSearchFilters = new Array();
 arrSearchFilters[0] = new nlobjSearchFilter('memo', null,'contains', 'em');

 //Search
 var arrSearchResults = nlapiSearchRecord(recType,null,arrSearchFilters,arrSearchColumns);

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventorycostrevaluation.html

Transactions
Inventory Count

879

SuiteScript Developer & Reference Guide

 nlapiLogExecution('DEBUG', ''+arguments.callee.name +' passed.');
 }
 catch (e) {
 nlapiLogExecution('ERROR', ''+arguments.callee.name +' failed! ',e);

 }
 finally{
 if(recId!=null){
 nlapiDeleteRecord(recType, recId);
 }
 if(newId!=null){
 nlapiDeleteRecord(recType, newId);
 }
 }
}

Inventory Count
The inventory count record enables you to maintain better inventory accuracy and tighter
control of assets.

The internal ID for this record is inventorycount.

The inventory count record is available only when the Inventory Count feature is enabled at
Setup > Enable Features, on the Items & Inventory subtab. For an overview of the feature, see
the help topic Inventory Count.

In the user interface, you access the inventory count record at Transactions > Inventory > Enter
Inventory Count.

Supported Script Types

The inventory count record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2296970.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventorycount.html

Transactions
Inventory Detail

880

SuiteScript Developer & Reference Guide

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiSubmitRecord Yes

nlapiTransformRecord No

Code Sample

The following example shows how to create an inventory count record.

var REC_TYPE = 'inventorycount';
var inventoryCount = nlapiCreateRecord(REC_TYPE);

inventoryCount.setFieldValue('subsidiary', 1);
inventoryCount.setFieldValue('location', 1);
inventoryCount.setFieldValue('tranid', '5');
inventoryCount.setFieldValue('trandate', '11/20/2013');
inventoryCount.setFieldText('account', 'Checking');
inventoryCount.setFieldText('department', 'Department US');
inventoryCount.setFieldText('class', 'Class US');
inventoryCount.setFieldValue('memo', 'SS memo');

inventoryCount.selectNewLineItem('item');
inventoryCount.setCurrentLineItemValue('item', 'item', 247);
inventoryCount.setCurrentLineItemValue('item', 'rate', 69.5);
inventoryCount.setCurrentLineItemValue('item', 'memo', 'Line memo');
inventoryCount.commitLineItem('item');

var inventoryCountId = nlapiSubmitRecord(inventoryCount);

Inventory Detail
The internal ID for this subrecord is inventorydetail.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Inventory Detail is scriptable from both the body field and the line item.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventorydetail.html

Transactions
Inventory Transfer

881

SuiteScript Developer & Reference Guide

Inventory Detail is considered a subrecord, represented by the nlobjSubrecord object in
SuiteScript. For details on working with this subrecord type, see Scripting the Inventory Detail
Subrecord. For general details on working with subrecords, see Working with Subrecords in
SuiteScript.

Inventory Transfer
The internal ID for this record is inventorytransfer.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Invoice
The internal ID for this record is invoice.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventorytransfer.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/invoice.html

Transactions
Item Demand Plan

882

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

When this field appears on the sublist line level, this field
is not scriptable.

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

When this field appears on the sublist line level, this field
is not scriptable.

totalcostestimate Est. Extended Cost When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Item Demand Plan
The internal ID for this record is itemdemandplan.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

A demand plan records the expected future demand for an item based on previous or projected
demand. When the Demand Planning feature is enabled, demand plans can be created for
inventory items. When the Work Orders feature is also enabled, demand plans also can be
created for assembly/BOM items. Demand plans can only be created for items that have a value
of “Time Phased” for the supplyreplenishmethod field.

Each demand plan record includes:

• A set of body fields used to uniquely identify the demand plan, define the time period it
covers, and indicate the time period it uses (monthly, weekly, or daily).

• Body fields must be defined before matrix field values can be edited.

• A matrix of projected quantities per time period, similar to the matrix used for item
pricing.

• In a monthly demand plan, this matrix includes a row for each month in the time
period, and one column with the projected quantity demand for each month.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemdemandplan.html

Transactions
Item Demand Plan

883

SuiteScript Developer & Reference Guide

• In a weekly demand plan, this matrix includes a row for each week in the time period,
and one column with the projected quantity demand for each week.

• In a daily demand plan, this matrix includes a row for each week in the time period
and seven columns with the projected quantity demand for each day of each week.

• Review the following table for details about Item Demand Plan body and matrix sublist
fields. For more details and code samples, see Demand Plan Detail Sublist.

Field Internal ID Field UI Label Note

Body Fields

subsidiary Subsidiary Required in OneWorld accounts.

location Location Required when the Multi-Location Inventory feature enabled.

item Item Required.
Can only use items with supplyreplenishment method set to
Time Phased.

units Unit of Measure Optional.
Available when the Multiple Units of Measure feature is
enabled.

memo Memo Optional.

startdate Start Date Optional.
Defaults to the first day of the current year, for example for
2011, defaults to 1/1/2011.

enddate End Date Optional.
Defaults to the last day of the current year, for example for
2011, defaults to 12/31/2011.

demandplancalendartype View Required.
Valid values are MONTHLY, WEEKLY, or DAILY. (Must use all
capital letters.)

Matrix Fields

quantity Quantity • For monthly and weekly demand plans, each row has
one quantity column.

• For daily demand plans, each row has seven quantity
columns.

startdate Start Date System-calculated, read-only values.

• For monthly plans, the date of the first day of the month
that the row represents.

• For weekly and daily plans, the date of the first day of the
week that the row represents, based on the preference
set for First Day of Week at Setup > Company > General
Preferences.

enddate End Date System-calculated, read-only values.

• For monthly plans, the date of the last day of the month
that the row represents.

Transactions
Item Fulfillment

884

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

• For weekly and daily plans, the date of the last(seventh)
day of the week that the row represents, based on the
preference set for First Day of Week at Setup > Company
> General Preferences.

Note: It is recommended that you work with the Item Demand Plan record in dynamic
mode. See the help topic Working with Records in Dynamic Mode.

Item Fulfillment
The internal ID for this record is itemfulfillment. Copy and create are not allowed for this
record.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

When working with this record, you can set pick, pack, or ship as event trigger types that will
execute your user event script. In the NetSuite Help Center, see User Event Script Execution
Types for more information.

Item Receipt
An item receipt transaction records the receipt of returned items from customers. This
transaction updates the following information:

• Items on return authorizations are recorded as received.

• Inventory records are updated for the new stock levels.

• Inventory asset accounts are updated with the values of returned items.

• Status of the return is updated.

The item receipt transaction is available when the Advanced Receiving feature is enabled.

For more details about this type of transaction, see the help topics Receiving a Customer Return
and Handling Returned Items.

The internal ID of this record is itemreceipt.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemfulfillment.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1307628.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1308274.html

Transactions
Item Receipt

885

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following usage notes are included for this record:

Using Landed Cost Fields

When you create a landed cost category, the associated field IDs for the first category are
landedcostamount1 and landedcostsource1. If you create a second category, the IDs will be
landedcostamount2 and landedcostsource2.

This pattern increments by one with each additional category. For example, the IDs for the next
landed cost category will be landedcostamount3 and landedcostsource3, and so on.

Creating Item Receipt Records

You cannot create standalone item receipts using SuiteScript. For example, the following will
throw an error:

var ir = nlapiCreateRecord("itemreceipt");

To create an item receipt, you must use the nlapiTransformRecord(...) API, which transforms
the data from one record type, purchase order, for example, into an item receipt. To create an
item receipt, your code would be similar to the following:

function trans()
{
 var fromrecord;
 var fromid;
 var torecord;
 var trecord;
 var qty;

 fromrecord = 'purchaseorder';
 fromid = 26 ; // Transform PO with ID = 26 ;
 torecord = 'itemreceipt';

 // Transform a record with given id to a different record type.
 // For example - from PO to Item Receipt
 // Get the object of the transformed record.
 trecord = nlapiTransformRecord(fromrecord, fromid, torecord);
 qty = trecord.getLineItemValue('item', 'quantity', 1);
 trecord.setLineItemValue('item', 'quantity', 1, '2');
 var idl = nlapiSubmitRecord(trecord, true);

 nlapiSendEmail(-5, -5, 'Transform Email' + 'Original Qty =
 ' + qty + ' ' + 'Record Created = ' + idl , null);

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemreceipt.html

Transactions
Item Supply Plan

886

SuiteScript Developer & Reference Guide

}

Item Supply Plan
The internal ID for this record is itemsupplyplan.

This record includes the Orders Sublist.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The item, location, and units body fields cannot be changed in update operations.

An item supply plan's receiptdate cannot be earlier than the orderdate.

The ordercreated field is read-only. It is set to True when an order is generated from an item
supply plan.

Code Samples

The following code creates an item supply plan.

function createItemSupplyPlanMinimal()
{
 var isp = nlapiCreateRecord('itemsupplyplan');
 isp.setFieldValue('subsidiary', 1);
 isp.setFieldValue('location', 1);
 isp.setFieldValue('item', 165);

 isp.setFieldValue('memo', 'memotest');
 isp.setFieldValue('unit', 3);

 isp.selectNewLineItem('order');
 isp.setCurrentLineItemValue('order','orderdate', '05/05/2012');
 isp.setCurrentLineItemValue('order', 'receiptdate', '5/8/2012');
 isp.setCurrentLineItemValue('order', 'quantity', 1);
 isp.setCurrentLineItemValue('order', 'ordertype', 'PurchOrd');

 isp.commitLineItem('order');

 var id = nlapiSubmitRecord(isp);
}

The following code updates an existing item supply plan.

function updateItemSupplyPlan()

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemsupplyplan.html

Transactions
Journal Entry

887

SuiteScript Developer & Reference Guide

{
 var isp = nlapiLoadRecord('itemsupplyplan', 3);
 isp.setFieldValue('memo','memotest2');

 isp.setLineItemValue('order', 'receiptdate', 4, '11/3/2012');
 var id = nlapiSubmitRecord(isp);
}

Journal Entry
You use the journal entry record to adjust balances in your ledger accounts without entering
posting transactions.

The internal ID for this record is journalentry.

In the user interface, you access this record in the user interface at Transactions > Financial >
Make Journal Entries.

If your account has the Multi-Book Accounting feature enabled, you can also work with book
specific journal entry records, which are available in the user interface at Transactions >
Financial > Make Book Specific Journal Entries. Although they have different entry forms,
both book specific and regular intercompany journal entries are the same record type. Within
SuiteScript, they are differentiated by the accountingbook field. In other words, a record
that has a value set for accountingbook is book specific. Otherwise, the record is a regular
intercompany journal entry.

For help working with this record in the user interface, see the help topics Making
Intercompany Journal Entries and Book Specific Journal Entries.

Supported Script Types

The journal entry record is scriptable in both client SuiteScript and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiSearchRecord Yes

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1475891.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1475891.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_3867000509.html

Transactions
Landed Cost

888

SuiteScript Developer & Reference Guide

Function Supported?

nlapiTransformRecord No

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Code Sample

The following example shows how to create a book specific journal entry. The record is book
specific because a value has been set for the accountingbook field.

var initvalues = new Array();
initvalues.bookje = 'T';
var rec = nlapiCreateRecord('journalentry', initvalues);
rec.setFieldValue('accountingbook', '2'); // Setting a value for this field makes the record bo
ok specific.
rec.setFieldValue('subsidiary', '4');
rec.setFieldValue('trandate', '5/16/2013');
rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'account', '6');
rec.setCurrentLineItemValue('line', 'credit', '2.00');
rec.commitLineItem('line');
rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line', 'account', '149');
rec.setCurrentLineItemValue('line', 'debit', '2.00');
rec.commitLineItem('line');
var id = nlapiSubmitRecord(rec);
var x = 0;

Landed Cost
The landed cost subrecord supports the Landed Cost Allocation per Line functionality, which
is part of the Landed Cost feature. Landed costs typically include location-specific expenses
such as customs duties and freight fees. The landed cost subrecord can be used in conjunction
with several transactions: check, credit card charge, item receipt, and vendor bill. The purpose
of the subrecord is to show the landing costs associated with a particular line in the parent
transaction’s Items sublist.

The internal ID for this subrecord is landedcost.

The subrecord is available only when the Landed Cost feature is enabled at Setup > Company
> Setup Tasks > Enable Features, on the Items & Inventory subtab. For details on working with
the subrecord in the user interface, see the help topic Using Landed Cost Allocation Per Line on
Transactions.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/journalentry.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_3734246695.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_3734246695.html

Transactions
Landed Cost

889

SuiteScript Developer & Reference Guide

Important: Landed cost is considered a subrecord, not a record. Subrecords are
represented by the nlobjSubrecord object in SuiteScript. For general details
on working with subrecords, see Working with Subrecords in SuiteScript.

Supported Script Types

The landed cost subrecord is scriptable in server SuiteScript only. The user events are not
supported.

Supported Functions

The landed cost subrecord is fully scriptable, which means that it can be created, updated,
copied, deleted, and searched using SuiteScript.

Usage Notes

To script to the landed cost subrecord, both of the following must be true:

• The parent transaction’s Landed Cost per Line option is checked.

• The sublist item being referenced has been configured to use the Track Landed Cost
option. For details on configuring the item, see the help topic Set Up Item Records for
Landed Cost.

Code Sample

The following snippets show how to create a landed cost subrecord and perform other basic
tasks.

// Creating a landed cost subrecord
var purchaseOrder = nlapiCreateRecord('purchaseorder');
purchaseOrder.setFieldText('entity', 'Acme Medical Supply');
purchaseOrder.setLineItemValue('item', 'item', 1, inventoryItemId);

var purchaseOrderId = nlapiSubmitRecord(purchaseOrder);

var itemReceipt = nlapiTransformRecord('purchaseorder', purchaseOrderId, 'itemreceipt');
itemReceipt.selectLineItem('item', 1);
itemReceipt.setCurrentLineItemValue('item', 'location', 1);
itemReceipt.setFieldValue('landedcostperline', 'T');

var landedCost = itemReceipt.createCurrentLineItemSubrecord('item', 'landedcost');
landedCost.selectNewLineItem('landedcostdata');
landedCost.setCurrentLineItemValue('landedcostdata', 'costcategory', 1);
landedCost.setCurrentLineItemValue('landedcostdata', 'amount', 456);
landedCost.commitLineItem('landedcostdata');
landedCost.selectNewLineItem('landedcostdata');
landedCost.setCurrentLineItemValue('landedcostdata', 'costcategory', 3);
landedCost.setCurrentLineItemValue('landedcostdata', 'amount', 78.96);

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2418189.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2418189.html

Transactions
Manufacturing Operation Task

890

SuiteScript Developer & Reference Guide

landedCost.commitLineItem('landedcostdata');
landedCost.commit();

itemReceipt.commitLineItem('item');

var itemReceiptId = nlapiSubmitRecord(itemReceipt);

// Viewing the subrecord
itemReceipt = nlapiLoadRecord('itemreceipt', itemReceiptId);
itemReceipt.selectLineItem('item', 1);
landedCost = itemReceipt.viewLineItemSubrecord('item', 'landedcost', 1);
landedCost.getLineItemValue('landedcostdata', 'amount', i);

// Updating the subrecord
landedCost = itemReceipt.editCurrentLineItemSubrecord('item', 'landedcost');

landedCost.removeLineItem('landedcostdata', 2);

landedCost.setLineItemValue('landedcostdata', 'costcategory', 1, 2);
landedCost.setLineItemValue('landedcostdata', 'amount', 1, 3.98);
landedCost.selectNewLineItem('landedcostdata');
landedCost.setCurrentLineItemValue('landedcostdata', 'costcategory', 3);
landedCost.setCurrentLineItemValue('landedcostdata', 'amount', 103);
landedCost.commitLineItem('landedcostdata');
landedCost.commit();

itemReceipt.commitLineItem('item');

nlapiSubmitRecord(itemReceipt);

// Deleting the subrecord
itemReceipt.selectLineItem('item', 1);
itemReceipt.removeCurrentLineItemSubrecord('item', 'landedcost');
itemReceipt.commitLineItem('item');
nlapiSubmitRecord(itemReceipt);

Manufacturing Operation Task
The internal ID for this record is manufacturingoperationtask.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Usage Notes

To work with the manufacturing operation task record, the Manufacturing Routing and
Work Center feature must be enabled at Setup > Company > Enable Features, on the Items &
Inventory tab.

In the UI, the manufacturing operation task record is accessed by going to Transactions >
Manufacturing > Manufacturing Operation Tasks. Alternatively, you can navigate to the
Operations subtab of a WIP work order that uses the routing feature. The Operations subtab

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/manufacturingoperationtask.html

Transactions
Manufacturing Planned Time

891

SuiteScript Developer & Reference Guide

lists existing operation task records for that work order and allows you to create new operation
task records.

Note these additional details:

• This record supports client and server-side scripting.

• All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

• Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord No

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

• To create a new manufacturing operation task record, you must reference a valid existing
WIP work order, as shown in the Code Sample below.

Code Sample

When creating a manufacturing operation task record, you must use initValues to reference a
valid existing WIP work order. For example:

 var initValues = new Array();
 initValues.workorder = '65';
 var task = nlapiCreateRecord('manufacturingoperationtask', initValues);
 task.setFieldValue('title', 'Some title');
 task.setFieldValue('operationsequence', 6);
 task.setFieldValue('setuptime', 30);
 task.setFieldValue('runrate', 20);
 task.setFieldValue('manufacturingcosttemplate', '1');
 task.setFieldValue('manufacturingworkcenter', '113');
 var recId = nlapiSubmitRecord(task);

Manufacturing Planned Time
The Manufacturing Planned Time search type enables you to search for data displayed on the
Planned Time subtab of work orders. This subtab is available only when the Show Planned
Capacity on Work Orders preference is enabled.

The Planned Time subtab is used to display data about the amount of time being allocated to
each work center per day for the work order. This data is derived from the associated operation
task records.

Transactions
Multi-Book Accounting Transaction

892

SuiteScript Developer & Reference Guide

You can set the Show Planned Capacity on Work Orders preference at Setup > Accounting >
Accounting Preferences. The preference is available only when the Manufacturing Routing and
Work Center feature is enabled.

The internal ID for this record is mfgplannedtime.

Supported Script Types
This search is supported in both client and server SuiteScript.

Usage Notes
Be aware of the following:

• This record is a search record only. You cannot create or copy this record.

• In the user interface, you can view this search by navigating to Reports > New Search and
clicking Manufacturing Planned Time.

For help creating search scripts, see Search Samples.

Multi-Book Accounting Transaction
If your account has the Multi-Book Accounting feature enabled, you can use SuiteScript to
search for transactions using accounting book as a search filter or a search column. To execute
this type of search, you use the multi-book accounting transaction search record.

The internal ID for this record is accountingtransaction. Note that this record is a search record
only. You cannot create or copy this record.

In the user interface, you can view the multi-book accounting transaction search by navigating
to Reports > New Search and clicking Multi-Book Accounting Transaction.

Supported Script Types
This record is supported in both client and server SuiteScript.

Sample Code
The following example shows how to search for a specific transaction and include in the results
details about the transaction’s accounting book and foreign exchange rate, among other data.

var filters = new Array();
filters[0] = new nlobjSearchFilter('internalid', null, 'is', '18');
// last parameter represents the actual internal ID of the transaction

var columns = new Array();
columns[0] = new nlobjSearchColumn('accountingbook').setSort(false);

Transactions
Opportunity

893

SuiteScript Developer & Reference Guide

columns[1] = new nlobjSearchColumn('line', 'transaction', null).setSort(false);
columns[2] = new nlobjSearchColumn('account');
columns[3] = new nlobjSearchColumn('amount');
columns[4] = new nlobjSearchColumn('exchangerate');

var searchresults = nlapiSearchRecord('accountingtransaction', null, filters, columns);

for (var i = 0; searchresults != null && i < searchresults.length; i++)
{
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();
 var book = searchresult.getValue('accountingbook');
 var line = searchresult.getValue('line', 'transaction');
 var account= searchresult.getValue('account');
 var amount= searchresult.getValue('amount');
 var fxrate= searchresult.getValue('exchangerate');

alert(i + ": " + book + " | " + line + " | " + record + " | " + rectype + " | " + account + " |
 " + amount + " | " + fxrate);
}

Opportunity
The internal ID for this record is opportunity.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes
The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

When this field appears on the sublist line level, this field
is not scriptable.

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

When this field appears on the sublist line level, this field
is not scriptable.

totalcostestimate Est. Extended Cost When this field is on the body of the form in edit
mode, this field is scriptable and can be returned in a
transaction search.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/opportunity.html

Transactions
Paycheck Journal

894

SuiteScript Developer & Reference Guide

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Paycheck Journal
The internal ID for this record is paycheckjournal.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The Paycheck Journal feature must be enabled to work with the Paycheck Journal record.

The Paycheck Journal record is intended to enable global payroll solutions. You can use it along
with the Payroll Item record to create custom payroll solutions and to support integrations with
external payroll systems.

Code Samples

The following sample creates a paycheck journal transaction.

//create Paycheck Journal with earnings and deduction sublist
// add 2 Earning and 1 deduction sublists

function createPaycheckJournal()
{
 var pj = nlapiCreateRecord('paycheckjournal');

 pj.setFieldValue('trandate', "6/10/2012");
 pj.setFieldValue('employee', 4); //internal Id of employee
 pj.setFieldValue('account', 28); //internal Id of account

 pj.selectNewLineItem('earning');
 pj.setCurrentLineItemValue('earning','payrollitem', '102');
 pj.setCurrentLineItemValue('earning', 'amount', 20.35);
 pj.commitLineItem('earning');

 pj.selectNewLineItem('earning');
 pj.setCurrentLineItemValue('earning','payrollitem', '102');
 pj.setCurrentLineItemValue('earning', 'amount', 33.35);
 pj.commitLineItem('earning');

 pj.selectNewLineItem('deduction');
 pj.setCurrentLineItemValue('deduction','payrollitem', '103');
 pj.setCurrentLineItemValue('deduction', 'amount', 444.44);
 pj.commitLineItem('deduction');

 nlapiSubmitRecord(pj);

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/paycheckjournal.html

Transactions
Purchase Contract

895

SuiteScript Developer & Reference Guide

}

The following sample updates a paycheck journal transaction.

//update Paycheck journal
//set new amount of line 2 Earning list
// and clear deduction list

function updatePaycheckJournal()
{
 var pj = nlapiLoadRecord('paycheckjournal', 305); // internalID of

 pj.setLineItemValue('earning', 'amount', 2, 444.44); // 2 is the line no we intend to update

 for (var lineNo=1; lineNo <= pj.getLineItemCount('deduction'); lineNo++)
 pj.removeLineItem('deduction', lineNo);
 nlapiSubmitRecord(pj);
}

Purchase Contract
This record enables you to take advantage of contracted quantity-based terms and discounts
when creating purchase orders.

The internal ID of this record is purchasecontract.

This record is available only when the Purchase Contracts feature is enabled at Setup >
Company > Enable Features, on the Transactions subtab.

In the user interface, you access this record at Transactions > Purchases > Enter Purchase
Contracts. For help working with this record in the user interface, see the help topic Creating
Purchase Contracts.

Supported Script Types

This record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript. Refer to the following table for more details.

Function Supported?

nlapiCopyRecord Yes

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4077190978.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_4077190978.html

Transactions
Purchase Order

896

SuiteScript Developer & Reference Guide

Function Supported?

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

Field Definitions
See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Purchase Order
The internal ID for this record is purchaseorder.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes
This record has available transforms. See the SuiteScript Records Browser for available
transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Requisition
You use the requisition record to initiate the purchase process for goods and services needed
within your company.

The internal ID for this record is purchaserequisition.

This record is available only when the Requisitions feature is enabled, at Setup > Enable
Features, on the Transactions subtab. In the user interface, you access this record at
Transactions > Purchases/Vendors > Enter Requisitions. For help working with this record in
the user interface, see the help topic Entering a Requisition.

Supported Script Types
This record is scriptable in both client and server SuiteScript.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/purchasecontract.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/purchaseorder.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3873972591.html

Transactions
Requisition

897

SuiteScript Developer & Reference Guide

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript. Refer to the table below for more details.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord Yes, requisition records can be transformed into purchase order records.

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Code Samples

The following code snippets show how to add a requisition record and perform other basic
tasks.

// Requisition SuiteScript name
var recType = 'PurchaseRequisition';

// Create and Add Record
var rec = nlapiCreateRecord(recType);
rec.setFieldValue('location',1);
rec.setLineItemValue('expense','account',1,59);
rec.setLineItemValue('expense','amount',1,2.3);
var recId = nlapiSubmitRecord(rec);

// Load and Update
rec = nlapiLoadRecord(recType,recId);
rec.setFieldValue('memo','memo');
nlapiSubmitRecord(rec);

// Search
var searchFilters = new Array();
searchFilters[0] = new nlobjSearchFilter('internalId', null, 'anyOf', recId);
var searchColumns = new Array();
searchColumns[0] = new nlobjSearchColumn('memo');

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/purchaserequisition.html

Transactions
Return Authorization

898

SuiteScript Developer & Reference Guide

var result = nlapiSearchRecord('transaction', null, searchFilters, searchColumns);

// Copy
var rec2 = nlapiCopyRecord(recType, recId);
var rec2Id = nlapiSubmitRecord(rec2);

// Transformation (Initialization)
var po = nlapiTransformRecord(recType,rec2Id,"PurchaseOrder");
po.setFieldValue('entity','105');
var poId = nlapiSubmitRecord(po);

// Delete
nlapiDeleteRecord('PurchaseOrder',poId);
nlapiDeleteRecord(recType,recId);
nlapiDeleteRecord(recType,rec2Id);

Return Authorization
The internal ID for this record is returnauthorization.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

This record has available transforms. See the SuiteScript Records Browser for available
transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Revenue Commitment
The internal ID for this record is revenuecommitment.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

You cannot create this record using the standard nlapiCreateRecord(...) function. To
create a Revenue Commitment record, you must execute a Sales Order to Revenue
Commitment transformation. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/returnauthorization.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/revenuecommitment.html

Transactions
Revenue Commitment Reversal

899

SuiteScript Developer & Reference Guide

Revenue Commitment Reversal
The internal ID for this record is revenuecommitmentreversal.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

You cannot create this record using the standard nlapiCreateRecord(...) function. To create a
Revenue Commitment Reversal record, you must execute a Return Authorization to Revenue
Commitment Reversal transformation. Note that the Return Authorization must be approved
and received for the transform to work.

In the NetSuite Help Center, see nlapiTransformRecord(type, id, transformType,
transformValues) for examples on how to transform records.

Sales Order
The internal ID for this record is salesorder.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Sales orders brought into NetSuite using the eBay Integration feature will trigger standard
SuiteScript user events (for example beforeSubmit, afterSubmit).

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

estgrossprofit Est. Gross Profit When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

When this field appears on the sublist line level, this field is
not scriptable.

estgrossprofitpercent Est. Gross Profit
Percent

When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/revenuecommitmentreversal.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/salesorder.html

Transactions
Statistical Journal Entry

900

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

When this field appears on the sublist line level, this field is
not scriptable.

isrecurringpayment Recurring
Payment

A value for this field is stored only if the value for
paymentmethod is a credit card.

totalcostestimate Est. Extended Cost When this field is on the body of the form in edit mode,
this field is scriptable and can be returned in a transaction
search.

Also note that this record has available transforms. See the SuiteScript Records Browser
for available transforms. In the NetSuite Help Center, see nlapiTransformRecord(type, id,
transformType, transformValues) for examples on how to transform records.

Statistical Journal Entry
The statistical journal entry record lets you increase or reduce the balance of a statistical
account.

This internal ID for this record is statisticaljournalentry.

To use this record, the Statistical Accounts feature must be enabled at Setup > Enable Features,
on the Accounting subtab. Also, you must have already created at least one statistical account.
In the UI, you access this record at Transactions > Financial > Make Statistical Journal Entries.
For help working with this record in the user interface, see the help topic Making Statistical
Journal Entries.

Supported Script Types

The statistical journal entry record is scriptable in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript. Refer to the table below for more details.

Function Supported?

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes

nlapiTransformRecord No

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3863545249.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3863545249.html

Transactions
Statistical Journal Entry

901

SuiteScript Developer & Reference Guide

Usage Notes

Be aware of the following:

• The unitlabel field is read-only. It is populated automatically when you set the unitstype
field. (The unitlabel value is the unitstype’s base unit value. This value is defined in the
corresponding unit of measure record.)

• The unitstype body field cannot be updated once the record is created.

• The field labeled Amount in the user interface is called debit in SuiteScript.

• Every statistical journal entry record must have at least one line.

• All sublist lines must use the same unit of measure, which is defined by the unitstype body
field.

Code Samples

The following samples show you can script to the statistical journal entry record.

Adding and Deleting

The following code snippets show how you can create the record, add lines, load the record,
and delete it.

// Note: These samples use constants. They are defined like: var subsidiaryId = '1';

// Create Record
var statisticalJournal = nlapiCreateRecord('STATISTICALJOURNALENTRY');
statisticalJournal.setFieldValue('subsidiary', subsidiaryId);
statisticalJournal.setFieldValue('externalid', externalId);
statisticalJournal.setFieldValue('unitstype', unitsTypeId);
statisticalJournal.setFieldValue('unit', unitId);

// Add line to the record
statisticalJournal.setLineItemValue('line', 'account', 1, statisticalAccountId);
statisticalJournal.setLineItemValue('line', 'debit', 1, amount); // field “debit” has label “Am
ount” in UI
statisticalJournal.setLineItemValue('line', 'lineunit', 1, unitId);
statisticalJournal.setLineItemValue('line', 'memo', 1, memo);
statisticalJournal.setLineItemValue('line', 'class', 1, classId);
statisticalJournal.setLineItemValue('line', 'department', 1, departmentId);
statisticalJournal.setLineItemValue('line', 'location', 1, locationId);

// Add record
var recId = nlapiSubmitRecord(statisticalJournal);

// Load record
var statisticalJournalAddedRec = nlapiLoadRecord('STATISTICALJOURNALENTRY', recId);

// Delete record
nlapiDeleteRecord('STATISTICALJOURNALENTRY', recId);

Transactions
Time

902

SuiteScript Developer & Reference Guide

Updating the Subsidiary Field

The subsidiary field can be updated only in dynamic mode, as shown in the following sample.

var recType = 'StatisticalJournalEntry';

// 1st Load record in Dynamic Mode
var rec = nlapiLoadRecord(recType,'168', {recordmode: 'dynamic'});

// 2nd Remove all lines
for (i=1; i <= rec.getLineItemCount('line'); i++)
{
 rec.removeLineItem('line','1');
}

// 3rd Change subsidiary
rec.setFieldValue('subsidiary','6');

// 4th Add new line for changed subsidiary
// the new account must be available in the new subsidiary
rec.selectNewLineItem('line');
rec.setCurrentLineItemValue('line','account','286');
rec.setCurrentLineItemValue('line','debit','5');
rec.commitLineItem('line');

nlapiSubmitRecord(rec);

Time
The internal ID for this record is timebill.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Time Entry
Important: The Timesheets feature currently is not available at Setup > Company >

Enable Features. You must contact NetSuite Customer Support to enable this
feature.

Warning: The Time Tracking feature must be disabled before the Timesheets feature can
be enabled. Scripts written on the time record will not work with the timesheet
record. Please ensure that all affected scripts are updated or replaced before
switching to the Timesheets feature.

Time entry is a subrecord. Timesheet is the parent record for time entry.

The internal ID for the time entry subrecord is timeentry.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/timebill.html

Transactions
Time Entry

903

SuiteScript Developer & Reference Guide

See Timesheet and Using SuiteScript with Timesheets for additional information needed to
script on time entry and timesheet. See Working with Subrecords in SuiteScript for general
information on scripting subrecords.

Time Entry Fields

Field Internal ID Field UI Label Type Notes

casetaskevent Case/Task/Event select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

class Class select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

customer Customer select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

day Day date The day field is read-only for all script types.

department Department select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

employee Employee select The employee field displays on the time entry
subrecord, but is sourced from the timesheet
record. Do not use subrecord APIs with this field.

The employee field is initialized when a
timesheet record is created and cannot be
edited.

When creating a new timesheet in SuiteScript,
the employee field can be passed in as an
initialization parameter.

hours Duration Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

isbillable Billable checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Transactions
Time Entry

904

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Type Notes

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

isexempt Exempt checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

isproductive Productive checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

isutilized Utilized checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

item Item select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

location Location select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

memo Memo textarea Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

overriderate Lock this Rate checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

paidexternally Paid Externally checkbox Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

Transactions
Time Entry

905

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Type Notes

payrollitem Payroll Item select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

price Price Level select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

rate Rate Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

subsidiary Subsidiary select The subsidiary field displays on the time entry
subrecord, but is sourced from the timesheet
record. Do not use subrecord APIs with this field.

The subsidiary field is initialized when a
timesheet record is created and cannot be
edited.

When creating a new timesheet in SuiteScript,
the subsidiary field can be passed in as an
initialization parameter.

In a OneWorld account, the subsidiary field is
sourced from the employee field.

timetype Type select Server-side scripts deployed on the timesheet
record cannot access this field.

Client scripts deployed on the timesheet record
can only access this field if it is configured to
display in the UI.

Transactions
Timesheet

906

SuiteScript Developer & Reference Guide

Timesheet

Important: The Timesheets feature currently is not available at Setup > Company >
Enable Features. You must contact NetSuite Customer Support to enable this
feature.

Warning: The Time Tracking feature must be disabled before the Timesheets feature can
be enabled. Scripts written on the time record will not work with the timesheet
record. Please ensure that all affected scripts are updated or replaced before
switching to the Timesheets feature.

The internal ID for this record is timesheet. Timesheet is the parent record for the time entry
subrecord.

See Time Entry and Using SuiteScript with Timesheets for additional information needed to
script on timesheet and time entry. See Working with Subrecords in SuiteScript for general
information on scripting subrecords.

Timesheet Fields

Field Internal ID Field UI Label Type Notes

approvalStatus select

customform Custom Form select

employee Employee select The employee field displays on the time entry
subrecord, but is sourced from the timesheet record.
Do not use subrecord APIs with this field.

The employee field is initialized when a timesheet
record is created and cannot be edited.

When creating a new timesheet in SuiteScript, the
employee field can be passed in as an initialization
parameter.

enddate End Date date

iscomplete checkbox

startdate Start Date date The start date field is initialized when a timesheet
record is created and cannot be edited.

When creating a new timesheet in SuiteScript, the
start date field can be passed in as an initialization
parameter.

subsidiary Subsidiary select The subsidiary field displays on the time entry
subrecord, but is sourced from the timesheet record.
Do not use subrecord APIs with this field.

The subsidiary field is initialized when a timesheet
record is created and cannot be edited.

Transactions
Transaction Search

907

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Type Notes

When creating a new timesheet in SuiteScript, the
subsidiary field can be passed in as an initialization
parameter.

In a OneWorld account, the subsidiary field is sourced
from the employee field.

totalhours Total Hours The total hours field is updated when the record
is loaded and when changes are entered in the UI.
When a time entry subrecord is created or edited with
SuiteScript, the total hours value on the timesheet
record is not guaranteed

Timesheet Sublists

Sublist Internal ID Sublist Field Internal ID Sublist Field UI Label Type Notes

sunday Sun

monday Mon

tuesday Tue

wednesday Wed

thursday Thu

friday Fri

timegrid

saturday Sat

Transaction Search
The internal ID for this record is transaction. Note that the transaction record is a search
record only. You cannot create or copy this record.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Search Filters and Search Columns

ccnumber Credit Card # To prevent users from accessing sensitive information such as password
and credit card data, this field cannot be read in beforeSubmit user
event scripts for external role users (for example, shoppers, online form
users (anonymous users), customer center).

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/transaction.html

Transactions
Transfer Order

908

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Note

entity Name The search filter entity is synonymous for the search filter name. Either
filter can be used when searching the value of the Name / ID field in the
UI.

Transfer Order
The internal ID for this record is transferorder.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Vendor Bill
The internal ID for this record is vendorbill.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

usertotal Amount This fieldis not available via search or lookup for any
transactions.

Using Landed Cost Fields

When you create a landed cost category, the associated field IDs for the first category are
landedcostamount1 and landedcostsource1. If you create a second category, the IDs will be
landedcostamount2 and landedcostsource2.

This pattern increments by one with each additional category. For example, the IDs for the next
landed cost category will be landedcostamount3 and landedcostsource3, and so on.

Using Bill Address

You can use the Bill Address field on the vendor bill. For more information about creating and
accessing subrecords, see Working with Subrecords in SuiteScript.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/transferorder.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendorbill.html

Transactions
Vendor Credit

909

SuiteScript Developer & Reference Guide

Vendor Credit
The internal ID for this record is vendorcredit.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

usertotal Amount This fieldis not available via search or lookup for any
transactions.

Vendor Payment
The internal ID for this record is vendorpayment.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Vendor Return Authorization
The internal ID for this record is vendorreturnauthorization.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

usertotal Amount This fieldis not available via search or lookup for any
transactions.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendorcredit.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendorpayment.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendorreturnauthorization.html

Transactions
Work Order

910

SuiteScript Developer & Reference Guide

Work Order
The internal ID for this record is workorder.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Work Order Close
The internal ID for this record is workorderclose.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

To use this record you must have the following features enabled: Work Orders and
Manufacturing Work in Process.

In the UI, this record is accessed by going to Transactions > Manufactoring > Close Work
Order.

Note these additional details:

• You must use nlapiTransformRecord to create a new instance of this record. In this case
workorder is the originating record type. For more details, see “Prerequisites for Creating a
Record,” below.

• Assembly item should have scrap account, WIP account, and WIP Cost Variance Account
specified.

• nlapiCreateRecord and nlapiCopyRecord are not supported on this record.

Prerequisites for Creating a Record

Before you can create a work order issue record, a work order record must already exist, and
the work order must be configured to use WIP (the WIP box on the work order record must be
selected). This is true regardless of whether you are creating the work order issue record using
initialize and add, or add by itself. If you try to create a work order issue record referencing a
work order that has not been configured to use WIP, the system generates an error reading in
part, “One of the following problems exists: You have an invalid work order < work order ID

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/workorder.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/workorderclose.html

Transactions
Work Order Completion

911

SuiteScript Developer & Reference Guide

>, the work order does not use WIP, or the work order is already closed.” You can create and
modify work orders by choosing Transactions > Manufacturing > Enter Work Orders.

You can also interact with work orders using SuiteScript, as described in Work Order.

Note also that the assembly item referenced in the work order must be properly set up for WIP,
as described in the Setting Up Items as WIP Assemblies.

Work Order Completion
The internal ID for this record is workordercompletion.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

To use this record you must have the following features enabled: Work Orders and
Manufacturing Work in Process.

In the UI, this record is accessed by going to Transactions > Manufactoring > Enter
Completions.

Note these additional details:

• You must use nlapiTransformRecord to create a new instance of this record. In this case
workorder is the originating record type. For more details, see “Prerequisites for Creating a
Record,” below.

• Assembly item should have scrap account and WIP account specified.

• nlapiCreateRecord and nlapiCopyRecord are not supported on this record.

• The Component sublist is available only when backflush = true

Prerequisites for Creating a Record

Before you can create a work order issue record, a work order record must already exist, and
the work order must be configured to use WIP (the WIP box on the work order record must be
selected). This is true regardless of whether you are creating the work order issue record using
initialize and add, or add by itself. If you try to create a work order issue record referencing a
work order that has not been configured to use WIP, the system generates an error reading in
part, “One of the following problems exists: You have an invalid work order < work order ID
>, the work order does not use WIP, or the work order is already closed.” You can create and
modify work orders by choosing Transactions > Manufacturing > Enter Work Orders.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2335987.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/workordercompletion.html

Transactions
Work Order Issue

912

SuiteScript Developer & Reference Guide

You can also interact with work orders using SuiteScript, as described in Work Order.

Note also that the assembly item referenced in the work order must be properly set up for WIP,
as described in the Setting Up Items as WIP Assemblies.

Work Order Issue
The internal ID for this record is workorderissue.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

To use this record you must have the following features enabled: Work Orders and
Manufacturing Work in Process.

In the UI, this record is accessed by going to Transaction > Manufacturing > Issue
Components.

Note these additional details:

• You must use nlapiTransformRecord to create a new instance of this record. In this case
workorder is the originating record type. For more details, see “Prerequisites for Creating a
Record,” below.

• nlapiCreateRecord and nlapiCopyRecord are not supported on this record.

Prerequisites for Creating a Record

Before you can create a work order issue record, a work order record must already exist, and
the work order must be configured to use WIP (the WIP box on the work order record must be
selected). This is true regardless of whether you are creating the work order issue record using
initialize and add, or add by itself. If you try to create a work order issue record referencing a
work order that has not been configured to use WIP, the system generates an error reading in
part, “One of the following problems exists: You have an invalid work order < work order ID
>, the work order does not use WIP, or the work order is already closed.” You can create and
modify work orders by choosing Transactions > Manufacturing > Enter Work Orders.

You can also interact with work orders using SuiteScript, as described in Work Order.

Note also that the assembly item referenced in the work order must be properly set up for WIP,
as described in Setting Up Items as WIP Assemblies.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2335987.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/workorderissue.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2335987.html

Support
Case

913

SuiteScript Developer & Reference Guide

Chapter 68 Support
The following records are scriptable in SuiteScript:

• Case

• Issue

• Solution

• Task

• Topic

Case
The internal ID for this record is supportcase.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Change to Case Editing as of Version 2013 Release 2

Prior to Version 2013 Release 2, two users could edit the same case simultaneously and then
both could save their changes. As of Version 2013 Release 2, case records have the same
restrictions as other records. If a script is editing a case, and another user or script edits and
saves the same case record, the script is unable to save the record. Any existing SuiteScript that
updates cases even when they are open for editing by another user may need to be updated to
continue to operate as intended.

Issue
The internal ID for this record is issue.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Solution
The internal ID for this record is solution.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/supportcase.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/issue.html

Support
Task

914

SuiteScript Developer & Reference Guide

This record is available when the Knowledge Base feature is enabled at Setup > Company >
Enable Features, on the CRM tab. When the feature is enabled, you can access the inventory
cost revaluation record in the UI by choosing Lists > Support > Solutions > New.

For details about working with this record manually, see the help topic Creating Knowledge
Base Solutions.

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Task
The internal ID for this record is task.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Topic
The internal ID for this record is topic.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2448156.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2448156.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/solution.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/task.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/topic.html

File Cabinet
Folder

915

SuiteScript Developer & Reference Guide

Chapter 69 File Cabinet
The following records are scriptable in SuiteScript:

• Folder

Folder
The internal ID for this record is folder.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/folder.html

Lists 916

SuiteScript Developer & Reference Guide

Chapter 70 Lists
The following list records are scriptable in SuiteScript:

• Account

• Accounting Book

• Amortization Schedule

• Amortization Template

• Billing Class

• Billing Schedule

• Bin

• Class

• Currency

• Customer Category

• Department

• Expense Category

• Gift Certificate

• Global Account Mapping

• Group

• Inventory Number

• Item Account Mapping

• Item Revision

• Location

• Manufacturing Cost Template

• Manufacturing Routing

• Nexus

• Payroll Item

• Price Level

• Project Expense Type

Lists
Account

917

SuiteScript Developer & Reference Guide

• Revenue Recognition Schedule

• Revenue Recognition Template

• Role

• Sales Tax Item

• Subsidiary

• Tax Control Account

• Tax Group

• Tax Period

• Tax Type

• Term

• Unit of Measure

• Vendor Category

Account
The internal ID for this record is account.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Accounting Book
When the Multi-Book Accounting feature has been enabled, you can use the accounting book
record to create secondary books.

The internal ID for this record is accountingbook.

In the user interface, you access the accounting book record at Setup > Accounting >
Accounting Books > New.

Supported Script Types

The accounting book record is supported in server SuiteScript only.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3203248.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/account.html

Lists
Accounting Book

918

SuiteScript Developer & Reference Guide

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is partially scriptable — it can be created, updated, deleted, and searched using
SuiteScript.

For more details, refer to the table below.

Function Supported?

nlapiCopyRecord no

nlapiCreateRecord yes

nlapiLoadRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Code Samples

The following code snippets show how to create accounting book records and perform other
basic tasks.

// Create Record

var rec = nlapiCreateRecord('accountingbook', null);
rec.setFieldValue('name', 'test');

var subs = new Array();
subs[0] = '1';
subs[1] = '3';
subs[2] = '5';

rec.setFieldValues('subsidiary', subs);
rec.setFieldValue('isprimary', 'T');

var recCreated = nlapiSubmitRecord(rec);

var id = 0;

// Update Record
var rec = nlapiLoadRecord('accountingbook', '3');

var subs = new Array();
subs[0] = '1';
subs[1] = '3';
subs[2] = '5';

Lists
Amortization Schedule

919

SuiteScript Developer & Reference Guide

rec.setFieldValues('subsidiary', subs);
rec.setFieldValue('isprimary', 'T');

var recUpdated = nlapiSubmitRecord(rec);

var id = 0;

// Delete Record
var rec = nlapiDeleteRecord('accountingbook', '2');

Amortization Schedule
Amortization schedules are automatically created by the system for transactions that contain
item or expense lines associated with amortization templates.

The internal ID for this record is amortizationschedule.

The amortization schedule record is available only when the Amortization feature is enabled, at
Setup > Enable Features, on the Accounting subtab. In the user interface, you access this record
at Lists > Accounting > Amortization Schedules. For details on working with this record in the
user interface, see the help topic Working with Amortization Schedules.

Supported Script Types

This record is scriptable in server SuiteScript only.

The user events are not supported.

Supported Functions

This record is not fully scriptable. Supported operations are described in the following table.

Function Supported?

nlapiCopyRecord no

nlapiCreateRecord no

nlapiLoadRecord yes

nlapiDeleteRecord no — however, if you delete the parent record, the amortization schedule is
also deleted.

nlapiSearchRecord yes

nlapiSubmitRecord yes — but note that edits are allowed only when the Allow Users to Modify
Amortization Schedules preference has been selected. For details, see the
help topic Setting Amortization Preferences.

nlapiTransformRecord no

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1776086.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1767069.html

Lists
Amortization Template

920

SuiteScript Developer & Reference Guide

Usage Notes

Be aware of the following:

• As in the user interface, you cannot use external ID as part of your criteria when searching
for amortization schedule records. You also cannot include external ID in search columns.

• The amortization schedule record is similar to the revenue recognition schedule record —
so if you have existing integrations for revenue recognition schedules, you may be able to
reuse elements of these scripts. The revenue recognition schedule record is described in
Revenue Recognition Schedule.

Amortization Template
You use the amortization template record to define the terms of amortization schedules, which
are automatically created by the system. For example, on certain transactions, you can associate
an amortization template with a line in the item or expense sublist. When the transaction
is saved, an amortization schedule based on the template is automatically created. You can
use amortization templates in conjunction with journal entry, vendor bill, and vendor credit
records.

The internal ID for this record is amortizationtemplate.

The amortization template record is available only when the Amortization feature is enabled, at
Setup > Enable Features, on the Accounting subtab. In the user interface, you access this record
at Lists > Accounting > Amortization Templates > New. For help working with amortization
templates in the user interface, see the help topic Creating Amortization Templates.

Supported Script Types

The amortization template record is supported in server SuiteScript only.

The user events are not supported.

Supported Operations

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript.

Refer to the following table for more details.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1772949.html

Lists
Amortization Template

921

SuiteScript Developer & Reference Guide

Function Supported?

nlapiLoadRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Usage Notes

Be aware of the following:

• If the Method field (recurrencetype) is set to Custom, then you must include at least one
line in the recurrence sublist. In this case, the template cannot be deleted.

• As in the user interface, you cannot use external ID as part of your criteria when searching
for amortization template records. You also cannot include external ID in search columns.

• The amortization template record is similar to the revenue recognition template record —
so if you have existing integrations for revenue recognition templates, you may be able to
reuse elements of these scripts. The revenue recognition template record is described in
Revenue Recognition Template.

Code Samples

The following code snippets show how to create amortization templates and perform other
basic tasks.

// Create Record
var recAmTemp = nlapiCreateRecord('AmortizationTemplate');
recAmTemp.setFieldValue('name', 'Name');
recAmTemp.setFieldValue('externalid', 'externalId');
recAmTemp.setFieldValue('isamortization','T');
recAmTemp.setFieldValue('amortizationtype','STANDARD'); // Type
recAmTemp.setFieldValue('recurrencetype', 'EVENPERIODSPRORATE'); // Method
recAmTemp.setFieldValue('recogintervalsrc', 'RECEIPTDATE'); // Term Source
recAmTemp.setFieldValue('revrecoffset', 0);
recAmTemp.setFieldValue('periodoffset', 1);
recAmTemp.setFieldValue('acctdeferral','1');
recAmTemp.setFieldValue('acctcontra', '1');
recAmTemp.setFieldValue('accttarget', '1');
recAmTemp.setFieldValue('amortizationperiod',20);
recAmTemp.setFieldValue('residual','1.00');
recAmTemp.setFieldValue('initialamount','12.00');
recAmTemp.setFieldValue('isinactive', 'F');
var recId = nlapiSubmitRecord(recAmTemp);

// Load Record
var rec = nlapiLoadRecord('AmortizationTemplate',recId);

Lists
Billing Class

922

SuiteScript Developer & Reference Guide

// Copy
var recCopied = nlapiCopyRecord('AmortizationTemplate', recId);

// Delete Record
nlapiDeleteRecord('AmortizationTemplate',recId);

Billing Class
The billing class record allows you to create different rates that you can use when calculating
the cost of a resource’s time on a project. You can use SuiteScript to create, update, and delete
billing class records.

The internal ID for this record is billingclass.

The billing class record is available when the Per-Employee Billing Rates feature is enabled at
Setup > Company > Enable Features, on the Employees tab. When the feature is enabled, you
can access the billing class record in the UI by choosing Setup > Accounting > Billing Classes >
New.

Supported Script Types

The billing class record is scriptable in server SuiteScript only.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/billingclass.html

Lists
Billing Schedule

923

SuiteScript Developer & Reference Guide

Code Samples

The following sample shows how to create a billing class record.

var record = nlapiCreateRecord('billingclass');
record.setFieldValue('name', 'Billing Class');
record.setFieldValue('description', 'Billing Class Description');
record.setFieldValue('isinactive', 'F');
record.setLineItemValue('pricecost', 'price', 1, 2.56);

The following sample shows how to delete a billing class record.

nlapiDeleteRecord('billingclass', recId);

Billing Schedule
This record enables you to create a billing schedule that can be applied to a sales order, a
line item on a sales order, or a project. SuiteScript supports all five types of billing schedules
(charge-based, fixed bid interval, fixed bid milestone, standard, and time and materials).

The internal ID for this record is billingschedule.

To use the billing schedule record, you must enable the Advanced Billing feature, at Setup
> Enable Features, on the Transactions subtab. In the UI, you access this record at Lists >
Accounting > Billing Schedules > New. You can access a billing schedule of fixed bid milestone
type through the project record’s Financial tab.

Supported Script Types

Billing Schedule is scriptable in server SuiteScript only.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that the record can be created, updated, copied,
deleted, and searched using SuiteScript. Refer to the table below for more details.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

Lists
Billing Schedule

924

SuiteScript Developer & Reference Guide

Function Supported?

nlapiTransformRecord no

Usage Notes

Additionally, note the following:

• To set a value for schedule type, which is a required body field, you must use
initializeValues, not setFieldValue. For examples, see the following section.

• If you choose a schedule type of fixed bid milestone, you must identify an existing project
record (or job record). You do so using initializeValues. Then, to create a link between
the project and the new billing schedule, you must update the project record — this
relationship is not established automatically when you create the billing schedule.

• The Recurrence sublist is available only when schedule type is set to Standard and
frequency to Custom.

• The Milestone sublist is available only when schedule type is set to Fixed Bid Milestone.

Code Samples

The following examples show how to create different types of billing schedules.

Creating a Charge-Based Billing Schedule

The following sample shows how to create a charge-based billing schedule.

var RECORD_TYPE = 'billingschedule';
var SCHEDULE_TYPE = 'CB'; //Charge-Based

var recId = null;
var recName = SCHEDULE_TYPE + "record";

var initValues = new Array();
initValues.schedtype = SCHEDULE_TYPE;

//Create record
var bs = nlapiCreateRecord(RECORD_TYPE, initValues);

bs.setFieldValue('externalid', 'EXTID001');
bs.setFieldValue('name', recName);
bs.setFieldValue('frequency', 'DAILY');
bs.setFieldValue('dayperiod', '3');
recId = nlapiSubmitRecord(bs);

Creating a Fixed Bid Milestone Billing Schedule

The following sample shows how to create a billing schedule of fixed bid milestone type.
Note that this sample references a particular project record during the creation of the billing

Lists
Bin

925

SuiteScript Developer & Reference Guide

schedule. However, you still have to establish the relationship between the billing schedule and
the project as a separate step.

var RECORD_TYPE = 'billingschedule';
var SCHEDULE_TYPE = 'FBM'; //Fixed Bid, Milestone
var P1 = '117'; //Project1
var P1M1 = '112'; //Project1 - Milestone1
var P1M2 = '113'; //Project2 - Milestone2

var recId = null;
var recName = SCHEDULE_TYPE + " record";

var initValues = new Array();
initValues.schedtype = SCHEDULE_TYPE;
initValues.project = P1;

//Create the record
var bs = nlapiCreateRecord(RECORD_TYPE, initValues);

bs.setFieldValue('name', recName);
bs.setFieldValue('initialamount', '10%');

//Create the sublist
bs.selectNewLineItem('milestone');
bs.setCurrentLineItemValue('milestone', 'milestoneamount', '25%');
bs.setCurrentLineItemValue('milestone', 'milestonedate', '11/21/2013');
bs.setCurrentLineItemValue('milestone', 'projecttask', P1M1);
bs.commitLineItem('milestone');
recId = nlapiSubmitRecord(bs);

//Update the project (link it with the newly created Billing Schedule)
var project = nlapiLoadRecord('job', P1);
project.setFieldValue('jobbillingtype', SCHEDULE_TYPE);
project.setFieldValue('billingschedule', recId);
var pId = nlapiSubmitRecord(project);

Bin
The internal ID for this record is bin.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

Class
The internal ID for this record is classification.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/bin.html

Lists
Currency

926

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Currency
The internal ID for this record is currency.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

When the Multiple Currencies feature is enabled, full server-side scripting is supported for this
record type.

When the Multiple Currencies feature is not enabled, scripting does not support create, edit,
delete, or search of currency records. Search-based functions such as nlapiLookupField are not
supported, because search is not supported. Loading of a currency record to get field values is
supported, as long as the currency ID is known, as shown in the following example:

var rec = nlapiLoadRecord('currency', 1);
var symbol=rec.getFieldValue('symbol');
var a = 1;

Customer Category
The internal ID for this record is customercategory. Search is not available on this record type.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Department
The internal ID for this record is department.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/classification.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/currency.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/customercategory.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/department.html

Lists
Expense Category

927

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Expense Category
The internal ID for this record is expensecategory.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Gift Certificate
The internal ID for this record is giftcertificate.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Global Account Mapping
For accounts using Multi-Book Accounting, the global account mapping record enables you
to configure secondary accounting books to post to accounts different from the primary book.
These mappings are used by transactions where the user can manually select the account to
which the transaction posts.

The internal ID for this record is globalaccountmapping.

Using this record requires that, as part of your Multi-Book configuration, you select the Chart
of Accounts Mapping option at Setup > Enable Features, on the Accounting subtab, in addition
to the other setup steps required for Multi-Book Accounting. For details, see the help topic
Setting Up Multi-Book Accounting.

In the user interface, you access this record at Setup > Accounting > Global Account Mappings
> New.

Supported Script Types

This record is scriptable in server SuiteScript only.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/expensecategory.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/giftcertificate.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3848148281.html

Lists
Global Account Mapping

928

SuiteScript Developer & Reference Guide

All three user events are supported: before Load, before Submit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means it can be created, updated, copied, deleted, and
searched using SuiteScript.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiLoadRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Code Samples

The following code snippets show how to create global account mapping records and perform
other basic tasks.

// Create Record
var rec = nlapiCreateRecord('globalaccountmapping', null);
rec.setFieldValue('effectivedate', '4/4/2004');
rec.setFieldValue('accountingbook', '2');
rec.setFieldValue('sourceaccount', '6');
rec.setFieldValue('subsidiary', '1');
rec.setFieldText('class', 'Class US');
rec.setFieldText('department', 'Department US');
rec.setFieldText('location', 'Location US');
rec.setFieldValue('destinationaccount', '6');
var id = nlapiSubmitRecord(rec);
var x = 0;

// Update Record
var rec = nlapiLoadRecord('globalaccountmapping', '102');
rec.setFieldValue('effectivedate', '5/5/2005');
rec.setFieldText('sourceaccount', 'Advances Paid');
rec.setFieldText('destinationaccount', 'ABN Withholding');

var id = nlapiSubmitRecord(rec);

// Delete Record
var rec = nlapiDeleteRecord('globalaccountmapping', '102');

// Copy Record
var rec = nlapiCopyRecord('globalaccountmapping', '103');

Lists
Group

929

SuiteScript Developer & Reference Guide

rec.setFieldValue('effectivedate', '5/5/2005');
rec.setFieldText('sourceaccount', 'Advances Paid');
rec.setFieldText('destinationaccount', 'ABN Withholding');
var id = nlapiSubmitRecord(rec);

Group
You use the group record to define groups of contacts, customers, employees, partners, or
vendors.

The internal ID for this record is entitygroup.

In the UI, you access this record at Lists > Relationships > Group > New.

Supported Script Types

The group record is scriptable in server SuiteScript only. None of the user events is supported.

Supported Functions

This record is fully scriptable, which means it can be created, read, updated, deleted, and
searched. Refer to the table below for more details.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiLoadRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Usage Notes

Be aware of the following details when working with this record:

• The grouptype field is required and must be set either to “static” or “dynamic.”

• If the grouptype is static, you can create lines in the Members sublist during the time
that you are creating the record, but you cannot modify the sublist during updates. This
behavior differs from the user interface, which does allow manual updates once the record
is created.

Lists
Inventory Number

930

SuiteScript Developer & Reference Guide

• If the grouptype is dynamic, you can never manually add to the Members sublist (because
the group members are determined by a saved search). This behavior is the same as in the
user interface.

Code Sample

The following sample shows how to create a static group record.

var initValues = new Array();
initValues.grouptype = 'Employee';
initValues.dynamic = 'F';
var wc1 = nlapiCreateRecord('entitygroup', initValues);
wc1.setFieldValue('groupname', 'WC1');
wc1.setFieldValue('subsidiary', '1');
wc1.setFieldValue('ismanufacturingworkcenter', 'T');
wc1.setFieldValue('machineresources', '11');
wc1.setFieldValue('laborresources', '22');
var wc1Id = nlapiSubmitRecord(wc1);

Inventory Number
The internal ID for this record is inventorynumber.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

Copy, Create, and Delete are not allowed for this record.

Item Account Mapping
For accounts using Multi-Book Accounting, the item account mapping record enables you to
configure secondary accounting books to post to accounts different from the primary book.
These mappings are used by transactions where the item determines the account to which the
transaction posts.

The internal ID for this record is itemaccountmapping.

Using this record requires that, as part of your Multi-Book configuration, you select the Chart
of Accounts Mapping option at Setup > Enable Features, on the Accounting subtab, in addition
to the other setup steps required for Multi-Book Accounting. For details, see the help topic
Setting Up Multi-Book Accounting.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/inventorynumber.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3848148281.html

Lists
Item Account Mapping

931

SuiteScript Developer & Reference Guide

In the user interface, you access this record at Setup > Accounting > Item Account Mappings >
New.

Supported Script Types

This record is scriptable in server SuiteScript only.

All three user events are supported: before Load, before Submit, and afterSubmit.

Supported Functions

This record is fully scriptable, which means that it can be created, updated, copied, deleted, and
searched using SuiteScript. For more details, refer to the table below.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiLoadRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Code Samples

The following code snippets show how to create item account mapping records and perform
other basic tasks.

// Get Record
var rec = nlapiLoadRecord('itemaccountmapping', '105');
var id = 0;

// Create Record
var rec = nlapiCreateRecord('itemaccountmapping', null);
rec.setFieldValue('effectivedate', '4/4/2004');
rec.setFieldValue('accountingbook', '2');
rec.setFieldValue('sourceaccount', '118');
rec.setFieldText('itemaccount', 'Asset');
rec.setFieldValue('subsidiary', '3');
rec.setFieldText('class', 'Class US');
rec.setFieldText('department', 'Department US');
rec.setFieldText('location', 'Location US');
rec.setFieldValue('destinationaccount', '118');
var id = nlapiSubmitRecord(rec);
var x = 0;

Lists
Item Revision

932

SuiteScript Developer & Reference Guide

// Update Record
var rec = nlapiLoadRecord('itemaccountmapping', '201');
rec.setFieldValue('effectivedate', '5/5/2005');
rec.setFieldValue('subsidiary', '1');
rec.setFieldText('itemaccount', 'Discount');
rec.setFieldText('sourceaccount', 'Advertising');
rec.setFieldText('destinationaccount', 'Advertising');
var id = nlapiSubmitRecord(rec);

// Copy Record
var rec = nlapiCopyRecord('itemaccountmapping', '201');
rec.setFieldValue('effectivedate', '6/6/2005');
rec.setFieldText('itemaccount', 'Asset');
rec.setFieldValue('sourceaccount', '118');
rec.setFieldValue('destinationaccount', '118');
var id = nlapiSubmitRecord(rec);

// Delete Record
var rec = nlapiDeleteRecord('itemaccountmapping', '201');

Item Revision
The internal ID for this record is itemrevision.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

Sample Code

The following example creates an item revision record:

function afterSubmit(type)
{

var itemrev = nlapiCreateRecord("itemrevision");

itemrev.setFieldValue("name", "revision name 222");
itemrev.setFieldValue("item", "109");
itemrev.setFieldValue("memo", "revision memo");
itemrev.setFieldValue("effectivedate", "3/4/2012");

var id = nlapiSubmitRecord(itemrev, true);

}

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/itemrevision.html

Lists
Location

933

SuiteScript Developer & Reference Guide

Location
The internal ID for this record is location.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Manufacturing Cost Template
The internal ID for this record is manufacturingcosttemplate.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Usage Notes

To work with this record, the Manufacturing Routing and Work Center feature must be enabled
at Setup > Company > Enable Features, on the Items & Inventory tab.

In the UI, this record is accessed by going to Lists > Supply Chain > Manufacturing Cost
Template.

Manufacturing Routing
The internal ID for this record is manufacturingrouting.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

To work with this record, the Manufacturing Routing and Work Center feature must be enabled
at Setup > Company > Enable Features, on the Items & Inventory tab.

In the UI, this record is accessed by going to Lists > Supply Chain > Manufacturing Routing.

Nexus
The internal ID for this record is nexus.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/location.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/manufacturingcosttemplate.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/manufacturingrouting.html

Lists
Payroll Item

934

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Payroll Item
The internal ID for this record is payrollitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The exposure of this record to SuiteScript is intended to enable global payroll solutions. You
can use it along with the Paycheck Journal record to create custom payroll solutions and to
support integrations with external payroll systems.

Code Samples

The following samples create Deduction type payroll items.

 function createPayrollItemdeductionMinimal()
 {
 var pi = nlapiCreateRecord('payrollitem');
 pi.setFieldValue('subsidiary', 1);
 pi.setFieldValue('itemtype', 16);
 pi.setFieldValue('liabilityaccount', 27);
 pi.setFieldValue('name', 'SSSitem-Deduction-Minimal');
 pi.setFieldValue('custrecord_payroll_item', 'Cust_field');
 pi.setFieldValue('externalid', 'testingexternalID');
 nlapiSubmitRecord(pi);
 }

 function createPayrollItemdeductionComplete()
 {
 var pi = nlapiCreateRecord('payrollitem');
 pi.setFieldValue('externalid', 'SSSitem-Deduction-Completed');
 pi.setFieldValue('subsidiary', 1);
 pi.setFieldValue('itemtype', 16);
 pi.setFieldValue('liabilityaccount', 150);
 pi.setFieldValue('name', 'SSSitem-Deduction');
 pi.setFieldValue('vendor', 1);
 pi.setFieldValue('employeepaid', true);
 pi.setFieldValue('custrecord_payroll_item', 'Cust_field');

 nlapiSubmitRecord(pi);
 }

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/nexus.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/payrollitem.html

Lists
Payroll Item

935

SuiteScript Developer & Reference Guide

The following samples create Earning:Addition type payroll items.

 function createPayrollItemAdditionMinimal()
 {
 var pi = nlapiCreateRecord('payrollitem');
 pi.setFieldValue('subsidiary', 1);
 pi.setFieldValue('itemtype', 6);
 pi.setFieldValue('expenseaccount', 114);
 pi.setFieldValue('name', 'SSSitem-addition-Minimal');
 pi.setFieldValue('custrecord_payroll_item', 'Cust_field');

 nlapiSubmitRecord(pi);
 }

 function createPayrollItemAdditionComplete()
 {
 var pi = nlapiCreateRecord('payrollitem');
 pi.setFieldValue('externalid', 'SSSitem-Addition-Completed');
 pi.setFieldValue('subsidiary', 1);
 pi.setFieldValue('itemtype', 6);
 pi.setFieldValue('expenseaccount', 114);
 pi.setFieldValue('name', 'SSSitem-Addition');
 pi.setFieldValue('custrecord_payroll_item', 'Cust_field');
 nlapiSubmitRecord(pi);
 }

The following code updates a payroll item.

 function updatePayrollItem()
 {
 var recordpi = nlapiLoadRecord('payrollitem', 110);

 recordpi.setFieldValue('liabilityaccount', 29);
 recordpi.setFieldValue('vendor', 6);
 recordpi.setFieldValue('custrecord_payroll_item', 'Updated');
 recordpi.setFieldValue('inactive', 'T');

 nlapiSubmitRecord(recordpi);
 }

The following code deletes a payroll item.

 function deletePayrollItem()
 {
 var savedSearchInternalId = 2
 var searchresults = nlapiSearchRecord('payrollitem', savedSearchInternalId, null, null
);
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];
 if (0 < searchresults[i].getId())

Lists
Project Expense Type

936

SuiteScript Developer & Reference Guide

 nlapiDeleteRecord(searchresults[i].getRecordType(), searchresults[i].getId());
 }

}

Project Expense Type

Important: The project expense type record is part of the Job Costing and Project
Budgeting feature. For information on the availability of this feature, please
contact your account representative.

The project expense type record lets you create expense classifications that you can apply to
projects. The internal ID for this record is projectexpensetype.

This record is available when the Job Costing and Project Budgeting feature is enabled at Setup
> Company > Enable Features, on the Company tab. If you do not see this option in the UI,
contact your account representative for assistance.

When the feature is enabled, you can access the project expense type record in the UI by
choosing Setup > Accounting > Setup Tasks > Project Expense Types > New. For help manually
creating a project expense type record, see the help topic Creating Project Expense Types.

Supported Script Types

This record is not scriptable in client SuiteScript. It is scriptable in server SuiteScript only.

Supported Functions

This record is fully scriptable. Refer to the table below for more details.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiSubmitRecord yes

nlapiTransformRecord no

Usage Notes

The Language sublist is available only when the Multi-Language feature is enabled at Setup >
Company > Enable Features, on the Company tab. The sublist’s records can be updated, but you
cannot add records to the sublist through SuiteScript.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_3751152449.html

Lists
Price Level

937

SuiteScript Developer & Reference Guide

Field Definitions

See the SuiteScript Records Browser for all internal IDs associated with this record. For
information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Price Level
The internal ID for this record is pricelevel. Search is not available on this record type.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Revenue Recognition Schedule
The internal ID for this record is revrecschedule.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.
Also, user event scripts are not supported.

Copy, Create, and Delete are not allowed for this record.

Revenue Recognition Template
The internal ID for this record is revrectemplate.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.
Also, user event scripts are not supported.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/projectexpensetype.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/pricelevel.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/revrecschedule.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/revrectemplate.html

Lists
Role

938

SuiteScript Developer & Reference Guide

Role
The internal ID for this record is role.

Note: The Role record is not listed in the SuiteScript Records Browser at this time.

Supported Functions

This record is not fully scriptable. Only search is permitted.

Usage Notes

Client SuiteScript is not supported for this record. It is scriptable in server SuiteScript only.

To work with this record, a user must have Manage Roles permissions, at Setup > Users/Roles >
Manage Roles > Search.

nlapiSearchRecord() must be called with Role as its first parameter:

var roles = nlapiSearchRecord('Role', SavedSearchToBeLoaded, filters, columns);

Does not support the nlapiLoadSearch(type, id) search API.

Sales Tax Item
The internal ID for this record is salestaxitem.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Subsidiary
The internal ID for this record is subsidiary.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Tax Control Account
A tax control account is an account to which the amounts computed for indirect taxes, such as
sales tax and VAT, are posted.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/salestaxitem.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/subsidiary.html

Lists
Tax Control Account

939

SuiteScript Developer & Reference Guide

The internal ID for this record is taxacct.

In the UI, you can create a tax control account, and view existing ones, at Setup > Accounting
> Tax Control Accounts. Note also that a tax control account is essentially an account record,
with a few differences. Because they are accounts, tax control accounts also show up in the full
list of accounts at Lists > Accounting > Accounts.

Supported Script Types

This record is scriptable in both client and server SuiteScript. However, user event scripts are
not supported.

Supported Functions

This record is not fully scriptable. Only creating, copying, and some updates are permitted, as
described below.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord no

nlapiLoadRecord yes

nlapiSearchRecord no

nlapiTransformRecord no

Updating

Updating is permitted, but only of certain fields: Description, External ID, IsInactive, and
Name. However, you may be able to change other fields when interacting with the tax control
account as an account. For details, see Account.

Alternatives to Deleting

nlapiDeleteRecord is not supported, because a tax control account cannot be deleted (either
through the UI or through SuiteScript). If the Advanced Taxes feature is enabled, you can
effectively remove the tax control account by deleting the nexus that the account is associated
with. If the Advanced Taxes feature is not enabled, you cannot remove the account.

An alternative to deleting the account is to make it account inactive, by setting the IsInactive
field to true.

For more details on accounts that cannot be deleted in NetSuite, refer to the help topic Deleting
Accounts and Making Accounts Inactive.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1444958.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1444958.html

Lists
Tax Control Account

940

SuiteScript Developer & Reference Guide

Field Definitions

This section describes some of the key fields on the tax control account.

Country

The value for country is derived from the nexus value and is read-only. If your account does not
have the Advanced Taxes feature enabled, the value for country will always be the same for all
your tax control accounts.

Description

The description of the record can include only up to 50 characters. Otherwise, the operation
fails with an error reading “The field description contained more than the maximum number
(50) of characters allowed.”

Description is one of the few fields that can be modified during an update.

External ID

ExternalID is one of the few fields that can be modified during an update.

IsInactive

Because a tax control account cannot be deleted, you might want to make it inactive.

IsInactive is one of the few fields that can be modified during an update.

Name

The name of the record must be unique. If you try to add a tax control account using a non-
unique value for the name field, the system returns an error reading “This record already
exists,” even if you included a unique external ID.

Name is one of the few fields that can be modified during an update.

Nexus

You can set a value for nexus only if the Advanced Taxes feaure is enabled. If your NetSuite
account does not use the Advanced Taxes feature, the value for nexus is set automatically and
will always be the same for all your tax control accounts.

When Advanced Taxes is enabled, initializiation of a nexus value is required. (For an example,
refer to Code Samples.) However, once the account is created, the value for nexus cannot be
changed.

Note that Advanced Taxes is enabled in all OneWorld accounts and cannot be turned off.

Lists
Tax Control Account

941

SuiteScript Developer & Reference Guide

Tax Account Type

All tax control accounts have a tax account type, but you only actively choose a tax account type
for accounts in certain countries. For example:

• If you are creating a tax code for the United Kingdom, valid choices include “sales” and
“purchase.”

• When creating a tax code for the United States, only one option exists (“sales”), so you do
not set a value for this field.

In countries where both “sales” and “purchase” are valid choices, the tax account type field is
required. Once an account has been created, the tax account type cannot be changed.

In countries where only one choice is allowed, tax account type is automatically set, and you
cannot change it through SuiteScript (or through the UI).

Note that if your account uses Advanced Taxes and has nexuses in many countries, you may
need to set this field for some tax control accounts and not others.

For More Information

See the SuiteScript Records Browser for all internal IDs associated with this record.

Usage Notes

This section includes additional details on interacting with the tax control account record.

Finding the Internal ID

If you need the internal ID for an existing tax control account, note that you cannot find it
through Setup > Accounting > Tax Control Accounts. However, you can find it at Lists >
Accounting > Accounts. Make sure you have configured your NetSuite preference to “Show
Internal IDs.” (You can find this choice at Home > Set Preferences.)

When sorting accounts at Lists > Accounting > Accounts, be aware that:

• Tax control accounts of type “sale” show up as Other Current Liability.

• Tax control accounts of type “purchase” show up as Other Current Asset.

Be aware that you can also add and update values for the external ID field.

Relationship to the Account Record

You can interact with the tax control account in many of the same ways you can interact with
any account. However, some exceptions exist. For example, a tax control account cannot be

Lists
Tax Group

942

SuiteScript Developer & Reference Guide

deleted, and there are limits to what you can update, as described in Updating. However, when
you interact with the record as an account, you may be able to update additional fields.

For details on interacting with the account record, see Account.

Code Samples

The following examples show how you can script with tax control account records.

Get

The following sample shows how to retrieve a tax account record with the internal ID of “186”:

var taxAcct = nlapiLoadRecord('taxacct', '186');
;

Add

The following example shows how to create a tax control account when the Advanced Taxes
feature is enabled. In this scenario, a value for nexus is required:

var taxAcct = nlapiCreateRecord('taxacct', {'nexus', 'internal ID of nexus'});
taxAcct.setFieldValue('name', 'Name of account');
taxAcct.setFieldValue('description', 'Description of account');
taxAcct.setFieldValue('externalid', 'Your external ID value');
taxAcct.setFieldValue('taxaccttype', 'Type');
nlapiSubmitRecord(taxAcct);

Update

This example shows how to update the name, description, and external ID of a tax control
account, and to make it active. Note that these fields are the only ones that can be updated.

var taxAcct = nlapiLoadRecord('taxacct', 'internal ID of tax control account');
taxAcct.setFieldValue('name', 'Updated name');
taxAcct.setFieldValue('description', 'Updated description');
taxAcct.setFieldValue('isinactive', 'F');
taxAcct.setFieldValue('externalid', 'Updated external ID of tax control account');
nlapiSubmitRecord(taxAcct);
;

Tax Group
A tax group record allows you to combine several tax codes, even if the taxes are paid to
different jurisdictions. For example, a tax group in the US might include a state tax, a city tax,
and a transit tax. The advantage of using a tax group is that, when you create a sales invoice,
you can apply one tax group to the transaction, instead of several separate tax codes.

Lists
Tax Group

943

SuiteScript Developer & Reference Guide

The internal ID for the tax group record is taxgroup.

In the UI, you navigate to this record by choosing Setup > Accounting > Tax Groups.

Supported Script Types

The tax group record is scriptable in both client SuiteScript and Server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

This record is fully scriptable. Refer to the table below for details on supported API functions.

Function Supported?

nlapiCopyRecord yes

nlapiCreateRecord yes

nlapiDeleteRecord yes

nlapiSearchRecord yes

nlapiTransformRecord no

Field Definitions

See the SuiteScript Records Browser for the internal IDs of fields, search filters, and search
columns associated with this record.

For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser.

Code Samples

The following sample shows how to create a US tax group.

var initValues = new Array();
initValues.nexuscountry = 'US';
var tg = nlapiCreateRecord('taxgroup', initValues);
tg.setFieldValue('itemid', 'Test US Tax Group');
tg.setFieldValue('description', 'Tax group description');
tg.selectNewLineItem('taxitem');
tg.setCurrentLineItemValue('taxitem', 'taxname', '-1425'); // -1425 is ID of TX_BUFFALO Tax Cod
e
tg.commitLineItem('taxitem');
recId = nlapiSubmitRecord(tg);
;

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/taxgroup.html

Lists
Tax Period

944

SuiteScript Developer & Reference Guide

The following code sample shows how to create a tax group for Canada.

var newgroup = nlapiCreateRecord('taxgroup', {nexuscountry: 'CA'});
newgroup.setFieldValue('itemid', 'CA-T5');
newgroup.setFieldValue('piggyback', 'T');
newgroup.setFieldValue('taxitem1', 21); //Canadian tax code
newgroup.setFieldValue('taxitem2', 24); //Canadian tax code
newgroup.setFieldValue('subsidiary', 2); //Canadian subsidiary
newgroup.setFieldValue('state', 'AB'); //Canadian subsidiary
newgroup.setFieldValue('description', 'New Canada Tax Group');

nlapiSubmitRecord(newgroup);
;

Tax Period
The internal ID for this record is taxperiod.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Preference UI Label Preference Internal ID

First Fiscal Month fiscalmonth

Fiscal Year Ene fiscalyear

Period Format periodstyle

Year in Period Name periodname

One-Day Year-End Adjustment Period lastday

Tax Type
The internal ID for this record is taxtype.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Term
The internal ID for this record is term. Search is not available on this record type.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/taxperiod.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/taxtype.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/term.html

Lists
Unit of Measure

945

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Unit of Measure
The internal ID for this record is unitstype.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Vendor Category
The internal ID for this record is vendorcategory. Search is not available on this record type.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/unitstype.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/vendorcategory.html

Customization
Custom List

946

SuiteScript Developer & Reference Guide

Chapter 71 Customization
The following customization records are scriptable in SuiteScript:

• Custom List

• Custom Transaction

• Scheduled Script Instance

• Script

• Script Deployment

Custom List

Each custom list will have a unique internal ID. For example, a custom list's internal ID might
be customlist22, or customlist5, or customlist_shirtColors, depending on whether you have
accepted the default ID assigned to the custom list or you have created your own ID.

To see a list of IDs for all your custom lists, in the UI, go to Customization > Lists, Records, &
Fields > Lists. If you have the Show Internal IDs preference enabled, all list internal IDs will be
appear in the ID column.

• Search Filters

• Search Columns

Search Filters

Field Internal ID Field UI Label Field Type

internalid Internal ID select

internalidnumber Internal ID (Number) integer

isinactive Inactive checkbox

name Name text

Search Columns

Field Internal ID Field UI Label Field Type

internalid Internal ID select

Customization
Custom Transaction

947

SuiteScript Developer & Reference Guide

Field Internal ID Field UI Label Field Type

isinactive Inactive checkbox

name Name text

Custom Transaction

You use the custom transaction record to interact with instances of existing custom transaction
types. For example, suppose you had a custom transaction type called Non-Operational Income
Entry. In this case, you could use SuiteScript to create and modify non-operational income
entries.

The internal ID for this record varies depending on the ID value of the transaction type. For
example, if your transaction type had an ID value of _noie, the SuiteScript internal ID would
be customtransaction_noie. You can view the transaction type’s ID value by opening the type
for editing. To open the type for editing, go to Customization > Lists, Records, & Fields >
Transaction Types, and select the appropriate type.

Supported Script Types

Custom transaction record instances are supported in both client and server SuiteScript.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

Custom transaction records are fully scriptable. They can be created, updated, copied, searched,
and deleted using SuiteScript. For more details, see the following table.

Function Supported? Notes

nlapiCopyRecord Yes

nlapiCreateRecord Yes

nlapiDeleteRecord Yes

nlapiLoadRecord Yes

nlapiSearchRecord Yes You use the standard transaction search to search custom
transactions. For more information, see Transaction
Search.

nlapiSubmitRecord Yes

nlapiTransformRecord No

nlapiVoidTransaction Yes nlapiVoidTransaction is supported only for transaction
types configured to support the void option. In other

Customization
Scheduled Script Instance

948

SuiteScript Developer & Reference Guide

Function Supported? Notes

words, on the transaction type definition, the box labeled
Allow Void Transactions Using Reversal Journals must
be checked.

Direct voids are never permitted with custom
transactions. Only voids through reversal journals are
permitted.

Usage Notes

In the UI, custom transactions can have a field labeled Status. In SuiteScript, this field has
an internal ID of transtatus. Values for transtatus are set by the system when the statuses are
created. They cannot be modified. Possible values are A through Z. In the UI, you can view a
transaction type’s available statuses (and their transtatus values) by opening the transaction
type and navigating to the Statuses subtab. The transtatus value for each status is listed in the
Code column.

Code Sample

The following sample shows how to create an instance of a custom transaction type.

var transaction = nlapiCreateRecord('customtransaction_mytype',true);
transaction.setFieldValue('subsidiary','1');

// Add debit line
transaction.selectNewLineItem('line');
transaction.setCurrentLineItemValue('line', 'account', '1');
transaction.setCurrentLineItemValue('line','debit',10);
transaction.setCurrentLineItemValue('line','credit',0);
transaction.setCurrentLineItemValue('line', 'memo', 'My first custom transaction line');
transaction.commitLineItem('line');

// Add credit line
transaction.selectNewLineItem('line');
transaction.setCurrentLineItemValue('line', 'account', '2');
transaction.setCurrentLineItemValue('line','debit',0);
transaction.setCurrentLineItemValue('line','credit',10);
transaction.setCurrentLineItemValue('line', 'memo', 'My second custom transaction line');
transaction.commitLineItem('line');

nlapiSubmitRecord(transaction);

Scheduled Script Instance
The scheduled script instance record type is viewed in the UI as the Scheduled Script Status
page. The Scheduled Script Status page shows the scheduled script queue. Each script listed on

Customization
Scheduled Script Instance

949

SuiteScript Developer & Reference Guide

this page is an instance of scheduled script instance. To access the Scheduled Script Status page
in the UI, go to Customization > Scripting > Script Deployments > Status.

To search scheduled script instance records, use ‘scheduledscriptinstance’ as the type argument.

For additional information, see:

• Usage Notes

• Supported Functions

• Code Samples

Usage Notes

You can search scheduled script instance records with all server-side script types. Scheduled
script instance records are not exposed to client-side scripts.

Important: You can only use the scheduled script instance record type to perform
searches of the scheduled script queue.

The Cancel column is not exposed to SuiteScript.

To access scheduled script instance records with a script, the script owner must belong to a role
assigned with SuiteScript permissions.

Supported Functions

Use the following APIs to search scheduled script instance records:

• nlapiCreateSearch(type, filters, columns)

• nlapiLoadSearch(type, id)

• nlapiSearchRecord(type, id, filters, columns)

Customization
Script

950

SuiteScript Developer & Reference Guide

Code Samples

The following code filters the search for all schedule script instance records that are in
progress in queue 2. It uses search return columns to return all available information on the
filtered results. Note that the first two search return columns are joins on the script and script
deployment record types.

var colArr = new Array();
var filterArr = new Array();

colArr.push(new nlobjSearchColumn('name', 'script'));
colArr.push(new nlobjSearchColumn('internalid', 'scriptdeployment'));
colArr.push(new nlobjSearchColumn('datecreated'));
colArr.push(new nlobjSearchColumn('status'));
colArr.push(new nlobjSearchColumn('startdate'));
colArr.push(new nlobjSearchColumn('enddate'));
colArr.push(new nlobjSearchColumn('queue'));
colArr.push(new nlobjSearchColumn('percentcomplete'));
colArr.push(new nlobjSearchColumn('queueposition'));
colArr.push(new nlobjSearchColumn('percentcomplete'));
filterArr.push(new nlobjSearchFilter('queue', null, 'is' , "2"));
filterArr.push(new nlobjSearchFilter('status', null, 'anyof' , ['PROCESSING']));
var searchResults = nlapiSearchRecord('scheduledscriptinstance', null, filterArr, colArr);

Script
To load and submit a script record, use one of the following case-insensitive script types for the
type argument:

• ‘bundleinstallationscript’

• ‘clientscript’

• ‘massupdatescript’

• ‘portlet’

• ‘restlet’

• ‘scheduledscript’

• ‘suitelet’

• ‘usereventscript’

• ‘workflowactionscript’

For the id argument, you must use the script record’s internal ID (for example, 191); the script
record’s ID (for example, ‘customscript_csalert’) is not supported. You can find a script record’s
internal ID at Customization > Scripting > Scripts. If you have the Show Internal IDs preference
enabled at Home > Set Preferences, internal IDs are listed in the Internal ID column.

Customization
Script

951

SuiteScript Developer & Reference Guide

See the SuiteScript Records Browser for all other internal IDs associated with this record.
For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

Use nlapiSearchRecord(type, id, filters, columns), nlapiLoadSearch(type, id) and
nlapiCreateSearch(type, filters, columns) to perform searches on script records. Note that
when you use one of these APIs to search for script records, you must pass in ‘script’ as the
type parameter. This differs from how you load script records with nlapiLoadRecord; in those
instances you pass in the individual script type.

For additional information about the script record, see:

• Usage Notes

• Supported Functions

• Code Samples

Usage Notes

You can read and edit script records with all server-side script types. Script records are not
exposed to client-side scripts.

Important: Script records cannot be created, copied or deleted programmatically.

The following objects are not scriptable, or are read only, on the script record:

• The Change ID button (in Edit view of UI) is not scriptable

• The Unhandled Errors tab is not scriptable

• The History tab is not scriptable

• The Execution Log tab is not scriptable

• The Libraries tab is not scriptable

• The Script Type field is read only; editing is not supported

• The Parameters tab is read only; editing is not supported

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/index.html

Customization
Script

952

SuiteScript Developer & Reference Guide

To access script records within a script, the script owner must belong to a role assigned with
SuiteScript permissions.

Important: Scripts can only access script records when the records are part of the same
bundle.

Scripts that are not part of a bundle cannot access script records that are part
of a bundle.

Supported Functions

Use the following APIs to load and submit script records.

• nlapiLoadRecord(type, id, initializeValues)

• nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

Use the following nlobjRecord methods to read and edit script records:

• commitLineItem(group, ignoreRecalc)

• findLineItemValue(group, fldnam, value)

• getAllFields()

• getAllLineItemFields(group)

• getCurrentLineItemDateTimeValue(type, fieldId, timeZone)

• getCurrentLineItemValues(type, fldnam)

• getField(fldnam)

• getFieldText(name)

• getFieldValue(name)

• getId()

• getLineItemCount(group)

• getLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

• getLineItemField(group, fldnam, linenum)

• getLineItemText(group, fldnam, linenum)

• getLineItemValue(group, name, linenum)

• getLineItemValues(type, fldnam, linenum)

Customization
Script

953

SuiteScript Developer & Reference Guide

• getRecordType()

• insertLineItem(group, linenum, ignoreRecalc)

• removeLineItem(group, linenum, ignoreRecalc)

• selectLineItem(group, linenum)

• selectNewLineItem(group)

• setCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

• setCurrentLineItemValue(group, name, value)

• setFieldText(name, text)

• setFieldValue(name, value)

• setLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

• setLineItemValue(group, name, linenum, value)

Use the following Search APIs to perform searches on script records:

• nlapiCreateSearch(type, filters, columns)

• nlapiLoadSearch(type, id)

• nlapiSearchRecord(type, id, filters, columns)

Code Samples

//read a suitelet script record
var rec = nlapiLoadRecord('suitelet',605);
var a = rec.getFieldValue('scriptfile');
var count = rec.getLineItemCount('parameters');
var pLabel = rec.getLineItemValue('parameters', 'label', 1);
var pId = rec.getLineItemValue('parameters', 'internalid', 1);
var pType = rec.getLineItemValue('parameters', 'fieldtype', 1);
var pRecordType = rec.getLineItemValue('parameters', 'selectrecordtype', 1);

//edit a user event script record
var rec = nlapiLoadRecord('usereventscript', 302);
rec.setFieldValue('name', 'userevent_001');
rec.setFieldValue('scriptfile', '227');
rec.setFieldValue('notifyadmins', 'T');
rec.setFieldValue('aftersubmitfunction', 'afterSubmitFunction');
nlapiSubmitRecord(rec);

//search a script record
var filters = [new nlobjSearchFilter('defaultfunction', null, 'is', 'myfunctionname')];
var columns = [new nlobjSearchColumn('name')];
var results = nlapiSearchRecord('script', null, filters, columns);

Customization
Script Deployment

954

SuiteScript Developer & Reference Guide

Script Deployment
To load, submit, copy, create and delete a script deployment record, use ‘scriptdeployment’ for
the type argument. Note that ‘scriptdeployment’ is case-insensative. For the id argument, you
must use the script deployment record’s internal ID (for example, 88); the script deployment
record’s ID (for example, ‘customdeploy_newsfeed_email’) is not supported. You can find a
script deployment record’s internal ID at Customization > Scripting > Script Deployments. If
you have the Show Internal IDs preference enabled at Home > Set Preferences, internal IDs are
listed in the Internal ID column.

See the SuiteScript Records Browser for all other internal IDs associated with this record.
For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser in the NetSuite Help Center.

For additional information about the script deployment record, see:

• Usage Notes

• Supported Functions

• Code Samples

Usage Notes

You can access script deployment records with all server-side script types. Script deployment
records are not exposed to client-side scripts.

The following objects are not scriptable, or are read only, on the script deployment record:

• Change ID button (in Edit view of UI) is not scriptable

• The History subtab is not scriptable

• The Execution Log subtab is not scriptable

• The Scheduling subtab is not scriptable

• The Parameters subtab is read only; editing is not supported

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/scriptdeployment.html

Customization
Script Deployment

955

SuiteScript Developer & Reference Guide

To access script deployment records within a script, the script owner must belong to a role
assigned with SuiteScript permissions.

Important: Scripts can only access script deployment records when the records are part
of the same bundle.

Scripts that are not part of a bundle cannot access script deployment records
that are part of a bundle.

Supported Functions

Use the following APIs to copy, create, delete, load and submit script deployment records.

• nlapiCopyRecord(type, id, initializeValues)

• nlapiCreateRecord(type, initializeValues)

• nlapiDeleteRecord(type, id)

• nlapiLoadRecord(type, id, initializeValues)

• nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields)

Use the following nlobjRecord methods to read and edit script deployment records:

• commitLineItem(group, ignoreRecalc)

• findLineItemValue(group, fldnam, value)

• getAllFields()

• getAllLineItemFields(group)

• getCurrentLineItemDateTimeValue(type, fieldId, timeZone)

• getCurrentLineItemValues(type, fldnam)

• getField(fldnam)

• getFieldText(name)

• getFieldValue(name)

• getId()

• getLineItemCount(group)

• getLineItemDateTimeValue(type, fieldId, lineNum, timeZone)

• getLineItemField(group, fldnam, linenum)

• getLineItemText(group, fldnam, linenum)

• getLineItemValue(group, name, linenum)

Customization
Script Deployment

956

SuiteScript Developer & Reference Guide

• getLineItemValues(type, fldnam, linenum)

• getRecordType()

• insertLineItem(group, linenum, ignoreRecalc)

• removeLineItem(group, linenum, ignoreRecalc)

• selectLineItem(group, linenum)

• selectNewLineItem(group)

• setCurrentLineItemDateTimeValue(type, fieldId, dateTime, timeZone)

• setCurrentLineItemValue(group, name, value)

• setFieldText(name, text)

• setFieldValue(name, value)

• setLineItemDateTimeValue(type, fieldId, lineNum, dateTime, timeZone)

• setLineItemValue(group, name, linenum, value)

Use the following Search APIs to perform searches on script deployment records:

• nlapiCreateSearch(type, filters, columns)

• nlapiLoadSearch(type, id)

• nlapiSearchRecord(type, id, filters, columns)

Code Samples

//create a script deployment record
var rec = nlapiCreateRecord('scriptdeployment', {'script':'2'});

//edit a script deployment record
var rec = nlapiLoadRecord('scriptdeployment',65);
rec.setFieldValue('allroles', 'T');
nlapiSubmitRecord(rec);

//read a script script deployment record
var rec = nlapiLoadRecord('scriptdeployment', 203);
var a = rec.getFieldValue('status')

//copy and edit a script deployment record
var rec = nlapiCopyRecord('scriptdeployment', 41);
rec.setFieldValue('isdeployed', 'F');
rec.setFieldValue('title', 'Feature 4141 - Suitelet Scratch 4');
nlapiSubmitRecord(rec);

//search a script deployment record

Customization
Script Deployment

957

SuiteScript Developer & Reference Guide

var filters = [new nlobjSearchFilter('internalidnumber', null, 'anyof', '43')];
var columns = [new nlobjSearchColumn('title')];
var results = nlapiSearchRecord('scriptdeployment', null, filters, columns);

Marketing
Campaign

958

SuiteScript Developer & Reference Guide

Chapter 72 Marketing
The following marketing records are scriptable in SuiteScript:

• Campaign

• Campaign Template

• Coupon Code

• Email Template

• Promotion

Campaign
The internal ID for this record is campaign.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Campaign Template
The campaign template record is used for both CRMSDK templates and scriptable templates. In
the UI, you find this record by choosing Documents > Templates > Marketing Templates

Scriptable templates are not supported with SuiteScript.

The internal ID for this record is campaigntemplate.

Supported Script Types

This record is only supported in server-side scripts.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

You can use nlapiMergeRecord(id, baseType, baseId, altType, altId, fields) with CRMSDK
templates to perform a mail merge. You can also use SuiteScript to read and delete CRMSDK
templates. You cannot create, edit, copy, search, or transform CRMSDK templates with
SuiteScript.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/campaign.html

Marketing
Coupon Code

959

SuiteScript Developer & Reference Guide

Field Definitions

This section describes some of the key fields on the campaign template record.

Content and Mediaitem

When accessing this record, only one of the following fields contains a value:

• content — This field maps to the text editor that appears on the Template tab in the UI.
This field contains plain text or HTML.

• mediaitem — This field maps to the File text box that appears on the Template tab in the
UI. This field identifies the file that is used as the basis for the template.

For More Information

See the SuiteScript Records Browser for the internal IDs of all fields associated with this record,
their corresponding labels in the UI, and more details. Fields not listed in the Records Browser
are not supported and should not be used.

For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser.

Code Sample

The following sample shows how to access a campaign template email.

Accessing Template Content

The following sample shows how to access template content:

var template = nlapiLoadRecord('campaigntemplate', 154);

if (template.getFieldValue('mediaitem') != null) {
 var media = template.getFieldValue('mediaitem'));
 // do something with the media...
} else {
 var content = template.getFieldValue('content');
 // do something with the content...
}

Coupon Code
The internal ID for this record is couponcode.

See the SuiteScript Records Browser for all internal IDs associated with this record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/emailtemplate.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/couponcode.html

Marketing
Email Template

960

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Email Template
The email template record is used for both CRMSDK templates and scriptable templates. In the
UI, you find this record by choosing Documents > Templates > Email Templates. This record
is available only if the Customer Relationship Management feature has been enabled at Setup >
Company > Enable Features, on the CRM tab.

Scriptable templates are not supported with SuiteScript.

The internal ID for this record is emailtemplate.

Supported Script Types

This record is only supported in server-side scripts.

All three user events are supported: beforeLoad, beforeSubmit, and afterSubmit.

Supported Functions

You can use nlapiMergeRecord(id, baseType, baseId, altType, altId, fields) with CRMSDK
templates to perform a mail merge. You can also use SuiteScript to read and delete CRMSDK
templates. You cannot create, edit, copy, search, or transform CRMSDK templates with
SuiteScript.

Field Definitions

This section describes some of the key fields on the email template record.

Content and Mediaitem

When accessing this record, only one of the following fields contains a value:

• content — This field maps to the text editor that appears on the Template tab in the UI.
This field contains plain text or HTML.

• mediaitem — This field maps to the File text box that appears on the Template tab in the
UI. This field identifies the file that is used as the basis for the template.

For More Information

See the SuiteScript Records Browser for the internal IDs of all fields associated with this record,
their corresponding labels in the UI, and more details. Fields not listed in the Records Browser
are not supported and should not be used.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/emailtemplate.html

Marketing
Promotion

961

SuiteScript Developer & Reference Guide

For information on using the SuiteScript Records Browser, see Working with the SuiteScript
Records Browser.

Code Sample

The following example shows how you can script with email template records.

Accessing Template Content

The following sample shows how to access template content:

var template = nlapiLoadRecord('emailtemplate', 124);

if (template.getFieldValue('mediaitem') != null) {
 var media = template.getFieldValue('mediaitem'));
 // do something with the media...
} else {
 var content = template.getFieldValue('content');
 // do something with the content...
}

Promotion
The internal ID for this record is promotioncode.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific fields on this record.

Field Internal ID Field UI Label Note

Body Fields

discounttype radio buttons Valid values in scripts are:

• percent

• flat

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/promotioncode.html

Website
Web Site Setup

962

SuiteScript Developer & Reference Guide

Chapter 73 Website
The following website records are scriptable in SuiteScript:

• Web Site Setup

Web Site Setup
The internal ID for this record is website. In the UI, you can find this record by going to Setup >
Web Site > Set Up Web Site.

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The Web Site Setup (website) record supports server side SuiteScripts such as user event
scripts. Note, however, this record does not support beforeLoad user event scripts.

Developers can use SuiteScript with the Web Site Setup record whether they are working in
accounts using Site Builder or SuiteCommerce Advanced.

Creating a Web Site Setup Record in SuiteScript

To create a Web Site Setup record in a Site Builder site, developers can write code using one of
two approaches:

The first approach is:

var recWebSite = nlapiCreateRecord('website');

The second approach is:

var initvalues = new Array();
initvalues.sitetype = 'STANDARD';
var recWebSite = nlapiCreateRecord('website', initvalues);

In the first approach, the initvalues are defaulted to STANDARD. However, it is recommended
that developers use the second approach because there are two web site types. To clearly
distinguish between the two types in your code, the second approach is cleaner.

To create a Web Site Setup record in a SuiteCommerce Advanced site, the code must look like
the following:

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_2/script/record/website.html

Website
Web Site Setup

963

SuiteScript Developer & Reference Guide

var initvalues = new Array();
initvalues.sitetype = 'ADVANCED';
var recWebSite = nlapiCreateRecord('website', initvalues);

Setting Values for Web Site Setup Dropdown Fields

The following table lists the dropdown fields on the Web Site Setup record. When writing
SuiteScript, if you are setting the value of a dropdown field, use the IDs listed in the column
called Internal IDs for Dropdown Values.

Tab Dropdown Field UI Labels for Dropdown
Values

Internal IDs for Dropdown Values

Setup tab

 Web Site Scope
(websitescope)

• Full Web Store

• Information And
Catalog, With Pricing

• Information And
Catalog

• Information Only

• FULL_WEB_STORE

• INFO_CATALOG_PRICING

• INFO_CATALOG

• INFO_ONLY

 Default Customer Category
(defaultcustomercategory)

• Corporate

• Individual

• Employee

• CORPORATE

• INDIVIDUAL

• EMPLOYEE

Appearance tab

 Web Site Logo Alignment
(websitelogoalign)

• Align Left

• Align Right

• Align Center

• LEFT

• RIGHT

• CENTER

 Page Alignment
(pagealign)

• Align Left

• Align Right

• Align Center

• LEFT

• RIGHT

• CENTER

 Display Order of Cart Items
(cartdisplayorder)

• Most Recently Added
First

• Most Recently Added
Last

• RECENT_FIRST

• RECENT_LAST

Upsell tab

 Items to Upsell
(upsellitems)

• Show Related Items First
and Upsell Items Next

• Show Upsell Items First
and Related Items Next

• Show Only Related
Items

• Show Only Upsell Items

• RELATED_FIRST_UPSELL_NEXT

• UPSELL_FIRST_RELATED_NEXT

• ONLY_RELATED_ITEMS

• ONLY_UPSELL_ITEMS

Website
Web Site Setup

964

SuiteScript Developer & Reference Guide

Tab Dropdown Field UI Labels for Dropdown
Values

Internal IDs for Dropdown Values

 Items to Upsell in Cart
(cartupsellitems)

• Show Related Items First
and Upsell Items Next

• Show Upsell Items First
and Related Items Next

• Show Only Related
Items

• Show Only Upsell Items

• RELATED_FIRST_UPSELL_NEXT

• UPSELL_FIRST_RELATED_NEXT

• ONLY_RELATED_ITEMS

• ONLY_UPSELL_ITEMS

Legacy tab

 Site Tab Alignment
(sitetabalignment)

• Align Left

• Align Right

• Align Center

• LEFT

• RIGHT

• CENTER

Shopping tab

 Sales Order Type
(salesordertype)

• Per Customer Basis • PER_CUSTOMER

Scriptable Sublists
Scriptable Sublists Overview

965

SuiteScript Developer & Reference Guide

Chapter 74 Scriptable Sublists

Scriptable Sublists Overview
The following table lists all NetSuite sublists that support SuiteScript. The internal ID for each
sublist is also listed. When using Sublist APIs, you will need to pass the internal ID of the
sublist, as well the internal IDs of specific sublist fields you may be referencing in your scripts.

The internal IDs of all supported sublist fields are provided in the SuiteScript Records Browser,
which is organized by record type. If you know which record a sublist appears on, go to that
record in the SuiteScript Records Browser. If you do not know which record the sublist appears
on, click one of the sublist links in the table below. The documentation for each sublist states
which record(s) the sublist appears on.

Important Things to Note:

1. Not every sublist field that appears in the SuiteScript Records Browser is settable through
scripting. Some of the fields that appear are read-only. You will need to reference the
NetSuite UI to know whether a field is settable. The general rule is that if you can set a
field in the UI, you can set it in SuiteScript. If you cannot set a field in the UI, you cannot
set it using SuiteScript. You can, however, still get the field's value using SuiteScript.

2. The following table lists only the sublists that officially support SuiteScript. Scripts that
reference sublists which do not appear in this table may not run as intended. Even if
scripts do run as intended, there is no guarantee they will continue to run in future
versions of NetSuite if backend infrastructure changes are made to support a new
feature. Therefore, it is imperative that your scripts reference only the sublists and sublist
fields listed in this section and in the SuiteScript Records Browser.

Sublist Sublist Internal ID Sublist Type

Access Sublist (contact roles) contactroles list

Accounts Sublist directdeposit inlineeditor

Accrued Time Sublist accruedtime inlineeditor

Address Sublist addressbook editor

Adjustments Sublist inventory inlineeditor

Apply Sublist apply list

Assignees Sublist assignee inlineeditor

Attendees Sublist attendee inlineeditor

Billable Expenses Sublist expcost list

Billable Items Sublist itemcost list

Billable Time Sublist time list

Bin Numbers Sublist binnumber inlineeditor

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Scriptable Sublists Overview

966

SuiteScript Developer & Reference Guide

Sublist Sublist Internal ID Sublist Type

Company Contributions Sublist companycontribution inlineeditor

Company Contributions Sublist companytax inlineeditor

Competitors Sublist competitors inlineeditor

Credits Sublist credit list

Currencies Sublist currency inlineeditor

Custom Child Record Sublists recmachcustrecord inlineeditor

Deductions Sublist deduction inlineeditor

Demand Plan Detail Sublist demandplandetail list

Deposits Sublist deposit list

Direct Mail Sublist campaigndirectmail inlineeditor

Download Sublist download inlineeditor

Earnings Sublist earning inlineeditor

E-mail Sublist campaignemail inlineeditor

Employee Taxes Sublist employeetax inlineeditor

Escalate To Sublist escalateto inlineeditor

Expenses Sublist expense inlineeditor

Group Pricing Sublist grouppricing inlineeditor

Item Fulfillment/Receipt Sublist item list

Items Sublist item inlineeditor

Item Pricing Sublist itempricing inlineeditor

Lead Nurturing Sublist campaigndrip inlineeditor

Line Sublist line inlineeditor

Members Sublist member inlineeditor

Orders Sublist order inlineeditor

Other Events Sublist campaignevent inlineeditor

Partners Sublist partners inlineeditor

Pricing Sublist price list

Predecessors Sublist predecessor inlineeditor

Related Solutions Sublist solutions inlineeditor

Resources Sublist resource inlineeditor

Sales Team Sublist salesteam inlineeditor

Shipping Sublist shipgroup inlineeditor

Site Category sitecategory inlineeditor

Time Tracking Sublist timeitem inlineeditor

Topics Sublist topics inlineeditor

Scriptable Sublists
Access Sublist (contact roles)

967

SuiteScript Developer & Reference Guide

Sublist Sublist Internal ID Sublist Type

Units uom inlineeditor

Vendors itemvendor inlineeditor

Access Sublist (contact roles)

The internal ID for this sublist is contactroles. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

If you have upgraded the forms in your account, contactroles maps to the Access sublist, which
appears on the System Information subtab. The Access sublist appears on the following record
types: Partner, Prospect, Lead, Customer.

The following fields appear on the contactroles sublist. (All fields and internal IDs will soon be
added to the SuiteScript Records Browser.)

Field Internal ID Field UI Label Type Required

contact Contact select false

email Email email false

giveaccess Access checkbox false

passwordconfirm Confirm Password password false

role Role select false

sendemail Notify checkbox false

See the SuiteScript Records Browser for all internal IDs associated with this record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Accounts Sublist

The internal ID for this sublist is directdeposit. It is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Accounts sublist appears on the ACH/Direct Deposit subtab on the employee record.
To see the internal IDs associated with the Accounts sublist, refer to the SuiteScript Records
Browser.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/inventoryadjustment.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/employee.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/employee.html

Scriptable Sublists
Accrued Time Sublist

968

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Accrued Time Sublist
The internal ID for this sublist is accruedtime. It is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Accrued Time sublist appears on the Payroll subtab on the employee record. To see the
internal IDs associated with the Accrued Time sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Address Sublist
The internal ID for this sublist is addressbook. It is an editor sublist. (In the NetSuite Help
Center, see Editor Sublists for information on this sublist type.)

The Address sublist appears on the following records: Contact, Customer, Partner, Vendor,
Employee. To see the internal IDs associated with the Address sublist, open the SuiteScript
Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Adjustments Sublist
The internal ID for this sublist is inventory. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Adjustments sublist appears on the inventory adjustment record. To see the internal IDs
associated with the Adjustments sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Apply Sublist
The internal ID for this sublist is apply. This is a list sublist. (In the NetSuite Help Center, see
List Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/employee.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/inventoryadjustment.html

Scriptable Sublists
Assignees Sublist

969

SuiteScript Developer & Reference Guide

The Apply sublist appears on the following records: Credit Memo, Customer Payment,
Customer Refund, Deposit Application, Vendor Credit, Vendor Payment. To see the internal
IDs associated with the Apply sublist, open the SuiteScript Records Browser and navigate to
one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Important: When the Apply sublist appears on the Customer Payment record, the Apply
tab is still visible, however, all Apply sublist data appears on a tab called
Invoice. Also note that the UI label for the Amt. Due (due) field can also
appear as Amount Remaining.

Assignees Sublist
The internal ID for this sublist is assignee. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Assignee sublist appears on the project task record. To see the internal IDs associated with
the Assignees sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Attendees Sublist
The internal ID for this sublist is attendee. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Attendees sublist appears on the event record. To see the internal IDs associated with the
Attendees sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Billable Expenses Sublist
The internal ID for this sublist is expcost. This sublist is a list sublist. (In the NetSuite Help
Center, see List Sublists for information on this sublist type.)

The Billable Expenses sublist appears on the Cash Sale and Invoice records. To see the internal
IDs associated with the Billable Expenses sublist, open the SuiteScript Records Browser and
navigate to one of the records that includes this sublist.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/projecttask.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/calendarevent.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Billable Items Sublist

970

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Billable Items Sublist
The internal ID for this sublist is itemcost. This is a list sublist. (In the NetSuite Help Center,
see List Sublists for information on this sublist type.)

The Billable Items sublist appears on Cash Sale and Invoice records. To see the internal IDs
associated with the Billable Items sublist, open the SuiteScript Records Browser and navigate to
one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Billable Time Sublist
The internal ID for this sublist is time. This is a list sublist. (In the NetSuite Help Center, see
List Sublists for information on this sublist type.)

The Billable Time sublist appears on the Cash Sale and Invoice records. To see the internal IDs
associated with the Billable Time sublist, open the SuiteScript Records Browser and navigate to
one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Bin Numbers Sublist
The internal ID for this sublist is binnumber. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Bin Numbers sublist appears on the Inventory Item record. To see the internal IDs
associated with the Bin Numbers sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Company Contributions Sublist
The internal ID for this sublist is companycontribution. This sublist is an inline editor sublist.
(In the NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Company Contributions sublist appears on the Paycheck Journal record and the Employee
record. To see the internal IDs associated with the Company Contributions sublist, open the
SuiteScript Records Browser and navigate to one of the records that includes this sublist.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/item.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Company Taxes Sublist

971

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Company Taxes Sublist
The internal ID for this sublist is companytax. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Company Taxes sublist appears on the Paycheck Journal record. To see the internal IDs
associated with the Company Taxes sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Competitors Sublist
The internal ID for this sublist is competitors. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Competitors sublist appears on the Opportunity record. To see the internal IDs associated
with the Competitors sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Credits Sublist
The internal ID for this sublist is credit. This is a list sublist. (In the NetSuite Help Center, see
List Sublists for information on this sublist type.)

The Credits sublist appears on the customer payment and vendor payment records. (Note that
although the Credits sublist is supported on the Vendor Payments record type, this sublist is not
currently showing on this record in the vendor payment reference page in the Records Browser.
To get the internal IDs for the Credits sublist, refer to the Records Browser’s customer payments
reference page.)

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Currencies Sublist
The internal ID for this sublist is currency. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/paycheckjournal.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/opportunity.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/customerpayment.html

Scriptable Sublists
Custom Child Record Sublists

972

SuiteScript Developer & Reference Guide

The Currencies sublist appears on the following record types: Customer, Lead, Prospect. To see
the internal IDs associated with the Currencies sublist, open the SuiteScript Records Browser
and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Custom Child Record Sublists
When working with custom child record sublists you can use all the standard Sublist APIs
provided in SuiteScript. If you are not familiar with custom child record sublists, it is
recommended that you read these topics in order:

• What Are Custom Child Record Sublists?

• Creating Custom Child Record Sublists

• Understanding Custom Child Record Sublist IDs

• Scripting with Custom Child Record Sublists

What Are Custom Child Record Sublists?

Custom child record sublists are Inline Editor Sublists that contain a list of custom records.

The following figure shows a custom child record sublist of Fixed Assets records. These records
appear as line items on a custom Fixed Assets subtab. The parent record that contains the
sublist of custom Fixed Assets records is the Customer record.

In the UI, click New Fixed Assets to create a new Fixed Assets child record. The new record is
added to the Fixed Assets sublist and is scriptable. In SuiteScript, add a new Fixed Assets child
record by adding a new line to the sublist.

When the New Fixed Assets button is clicked, a new Fixed Assets record opens (see figure
below). Note that the Fixed Assets record contains a New Customer field. This field is a List/
Record field that references the parent record – in the case, the Abe Simpson customer record.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Custom Child Record Sublists

973

SuiteScript Developer & Reference Guide

Note: The parent–child relationship between the Fixed Assets record type and the
Customer record type was defined on the Custom Record Type definition page
for the Fixed Assets record. (For general information on creating parent–child
relationships between records, see the help topic Understanding Parent - Child
Record Relationships in the SuiteBuilder Guide.)

The Fixed Assets fields that appears in the sublist are the mandatory fields (those body fields
that appear with the yellow asterisk on the Fixed Asset record) and those fields that have been
set to Show in List in the Custom Field definition page for the Fixed Assets record type. You
can use Sublist APIs to set or get values for all Fixed Assets fields in a Fixed Assets sublist.

The New Customer field is a List/Record field that references the parent record of the Fixed
Assets (child) record.

As long as you know the internal ID of a Fixed Assets field, you can update that field through
sublist scripting. (See Understanding Custom Child Record Sublist IDs to learn how to get field
IDs for all fields on a custom child record sublist.)

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2885788.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2885788.html

Scriptable Sublists
Custom Child Record Sublists

974

SuiteScript Developer & Reference Guide

Fields set to Show in List on the Fixed Assets record type appear in the sublist. However, you
can update any Fixed Asset field via scripting.

Creating Custom Child Record Sublists

The following steps are high-level. They are provided for users who are already familiar with
NetSuite customization, but who need a general frame of reference for building a custom child
record sublist. Detailed steps for creating custom records types, custom fields, and custom
subtabs are provided in the SuiteBuilder Guide.

To create a custom child record sublist:

1. Define a custom record type (such as the Fixed Assets record mentioned earlier).

Scriptable Sublists
Custom Child Record Sublists

975

SuiteScript Developer & Reference Guide

2. Important: On the Custom Record Type page, select Allow Inline Editing (see
figure). If this preference is not enabled, your records will not be
scriptable when they appear as sublist line items on the parent record.

3. Establish the parent–child relationship between your new custom record type (Fixed
Assets) and another record type. Parent–child relationships are established through
custom fields.

1. Add a custom field to your new custom record type.

2. On the field definition page for the new field, set the field Type to List/Record (see
figure below).

3. Specify the record type that will be the parent of your custom record type. In the
following figure, the Customer record type will be the parent.

4. Select the Record is Parent check box. Doing so attaches your custom record type
(Fixed Assets) to a parent record type (Customer).

In this case, it is the New Customer field that ties the Fixed Assets record type to
the Customer record type.

Scriptable Sublists
Custom Child Record Sublists

976

SuiteScript Developer & Reference Guide

You can have your custom child record sublist appear on a standard or custom subtab of
the parent record.

4. If you want the custom child record sublist to appear on its own subtab on the parent
record, create a subtab with a name that reflects the sublist type. The figure above shows
that a sublist of child Fixed Asset records will appear on a custom Fixed Assets subtab.
This subtab will appear on all Customer (parent) records.

Note: See the SuiteBuilder Guide for steps on creating custom subtabs and adding
subtabs to specific record types.

5. After defining the Customer–Fixed Assets (parent–child) relationship (via the New
Customer field), go to a Customer record in NetSuite and notice the Fixed Assets sublist
(see figure).

Scriptable Sublists
Custom Child Record Sublists

977

SuiteScript Developer & Reference Guide

Note: If you have not specified a parent subtab for this sublist, the custom record
child sublist will appear on a system-generated subtab called Custom.

The figure above shows the Fixed Assets sublist. When the New Fixed Assets button is clicked,
a custom (child) Fixed Assets record opens. After adding data to the Fixed Assets record and
saving it, the record will appear as a sublist line item.

The following figure shows that two Fixed Assets (child) records have been added as sublist line
items to the (parent) customer record for Adam Fitzpatrick.

Scriptable Sublists
Custom Child Record Sublists

978

SuiteScript Developer & Reference Guide

Understanding Custom Child Record Sublist IDs

Unlike other sublists, there are no standard IDs that can be documented for custom child
record sublists. The internal ID for the sublist itself, as well as for all of its associated fields, will
be unique to each custom child record sublist.

See these topics for guidelines on determining which IDs to reference in Sublist APIs:

• Determining the Sublist ID

• Determining Field IDs

Determining the Sublist ID

The internal ID for a custom child record sublist is recmach + field_id_for_the_parent_field
(for example: recmachcustrecord112).

When using Sublist APIs the value of the type parameter in nlapi functions (or the group
parameter in nlobjRecord sublist-related methods) will look something like the following:

Scriptable Sublists
Custom Child Record Sublists

979

SuiteScript Developer & Reference Guide

nlapiGetLineItemValue('recmachcustrecord102', fldnam, linenum)

The following steps describe where to look in NetSuite to get the internal ID of a custom child
record sublist.

To get the internal ID of a custom child record sublist (the field ID for the parent record):

1. Go to the record definition for the custom record type (see figure).

2. On the Fields tab > ID column, notice the internal IDs for two different List/Record field
types.

The field definition for the field called New Customer (internal ID: custrecord102)
shows that it is the parent field for the Fixed Assets records that appear as children on
Customer records. Hence, the internal ID for the custom child Fixed Assets sublist on
Customer records will be recmachcustrecord102.

An alternative approach for obtaining the internal ID of the parent field is by doing the
following:

1. On the custom child record sublist, click the button to create a new child record (see
figure for a general example).

Scriptable Sublists
Custom Child Record Sublists

980

SuiteScript Developer & Reference Guide

2. When the new child record opens (see figure below), notice the field that ties the child
record back to the parent record.

In this case, the New Customer field shows that the customer record for Abe Simpson
is the parent of the Fixed Asset record. The field level help popup window for New
Customer lists the field's internal ID as custrecord102. Therefore, the internal ID for the
Fixed Asset sublist appearing on the (parent) customer record is recmachcustrecord102.

Scriptable Sublists
Custom Child Record Sublists

981

SuiteScript Developer & Reference Guide

3. Click the back button in your browser to navigate away the new record if you do not
want to enter data.

Note: Internal IDs for custom child record sublists also appear in the SuiteScript Debugger
when you load the record that includes the sublist.

Determining Field IDs

Use these steps to get internal field IDs on a custom child record sublist:

1. Go to the record definition for the custom record (for example, go to Customization >
Lists, Records, & Fields > Record Types and select your custom record in the Record
Types list).

2. On the Field tab of the Custom Record Type page (see figure), all field internal IDs
appear in the ID column. These are the IDs you will reference as the fldnam value in all
Sublist APIs.

Scriptable Sublists
Custom Child Record Sublists

982

SuiteScript Developer & Reference Guide

Example:

//Get the value of the Cost field on the first line (see the following figure)
nlapiGetLineItemValue('recmachcustrecord102', '
custrecord1 ', 1)

Note that you can also get/set values for fields that do not appear in the sublist UI. For
example, the following line sets the value of the Salvage Value field in the record Fixed
asset 3 (see figure). The internal ID for Salvage Value is custrecord2. See this value on the
Custom Record Type definition page for the Fixed Assets record type.

nlapiSetCurrentLineItemValue('recmachcustrecord102', ' custrecord2 ', 700);

Scriptable Sublists
Custom Child Record Sublists

983

SuiteScript Developer & Reference Guide

You can get or set values for fields that appear in the Fixed Assets sublist. You can also
set or get values that exist on the record, but do not appear in the sublist.

Scripting with Custom Child Record Sublists

Custom child record sublists are inline editor sublists. Consequently, they support all
standard Sublist APIs that run on other inline editor sublists. A custom child record
sublist is unique only because it is not identified by a standard sublist internal ID, nor
does it contain a standard set of field IDs. Otherwise, like all other inline editor sublists,
you can add and remove line items; you can get and set values on existing line items; and
the first line number (linenum) for all sublists is 1, not 0.

Important: Be aware that you cannot execute validate line functions on custom
child record sublists. Validate line functions are executed when a client
event occurs prior to a line being added to a sublist.

Adding a record to a custom child record sublist

The following snippet shows how to add a new Fixed Assets record to the Fixed Assets
sublist. This is a server-side script in which the customer record object is loaded into the

Scriptable Sublists
Deductions Sublist

984

SuiteScript Developer & Reference Guide

system, and the Fixed Assets sublist (recmachcustrecord102) is being accessed through
methods on the nlobjRecord object.

var rec = nlapiLoadRecord('customer', 142);
//Call the nlobjRecord selectNewLineItem method to add a new line.
//Note: Call selectLineItem(...) if the line already exists and you are just updating it.
rec.selectNewLineItem('recmachcustrecord102');
//Set the value for the record name
rec.setCurrentLineItemValue('recmachcustrecord102', 'name', 'Printer');
//Set the value for the Cost field
rec.setCurrentLineItemValue('recmachcustrecord102', 'custrecord1', 1000);
//Set the value for the Useful Life in Years field
rec.setCurrentLineItemValue('recmachcustrecord102', 'custrecord4', '3');
//Commit your sublist changes
rec.commitLineItem('recmachcustrecord102');
//Submit the updated Customer record
var id = nlapiSubmitRecord(rec, true);

Deductions Sublist
The internal ID for this sublist is deduction. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

Scriptable Sublists
Demand Plan Detail Sublist

985

SuiteScript Developer & Reference Guide

The Deductions sublist appears on the Paycheck Journal record and the Employee record.
To see the internal IDs associated with the Deductions sublist, open the SuiteScript Records
Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Demand Plan Detail Sublist
The internal ID for this sublist is demandplandetail.

The Demand Plan Detail sublist appears on the Item Demand Plan record type. This record
stores the expected future demand for an item, based on previous or projected demand. This
record's body fields uniquely identify a demand plan by item, subsidiary (OneWorld accounts),
location (Multi-Location Inventory accounts), start date, and end date. Another body field,
demandplancalendartype, determines the interval to be used for demand plan quantity values,
either monthly, weekly, or daily.

The Demand Plan Detail sublist is a matrix that is similar to the Pricing Sublist. This matrix
stores projected quantities demanded by date. Each row in the matrix represents a specific
month, week, or day, and each column in the matrix represents an expected quantity demand.

Functionally, this sublist shares many of the characteristics of List Sublists. However, scripting
with the Demand Plan Detail sublist is not like scripting with most other sublists in NetSuite.
You must use Matrix APIs for the Demand Plan Detail Sublist to access quantity values on a
per-row, per-column basis, similar to the way that item pricing values are accessed. These APIs
are a subset of the Sublist APIs more commonly used for scripting with other sublists.

The format of the Demand Plan Detail sublist depends on the values set in body fields for the
start date of the plan, the end date of the plan, and the time period to be used (monthly, weekly,
or daily). Because of this dependence, it is recommended that you work with the Item Demand
Plan record and the Demand Plan Detail sublist in dynamic mode. See the help topic Working
with Records in Dynamic Mode.

Be aware of the following requirements:

• In order to script with the Item Demand Plan record and the Demand Plan Detail sublist
for inventory items, the Demand Planning feature must be enabled. For assembly/BOM
items, the Work Orders feature also must be enabled.

• Demand plans are supported only for item(s) that have the supplyreplenishmentmethod
field set to Time Phased.

• Required body field values must be defined before matrix field values can be edited.
In dynamic mode, current values may be retrieved. Start date and end date body fields
default to the first day and last day of the currenty year.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

Scriptable Sublists
Demand Plan Detail Sublist

986

SuiteScript Developer & Reference Guide

For more details and code samples for each type of demand plan, see the following:

• Monthly Demand Plan

• Weekly Demand Plan

• Daily Demand Plan

Monthly Demand Plan

A monthly demand plan includes a row for each month within the body field start date and end
date, and one quantity column for each month.

• The sublist startdate and enddate fields are system-calculated and read-only.

• The startdate is the date of the first day of the month represented by each row.

• The enddate is the date of the last day of the month represented by each row.

• The month for row 1 is the month set in the body field start date, the month for
row 2 is the next month, and so on, until the month set in the body field end date is
reached.

Scriptable Sublists
Demand Plan Detail Sublist

987

SuiteScript Developer & Reference Guide

• The values for the quantity field can be set in SuiteScript. For monthly demand plans, the
column parameter for this field is always 1.

Monthly Demand Plan Code Sample

The following code sets quantities for the months of January and February, 2011:

var record = nlapiCreateRecord('itemdemandplan', {recordmode: 'dynamic'});
record.setFieldValue('demandplancalendartype','MONTHLY');

record.setFieldValue('subsidiary', 1);
record.setFieldValue('location', 1);
record.setFieldValue('item', 165);
record.setFieldValue('startdate','1/1/2015');
record.setFieldValue('enddate','12/31/2015');

record.selectLineItem('demandplandetail', '1');
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 100);

record.selectLineItem('demandplandetail', '2');
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 200);

var id = nlapiSubmitRecord(record,true);

Weekly Demand Plan

A weekly demand plan includes a row for each week contained in the time period set by the
body field start date and end date, and one quantity column for each week.

Scriptable Sublists
Demand Plan Detail Sublist

988

SuiteScript Developer & Reference Guide

• The sublist startdate and enddate fields are system-calculated and read-only.

• The startdate is the date of the first day of the week represented by each row.

• The enddate is the date of the last day of the week represented by each row.

Note: The first day of the week by default is Sunday, but may vary according
tothe company preference set for First Day of the Week at Setup >
Company > General Preferences.

• The week for row 1 is the week of the date set in the body field start date. Note that
unless the body field start date happens to be the first day of the week, the startdate
for this first row may precede the body field start date.

• The week for the final sublist row is the week of the date set in the body field end
date. Note that unless the body field end date happens to be the last day of the week,
the enddate for this last row may be after the body field enddate.

• The values for the quantity field can be set in SuiteScript. For weekly demand plans, the
column parameter for this field is always 1.

Scriptable Sublists
Demand Plan Detail Sublist

989

SuiteScript Developer & Reference Guide

Weekly Demand Plan Code Sample

The following code sets quantities for the first two weeks of 2011:

var record = nlapiCreateRecord('itemdemandplan',{recordmode: 'dynamic'});
record.setFieldValue('demandplancalendartype',WEEKLY);

record.setFieldValue('subsidiary', 1);
record.setFieldValue('location', 1);
record.setFieldValue('item', 165);
record.setFieldValue('startdate','1/1/2015');
record.setFieldValue('enddate','12/31/2015');

record.selectLineItem('demandplandetail', '1');
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 100);

record.selectLineItem('demandplandetail', '2');
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 200);

var id = nlapiSubmitRecord(record,true);

Daily Demand Plan

A daily demand plan includes a row for each week contained in the time period set by the body
field start date and end date, and seven quantity columns for each week, one for each day of the
week.

Scriptable Sublists
Demand Plan Detail Sublist

990

SuiteScript Developer & Reference Guide

• The sublist startdate and enddate fields are system-calculated and read-only.

• The startdate is the date of the first day of the week represented by each row.

• The enddate is the date of the last day of the week represented by each row.

Note: The first day of the week by default is Sunday, but may vary according
tothe company preference set for First Day of the Week at Setup >
Company > General Preferences.

• The week for row 1 is the week of the date set in the body field start date. Note that
unless the body field start date happens to be the first day of the week, the startdate
for this first row may precede the body field start date.

• The week for the final sublist row is the week of the date set in the body field end
date. Note that unless the body field end date happens to be the last day of the week,
the enddate for this last row may be after the body field enddate.

• The values for the quantity fields can be set in SuiteScript.

Scriptable Sublists
Demand Plan Detail Sublist

991

SuiteScript Developer & Reference Guide

• The column parameter for a quantity field is 1,2,3,4,5,6, or 7, depending upon the day
of the week.

• In the screenshot above, the week starts with Sunday, which is the default first day
of the week, and in this case, maps to a column parameter of 1. However, 1 does not
always map to Sunday; it maps to the first day of the week as set in the company
preferences.

Daily Demand Plan Code Sample

var record = nlapiCreateRecord('itemdemandplan',{recordmode: 'dynamic'});
record.setFieldValue('demandplancalendartype','DAILY');

record.setFieldValue('subsidiary', 1);
record.setFieldValue('location', 1);
record.setFieldValue('item', 165);
record.setFieldValue('startdate','1/1/2011');
record.setFieldValue('enddate','12/31/2011');

record.selectLineItem('demandplandetail', '1'); // week of 12/26/2010 to 1/1/2011
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 100); //sunday
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '2', 101); //monday
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '3', 102); //tuesday

record.selectLineItem('demandplandetail', '2'); //week of 1/2/2011 to 1/8/2011
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '1', 200); //sunday
record.setCurrentLineItemMatrixValue('demandplandetail', 'quantity', '5', 200); //thursday

var id = nlapiSubmitRecord(record,true);

Matrix APIs for the Demand Plan Detail Sublist

Use the following matrix APIs with the Demand Plan Detail sublist:

• nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

• nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value, firefieldchanged,
synchronous)

Note: With the two APIs above, use this API first to select an existing line:
nlapiSelectLineItem(type, linenum).

• nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

• nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

• nlapiFindLineItemMatrixValue(type, fldnam, val, column)

For more information about APIs, see Sublist APIs.

Scriptable Sublists
Deposits Sublist

992

SuiteScript Developer & Reference Guide

Deposits Sublist
The internal ID for this sublist is deposit. The sublist is a list sublist. (In the NetSuite Help
Center, see List Sublists for information on this sublist type.)

The Deposits sublist appears on the Customer Payment and Customer Refund records. To see
the internal IDs associated with the Deposits sublist, open the SuiteScript Records Browser and
navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Direct Mail Sublist
The internal ID for this sublist is campaigndirectmail. This sublist is an inline editor sublist.
(In the NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Direct Mail sublist appears on the campaign record. To see the internal IDs associated with
the Direct Mail sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Download Sublist
The internal ID for this sublist is download. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Download sublist appears on the customer record. To see the internal IDs associated with
the Download sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Earnings Sublist
The internal ID for this sublist is earning. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Earnings sublist appears on the Paycheck Journal record and the Employee record. To see
the internal IDs associated with the Earning sublist, open the SuiteScript Records Browser and
navigate to one of the records that includes this sublist.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/campaign.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/customer.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
E-mail Sublist

993

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

E-mail Sublist
The internal ID for this sublist is campaignemail. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The E-mail sublist appears on the campaign record. To see the internal IDs associated with the
E-mail sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Employee Taxes Sublist
The internal ID for this sublist is employeetax. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Employee Taxes sublist appears on the Paycheck Journal record. To see the internal IDs
associated with the Employee Tax sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Escalate To Sublist
The internal ID for this sublist is escalateto. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Escalate To sublist appears on the support case record. To see the internal IDs associated
with the Escalate sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Expenses Sublist
The internal ID for this sublist is expense. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Expenses sublist appears on the following records: Check, Vendor Bill, Purchase Order,
Item Receipt, Expense Report. To see the internal IDs associated with the Expenses sublist,

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/campaign.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/paycheckjournal.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/supportcase.html

Scriptable Sublists
Group Pricing Sublist

994

SuiteScript Developer & Reference Guide

open the SuiteScript Records Browser and navigate to one of the records that includes this
sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Group Pricing Sublist
The internal ID for this sublist is grouppricing. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Group Pricing sublist appears on the Customer record. To see the internal IDs associated
with the Group Pricing sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Item Fulfillment/Receipt Sublist
The internal ID for this sublist is item. This is a list sublist. (In the NetSuite Help Center, see
List Sublists for information on this sublist type.)

The Item Fulfillment/Item Receipt sublist appears on the Item Fulfillment and Item Receipt
records. To see the internal IDs associated with the Item Fulfillment/Item Receipt sublist, open
the SuiteScript Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Important: There are two types of item sublists in NetSuite. Although both item sublists
have the same internal ID (item), the sublists themselves appear on different
record types. Also note that the item sublist referenced in this section is a list
sublist. The item sublist referenced in the section Items Sublist is an inline
editor sublist type.

Items Sublist
The internal ID for this sublist is item. This sublist is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Items appears on the following records: Cash Refund, Cash Sale, Check, Credit Memo,
Estimate/Quote, Invoice, Opportunity, Purchase Order, Return Authorization, Sales Order,
Vendor Bill, Work Orders, and Transfer Order. To see the internal IDs associated with the Items

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/customer.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Item Pricing Sublist

995

SuiteScript Developer & Reference Guide

sublist, open the SuiteScript Records Browser and navigate to one of the records that includes
this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Important: There are two types of item sublists in NetSuite. Although both item sublists
have the same internal ID (item), the sublists themselves appear on different
record types. Also note that the item sublist referenced in this section is an
inline editor sublist type. The item sublist referenced in the section Item
Fulfillment/Receipt Sublist is a list sublist type.

Usage Notes

The following table provides usage notes for specific sublist fields on this sublist.

Sublit Field Internal ID Sublist Field UI Label Note

altsalesamt Alt. Sales Amount This sublist field is NOT scriptable on the Cash
Sale and Invoice records.

costestimatetype Cost Estimate Type This field supports both client and server
scripting. It is also available in search.

costestimate Est. Extended Cost This field supports both client and server
scripting. It is also available in search.

estgrossprofit Est. Gross Profit This field cannot be scripted with client/server
SuiteScript. It is, however, available in search.

estgrossprofitpercent Est. Gross Profit
Percent

This field cannot be scripted with client/server
SuiteScript. It is, however, available in search.

Item Pricing Sublist
The internal ID for this sublist is itempricing. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Item Pricing sublist appears on the customer record. To see the internal IDs associated
with the Item Pricing sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Lead Nurturing Sublist
The internal ID for this sublist is campaigndrip. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/customer.html

Scriptable Sublists
Line Sublist

996

SuiteScript Developer & Reference Guide

The Lead Nurturing sublist appears on the campaign record. To see the internal IDs associated
with the Lead Nurturing sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Line Sublist
The internal ID for this sublist is line. This sublist is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Line sublist appears on the Journal Entry record and on the Intercompany Journal Entry
record. To see the internal IDs associated with the Line sublist, open the SuiteScript Records
Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Members Sublist
The internal ID for this sublist is member. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Members sublist appears on the Assembly Item, Lot Numbered Assembly Item, and Kit
Item records. To see the internal IDs associated with the Members sublist, open the SuiteScript
Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The following table provides usage notes for specific sublist fields on this sublist.

Sublit Field Internal ID Sublist Field UI Label Note

taxschedule Scheduled This sublist field is visible only in the UI when the
Advanced Taxes feature is enabled.

Orders Sublist
The internal ID for this sublist is order. This sublist is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/campaign.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Other Events Sublist

997

SuiteScript Developer & Reference Guide

The Order sublist appears on the Item Supply Plan record. To see the internal IDs associated
with the Order sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Other Events Sublist
The internal ID for this sublist is campaignevent. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Other Events sublist appears on the campaign record. To see the internal IDs associated
with the Other Events sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Partners Sublist
The internal ID for this sublist is partners. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Partners sublist appears on the following records: Opportunity, Sales Order, Invoice, Cash
Sale, Estimate, Cash Refund, Return Authorization, Credit Memo, Work Order, Lead, Prospect,
Customer. To see the internal IDs associated with the Partners sublist, open the SuiteScript
Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

The Multi-Partner Management feature must be enabled in your account for this sublist to
appear.

Pricing Sublist
The Pricing sublist is often referred to as a pricing matrix, since there can be multiple prices
specified for an item, as determined by one or more price levels and one or more quantity
levels.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/itemsupplyplan.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/campaign.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Pricing Sublist

998

SuiteScript Developer & Reference Guide

Funtionally, the Pricing sublist shares many of the characteristics of List Sublists. However,
scripting to the Pricing sublist is not like scripting to other sublists in NetSuite. For this reason
it is recommended that you read all of the following topics to learn about using SuiteScript on
this sublist. These topics do not need to be read in order, although it is recommended:

• What is the Pricing Matrix?

• Pricing Sublist Feature Dependencies

• Pricing Sublist Internal IDs

• Pricing Sublist Code Sample

• Matrix Sublist APIs and Standard Sublist APIs

Note: The screenshots in this section depict the NetSuite user interface prior to Version
2010 Release 2.

For general information on item pricing, see these topics in the NetSuite Help Center:

• Item Pricing

• Setting Up Item Pricing

• Using Item Records

To see which records the Pricing sublist appears on, see Records that Include the Pricing
Sublist.

What is the Pricing Matrix?

Depending on the features enabled in your account, the Pricing sublist on many item records
can resemble a matrix of rows and columns of various prices (see figure). To access the price
values on a per-row, per-column basis, you must use Matrix APIs. These APIs are a subset of
the non-matrix Sublist APIs that are more commonly used when scripting with other sublists.

Note: Non-matrix sublist APIs can also be used on the Pricing sublist. However, they
are not used to get|set values considered to be part of the pricing matrix. For
information on when to use matrix and non-matrix APIs on the Pricing sublist, see
Matrix Sublist APIs and Standard Sublist APIs.

The figure below provides an overview of the rows and columns considered to be the pricing
matrix. As previously stated, the configuration of the Pricing sublist greatly depends on the
features enabled in your account. However, regardless of the features set, all configurations will
have some variation of a row / column matrix layout like the one shown below.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2180614.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2181018.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_N2164525.html

Scriptable Sublists
Pricing Sublist

999

SuiteScript Developer & Reference Guide

This code snippet shows the kind of values you will typically set when working with price
values in the pricing matrix. The internal ID of the Pricing sublist, as well as its field IDs, will
change depending on the features enabled in your account.

Note: See Pricing Sublist Feature Dependencies and Pricing Sublist Internal IDs for more
information.

Example

//nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)
nlapiGetLineItemMatrixValue('price', 'price', 2, 1);

In this sample you:

1. Specificy the sublist internal ID (price).

2. Specify the internal ID of the pricing field (which will generally be price).

Important: Although the UI labels in this figure show field names such as Alternate
Price 1, Alternate Price 2, and Online Price, the internal ID for the
fldnam parameter is still price. The only exception to this is described
in Pricing Sublist Field IDs for the currency field.

3. Specify the line number (row) of the price you want to get (in this sample, you are
getting the value in row 2 - this is the price for Alternate Price 1).

4. Specify the column number you want to get the value for (in this sample, you are getting
the value in column 1 for Alternate Price 1).

Scriptable Sublists
Pricing Sublist

1000

SuiteScript Developer & Reference Guide

1 Column one

2 Row two

Price is typically the internal ID for the fldnam parameter.

Pricing Sublist Feature Dependencies

There are three features that, if enabled or disabled in your account, can affect the overall
functionality of the Pricing sublist, its appearance in the UI, and the internal IDs that are
referenced in SuiteScript.

You can check which of these features are enabled by looking in the UI, or by calling the
nlobjGetContext.getFeature(name) method and specifying the feature internal ID.

The features that affect the Pricing sublist are:

• Multiple Currencies

• Multiple Prices

• Quantity Pricing

If none of these features are enabled in your account, then there is no Pricing sublist on the
item record, and the field that holds the item price appears on the Basic subtab as Sales Price
(see figure). The internal ID for this field is rate. You do not use Sublist APIs to set or get values
on rate. Instead, use Field APIs.

Multiple Currencies

This feature allows for item prices to be set in multiple currencies. Separate pricing is specified
for each currency. On the Pricing sublist you will see subtabs with the name of the currencies
specified in your account (see figure).

Scriptable Sublists
Pricing Sublist

1001

SuiteScript Developer & Reference Guide

Important: See Pricing Sublist ID to learn how to determine the internal ID of the Pricing
sublist based on whether the Multiple Currencies feature is enabled.

In the UI, you can check if this feature is enabled by looking at the Pricing sublist itself or by
going to Setup > Company > Enable Features. On the Company tab, the Multiple Currencies
box will be selected if this feature is enabled. Note: Only a NetSuite administrator can enable
this feature.

In SuiteScript, you can get the feature status by writing something similar to:

var multiCurrency = nlapiGetContext().getFeature('MULTICURRENCY');

Important: See Pricing Sublist Code Sample for more details.

Multiple Prices

This feature allows different prices to be specified for different conditions or types of
customers. This requires that Price Levels are set up. There are a set of standard Price Levels
provided by NetSuite, and these can be changed or extended by the customer.

This figure shows the Pricing sublist with the Multiple Prices feature enabled. Notice you can
specify multiple prices for the same item.

Scriptable Sublists
Pricing Sublist

1002

SuiteScript Developer & Reference Guide

By comparison, this figure shows the Pricing sublist with the Multiple Prices feature disabled.
You can set only one price for the item.

In the UI, you can check if this feature is enabled by looking at the Pricing sublist itself or by
going to Setup > Company > Enable Features. On the Transactions subtab, the Multiple Prices
check box will be selected if this feature is enabled. Note: Only a NetSuite administrator can
enable this feature.

In SuiteScript, you can get the feature status by writing something similar to:

var multiPrice = nlapiGetContext().getFeature('MULTPRICE');

Important: See Pricing Sublist Code Sample for more details.

Quantity Pricing

This feature allows the item price to vary based on the quantity of items sold. Specifically,
this feature allows different quantity levels to be specified and allows the price to vary at each
quantity level.

This figure shows the Pricing sublist with the Quantity Pricing feature enabled.

Scriptable Sublists
Pricing Sublist

1003

SuiteScript Developer & Reference Guide

Note: When the Quantity Pricing feature is enabled, an administrator can specify the
number of Qty columns that appear on the Pricing sublist. The following figure
shows that four Qty columns have been specified. Set the Qty preference by going
to Setup > Accounting > Accounting Preferences > Items & Transactions. In the
Maximum # of Quantity-based Price Levels field, specify the number of columns.

Item pricing is determined by values specified in the Qty fields.

By comparison, this figure shows the Pricing sublist with the Quantity Pricing feature disabled.
Item prices are not determined by the quantities specified.

No Qty fields exist in the following image:

In the UI, you can check if this feature is enabled by looking at the Pricing sublist itself or
by going to Setup > Company > Enable Features. On the Transactions subtab, the Quantity
Pricing check box will be selected if this feature is enabled. Note: Only a NetSuite administrator
can enable this feature.

Scriptable Sublists
Pricing Sublist

1004

SuiteScript Developer & Reference Guide

In SuiteScript, you can get the feature status by writing something similar to:

var quantityPricing = nlapiGetContext().getFeature('QUANTITYPRICING');

Important: See Pricing Sublist Code Sample for more details.

Pricing Sublist Internal IDs

As discussed in Pricing Sublist Feature Dependencies, the Pricing sublist looks and functions
different depending on the features set in your account.

See Pricing Sublist ID for the internal ID of the Pricing sublist depending on features enabled in
your account.

See Pricing Sublist Field IDs for all other field IDs associated with this sublist.

Pricing Sublist ID

In SuiteScript, the internal ID of the Pricing sublist is determined by the features enabled in
your NetSuite account.

If the Multiple Currencies feature is not enabled in your account, the internal ID for the
Pricing sublist is price. This means that you will set the type parameter in APIs such as
nlapiGetMatrixField(type, fldnam, column) and nlapiSetLineItemMatrixValue(type, fldnam,
linenum, column, value) to price.

If Multiple Currencies is enabled, then there are separate Pricing sublists per currency (see
figure).

Each currency pricing list will have its own internal ID. For example, the internal ID for the
currency called USA will be price1. This ID reflects the internal ID of the sublist (price) and
the internal ID of the USA currency (1).

Scriptable Sublists
Pricing Sublist

1005

SuiteScript Developer & Reference Guide

The internal ID for the Canadian dollar sublist will be price3. This reflects the internal ID of
the sublist (price) and the internal ID of the Canadian dollar currency (3).

This figure shows the currencies that have been set in this account. Notice the Internal ID for
each currency is the numberic value appended to price. When the Multiple Currencies feature
is enabled, you can see the internal ID for each currency by going to Lists > Accounting >
Currencies.

Based on the internal ID in the figure above, you will set the type parameter in APIs such as
nlapiGetMatrixField as follows:

nlapiGetMatrixField(price1, fldnam, column) // if scripting on the USA tab
nlapiGetMatrixField(price2, fldnam, column) // if scripting on the British pound tab
nlapiGetMatrixField(price3, fldnam, column) // if scripting on the Canadian dollar tab
nlapiGetMatrixField(price4, fldnam, column) // if scripting on the Euro tab

For topics related to this one, see Pricing Sublist Feature Dependencies.

Pricing Sublist Field IDs

This table provides the internal IDs for all fields associated with the Pricing sublist. Field types
are categorized as matrix fields, sublist fields, and body fields.

In SuiteScript, use the IDs that appear in the “Field Internal ID” column for the fldnam values
in Sublist APIs and Field APIs.

Field UI
Label

Field Internal ID Field Type Mandatory Field Notes

Maxtrix Fields

Base Price

Qty

price string true The price for that level and
quantity. See Figure 1 - Matrix
Fields.

Scriptable Sublists
Pricing Sublist

1006

SuiteScript Developer & Reference Guide

Field UI
Label

Field Internal ID Field Type Mandatory Field Notes

Important: When using
matrix APIs (ie.,
any API that
has the word
Matrix in its
name), price
will generally
be the value
specified for
the fldnam
parameter.
The exception
to this is if
the Multiple
Currencies
feature is
enabled in your
account.

Sublist Fields

Default
Discount %

discount See Figure 2 - Sublist Fields. See
also Standard Sublist APIs for a
code sample that references this
internal ID.

 currency The currency field is a hidden
field. It is not visible in the UI.
See Figure 2 - Sublist Fields.

This field is scriptable only when
the Multiple Currencies feature
is enabled.

The internal IDs for the fldname
parameter in matrix APIs will be
price1currency, price2currency,
pricecurrency3, etc., to reflect
the currency internal ID.

Price Level pricelevel The pricelevel for this price. See
Figure 2 - Sublist Fields.

See also Standard Sublist
APIs for a code sample that
references this internal ID.

Body Fields

Quantity
Pricing
Schedule

quantitypricingschedu
le

select false If a quantity pricing schedule
has been specified in the UI
drop-down, item prices will be

Scriptable Sublists
Pricing Sublist

1007

SuiteScript Developer & Reference Guide

Field UI
Label

Field Internal ID Field Type Mandatory Field Notes

calculated for the pricing matrix
according to the specified
schedule. See Figure 3 - Body
Fields.

Also note that the value of
the quanity pricing schedule
sets the value of the Calculate
Quantity Discounts (overallquan
titypricingtype) field.

Use Field APIs to access this
field.

Calculate
Quantity
Discounts

overallquantitypricingt
ype

select false Used to determine the quantity
amount at the time the item is
priced on the order. (This field
does not change price settings
in the matrix). See Figure 3 -
Body Fields.

Use Field APIs to access this
field.

Use
Marginal
Rates

usemarginalrates checkbox false Used to determine how the
quantity discounts are applied
at the time the item is priced
on the order with a specified
quantity. (This field does not
change the price settings in
the matrix.) See Figure 3 - Body
Fields.

Use Field APIs to access this
field.

Pricing
Group

pricinggroup select false Used to provide customer-
specific pricing. Could affect
the pricing at the time the
item is placed on the order
and associated with a specific
customer. See Figure 3 - Body
Fields.

Use Field APIs to access this
field.

Scriptable Sublists
Pricing Sublist

1008

SuiteScript Developer & Reference Guide

Figure 74.1. Figure 1 - Matrix Fields

Pricing sublist matrix field.

Figure 74.2. Figure 2 - Sublist Fields

Use non-matrix Sublist APIs to get or set values for these pricing sublist fields.

Scriptable Sublists
Pricing Sublist

1009

SuiteScript Developer & Reference Guide

Figure 74.3. Figure 3 - Body Fields

Use standard Field APIs to get or set values for Pricing sublist body fields.

Pricing Sublist Code Sample
This sample shows how to determine which pricing-related features are enabled in your
account. It then shows how to programmatically determine the internal ID for the Pricing
sublist itself, and then check to see if a Quantity Schedule has been applied to the items in
this list. The script also shows how to set item prices and quanity levels depending on various
conditions set within the pricing matrix.

Note: If your browser is inserting scroll bars in this code sample, maximize your browser
window, or expand the main frame that this sample appears in.

// Check the features enabled in the account. See
Pricing Sublist Feature Dependencies for
// details on why this is important.
var multiCurrency = nlapiGetContext().getFeature('MULTICURRENCY');
var multiPrice = nlapiGetContext().getFeature('MULTPRICE');
var quantityPricing = nlapiGetContext().getFeature('QUANTITYPRICING');

// Set the name of the Price sublist based on features enabled and currency type.
// See
Pricing Sublist Internal IDs for details on why this is important.
var priceID;
var currencyID = "EUR";

// Set the ID for the sublist and the price field. Note that if all pricing-related features
// are disabled, you will set the price in the rate field. See
Pricing Sublist Feature Dependencies
// for details.
if (multiCurrency == 'F' && multiPrice == 'F' && quantityPricing == 'F')
 priceID = "rate";
 else
 {
 priceID = "price";

Scriptable Sublists
Pricing Sublist

1010

SuiteScript Developer & Reference Guide

 if (multiCurrency == "T")
 {
 var internalId = nlapiSearchRecord('currency', null, new nlobjSearchFilter('symbol',
 null,'contains', currencyID))[0].getId();

 // Append the currency ID to the sublist name
 priceID = priceID + internalId;
 }
 }

// Check to see if the item is using a Quantity Schedule
// If a Quantity Schedule is used, only the base price needs to be set.
// All other prices will be set according to the schedule.
var itemRecord = nlapiLoadRecord('inventoryitem', itemID);
var qtyPriceSchedule = itemRecord.getFieldValue('quantitypricingschedule');

// Set the base price
var basePrice = 100;

// You must select, set, and then commit the sublist line you want to change.
itemRecord.selectLineItem(priceID, 1);
itemRecord.setCurrentLineItemMatrixValue(priceID, 'price', 1, basePrice);
itemRecord.commitLineItem(priceID);

// Get the number of columns in the price matrix
// Each column represents a different quantity level
columnCount = itemRecord.getMatrixCount(priceID, 'price');

// Set the base price in each quantity of the price matrix for a specific sublist, e.g. currenc
y

 // Set the base price in each quantity
 for (var j=1; j<=columnCount; j++)
 {

 // Set the price for this cell of the matrix
 itemRecord.selectLineItem(priceID, 1);
 itemRecord.setCurrentLineItemMatrixValue(priceID, 'price', j, currencyBasePrice);
 itemRecord.commitLineItem(priceID);
 }

// Display the full price matrix for a specific currency as an HTML table

 // get the size of the matrix
 var quantityLevels = itemRecord.getMatrixCount(priceID, 'price');
 var priceLevels = itemRecord.getLineItemCount(priceID);
 var priceName = "";
 var priceNameField = "pricelevel";
 var itemPrice = 0;
 var fieldObj = null;

 // create a table to present the results
 var strName = "<table>";

 if (quantityLevels > 1)
 {
 strName += "<tr>";

 // write out the quantity levels as the first row
 for (var j=1; j<=quantityLevels; j++)

Scriptable Sublists
Pricing Sublist

1011

SuiteScript Developer & Reference Guide

 {
 strName += "<td>";

 // this Matrix API obtains an nlobjField object
 // the nlobjField object can be used to obtain the UI label
 fieldObj = itemRecord.getMatrixField(priceID, 'price', j);
 if (fieldObj != null)
 strName += fieldObj.getLabel();
 strName += j;
 strName += "</td>";

 strName += "<td>";

 // this Matrix API obtains the value of the Quantity level
 strName += itemRecord.getMatrixValue(priceID, 'price', j);
 strName += "</td>";
 }

 strName += "</tr>";

 }

 // loop through the matrix one row at a time
 for (var i=1; i<=priceLevels; i++)
 {
 strName += "<tr>";

 // loop through each column of the matrix
 for (j=1; j<=quantityLevels; j++)
 {
 // get the price for this cell of the matrix
 itemPrice = itemRecord.getLineItemMatrixValue(priceID, 'price', i, j);

 // Get the name of the price level. Note: you will use a standard
 // sublist API and not a matrix API for this.
 priceName = itemRecord.getLineItemText(priceID, priceNameField, i);

 strName += "<td>";
 strName += priceName;
 strName += "</td>";
 strName += "<td>";
 strName += itemPrice;
 strName += "</td>";
 }
 strName += "</tr>";
 }
 strName += "</table>";

Matrix Sublist APIs and Standard Sublist APIs

When writing SuiteScript against the Pricing sublist, you may end up using different types of
Sublist APIs. If you want to get|set values in the pricing matrix, you will use Matrix APIs.

If you want to get|set non-matrix fields, you will use all non-matrix Sublist APIs or Field APIs,
depending on which fields you are trying to access.

Scriptable Sublists
Pricing Sublist

1012

SuiteScript Developer & Reference Guide

Note: See What is the Pricing Matrix? for information on the pricing matrix. See Pricing
Sublist Field IDs for information on the differences among matrix, non-matrix, and
body sublist fields.

Matrix APIs

The following are considered to be matrix APIs for use on the Pricing sublist. Use these APIs
to get|set matrix fields. See Pricing Sublist Field IDs to learn which fields are considered matrix
fields.

Click these links to see the API documentation for each matrix API. Also see the figures below
for a visual representation for where on the pricing matrix each matrix API executes.

• nlapiGetMatrixField(type, fldnam, column)

• nlapiGetMatrixValue(type, fldnam, column)

• nlapiSetMatrixValue(type, fldnam, column, value, firefieldchanged, synchronous)

• nlapiGetMatrixCount(type, fldnam)

• nlapiGetCurrentLineItemMatrixValue(type, fldnam, column)

• nlapiSetCurrentLineItemMatrixValue(type, fldnam, column, value, firefieldchanged,
synchronous)

• nlapiGetLineItemMatrixValue(type, fldnam, linenum, column)

• nlapiGetLineItemMatrixField(type, fldnam, linenum, column)

• nlapiFindLineItemMatrixValue(type, fldnam, val, column)

On matrix header fields, use nlapiGetMatrixField, nlapiGetMatrixValue, and
nlapiGetMatrixCount.

Scriptable Sublists
Pricing Sublist

1013

SuiteScript Developer & Reference Guide

When on an existing line in the matrix, use nlapiGetCurrentLineItemMatrixValue and
nlapiSetCurrentLineItemMatrixValue to get and set the price on that line in the specific
column, respectively.

For all other lines in the matrix, use nlapiGetLineItemMatrixValue, nlapiGetItemMatrixField,
and nlapiFindLineItemValue.

Standard Sublist APIs

If you want to reference the other fields in the Pricing sublist, such ascurrency, name, or
discount, use the existing nlapiGetLineItemValue(...) or nlobjRecord.getLineItemValue(...)
APIs and pass in the existing fldnam (example: price1currency). Also see Pricing Sublist Field
IDs, which specifies which fields on the Pricing sublist can be set using standard Sublist APIs.

Example:

// load an item record
var record = nlapiLoadRecord('inventoryitem', 536);

// get the value of the currency field on line 2
var currency = record.getLineItemValue('price1', 'currency', '2');

// get the value of the pricelevelname field on line 2
var pricelevelname2 = record.getLineItemValue('price1', 'pricelevel', '2');
var pricelevelname3 = record.getLineItemValue('price1', 'pricelevel', '3');
var pricelevelname4 = record.getLineItemValue('price1', 'pricelevel', '4');

// returns the discount from line item 2
var discount2 = record.getLineItemValue('price1', 'discount', '2');
var discount3 = record.getLineItemValue('price1', 'discount', '3');
var discount4 = record.getLineItemValue('price1', 'discount', '4');

Scriptable Sublists
Predecessors Sublist

1014

SuiteScript Developer & Reference Guide

Records that Include the Pricing Sublist
The Pricing sublist appears on the following records: Assembly Item, Lot Numbered Assembly
Item, Serialized Assembly Item, Lot Numbered Inventory Item, Service Sale Item, Other Charge
Sale Item, Serialized Inventory Item, Gift Certificate Item, Kit Item, Inventory Item, Non
Inventory Sale Item, Non Inventory Resale Item, Other Charge Resale Item, Service Resale
Item.

Predecessors Sublist
The internal ID for this sublist is predecessor. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Predecessors sublist appears on the project task record. To see the internal IDs associated
with the Predecessors sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Related Solutions Sublist
The internal ID for this sublist is solutions. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Related Solutions sublist appears on the solution record. To see the internal IDs associated
with the Related Solutions sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Resources Sublist
The internal ID for this sublist is resource. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Resources sublist appears on the event record. To see the internal IDs associated with the
Resources sublist, open the SuiteScript Records Browser and click on the Event record.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Sales Team Sublist
The internal ID for this sublist is salesteam. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/projecttask.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/solution.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/calendarevent.html

Scriptable Sublists
Shipping Sublist

1015

SuiteScript Developer & Reference Guide

The Sales Team sublist appears on the following records: Cash Refund, Cash Sale, Customer,
Credit Memo, Estimate/Quote, Invoice, Opportunity, Return Authorization, Sales Order, Work
Order. To see the internal IDs associated with the Sales Team sublist, open the SuiteScript
Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Shipping Sublist

The internal ID for this sublist is shipgroup. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Shipping sublist appears on the following records: Sales Order, Cash Sale, Invoice,
Estimate, and Item Fulfillment. (Note that although the Shipping sublist is supported on
the Item Fulfillment record type, this sublist is not currently showing on this record in the
SuiteScript Records Browser. To get the internal IDs for the Shipping sublist, open the Records
Browser and navigate to one of the other record types that support this sublist.)

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Usage Notes

Sublit Field Internal ID Sublist Field UI Label Note

shippingtaxcode Shipping Tax Code This sublist field appears only if per-line taxes
have been set on the Item sublist.

Site Category

The internal ID for this sublist is sitecategory. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Site Category sublist appears on the following records: Assembly Item, Download Item,
Gift Certificate Item, Inventory Part, Kit Item, Lot Numbered Assembly Item, Lot Numbered
Inventory Item, Serialized Assembly Item, Serialized Inventory Item, Service Item. To see the
internal IDs associated with the Site Category sublist, open the SuiteScript Records Browser
and navigate to one of the records that includes this sublist.

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Scriptable Sublists
Time Tracking Sublist

1016

SuiteScript Developer & Reference Guide

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Time Tracking Sublist
The internal ID for this sublist is timeitem. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

The Time Tracking sublist appears on the following records: Event, Customer, Project (Job),
Lead, Phone Call, Prospect, Support Case, Task. (Note that although the Time Tracking sublist
is supported on the Customer, Project, Lead, and Prospect record types, this sublist is not
currently showing on these records in the SuiteScript Records Browser. To get the internal IDs
for the Time Tracking sublist, open the Records Browser and navigate to any of the other record
types that support this sublist.)

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Topics Sublist
The internal ID for this sublist is topics. This sublist is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Topics sublist appears on the Solution record. To see the internal IDs associated with the
Topics sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Units
The internal ID for this sublist is uom. This sublist is an inline editor sublist. (In the NetSuite
Help Center, see Inline Editor Sublists for information on this sublist type.)

The Units sublist appears on the Unit of Measure (Unit Type) record. To see the internal IDs
associated with the Units sublist, refer to the SuiteScript Records Browser.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Vendors
The internal ID for this sublist is itemvendor. This sublist is an inline editor sublist. (In the
NetSuite Help Center, see Inline Editor Sublists for information on this sublist type.)

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/solution.html
https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/record/unitstype.html

Scriptable Sublists
Related Items Sublist

1017

SuiteScript Developer & Reference Guide

The Vendors sublist appears on the following records: Lot Numbered Assembly Item and
Serialized Assembly Item. To see the internal IDs associated with the Vendors sublist, open the
SuiteScript Records Browser and navigate to one of the records that includes this sublist.

Note: For information on using the SuiteScript Records Browser, see Working with the
SuiteScript Records Browser in the NetSuite Help Center.

Related Items Sublist
Field UI Label Field Internal ID Field Type Mandatory Field Notes

Base Price baseprice currency false

Item Description description textarea false

Item item select false

Online Price onlineprice currency false

Related Item presentationitem select true

https://system.netsuite.com/help/helpcenter/en_US/srbrowser/Browser2015_1/script/index.html

Record Initialization Defaults 1018

SuiteScript Developer & Reference Guide

Chapter 75 Record Initialization Defaults
You can use SuiteScript to specify record initialization parameters that will default when
creating, copying, loading, and transforming records. To enable this behavior, use the
initializeValues parameter in the following APIs:

• nlapiCreateRecord(type, initializeValues)

• nlapiCopyRecord(type, id, initializeValues)

• nlapiLoadRecord(type, id, initializeValues)

In nlapiTransformRecord(type, id, transformType, transformValues), use the transformValues
parameter to set initialization values during the record transformation process.

The initializeValues parameter is an Object that can contain an array of name/value pairs of
defaults that are passed upon record initialization. The following table lists initialization types
that are available to certain SuiteScript-supported records and the values they can contain. For
examples, see Record Initialization Examples.

Important: In your scripts, the property type does not need to be in quotes, but the
property value does, unless it is a variable, number, or boolean.

Record Initialization Type Values

All SuiteScript-supported records.

For a list of records, see SuiteScript Supported
Records.

For information on scripting a record in dynamic
mode, see the help topic Working with Records in
Dynamic Mode.

recordmode dynamic

All SuiteScript-supported records that support form
customization.

customform <customformid>

Assembly Build assemblyitem <assemblyitemid>

Cash Refund entity <entityid>

Cash Sale entity <entityid>

Check entity <entityid>

Credit Memo entity <entityid>

Customer Payment entity <entityid> | <inv>

Customer Refund entity <entityid>

Estimate entity <entityid>

Expense Report entity <entityid>

Invoice entity <entityid>

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2941943.html

Record Initialization Defaults 1019

SuiteScript Developer & Reference Guide

Record Initialization Type Values

Item Receipt entity <entityid>

Non-Inventory Part subtype sale | resale | purchase

Opportunity entity <entityid>

Other Charge Item subtype sale | resale | purchase

Purchase Order entity <entityid>

Return Authorization entity <entityid>

Sales Order entity <entityid>

Script Deployment script <scriptid>

Service subtype sale | resale | purchase

Tax Group nexuscountry <countrycode>

See Country Codes Used for
Initialization Parameters.

Tax Type country <countrycode>

See Country Codes Used for
Initialization Parameters.

Topic parenttopic <parenttopicid>

Vendor Bill entity <entityid>

Vendor Payment entity <entityid>

Work Order assemblyitem <assemblyitemid>

Record Initialization Examples

The following samples show multiple ways to specify record initialization values. You can
specify one name/value pair at a time or an array of name/value pairs.

Example 1

//load a sales order in dynamic mode
var rec = nlapiLoadRecord('salesorder', {recordmode: 'dynamic'});

Example 2

//load a sales order in dynamic mode and source in all values from customer (entity) 87
var rec = nlapiLoadRecord('salesorder', 111, {recordmode: 'dynamic', entity: 87});

Example 2

//create a sales order that uses values from custom form 17
var rec = nlapiCreateRecord('salesorder', {customform: 17});

Record Initialization Defaults 1020

SuiteScript Developer & Reference Guide

Example 3

//copy a sales order – the record object returned from the copy will be in dynamic
//mode and contain values from custom form 17
var rec = nlapiCopyRecord('salesorder', 55, {recordmode: 'dynamic', customform: 17});

Example 4

//create an Array to set multiple initialization values
var initvalues = new Array();
initvalues.customform= 17;
initvalues.recordmode = 'dynamic';
initvalues.entity = 355;

// create sales order and pass values stored in the initvalues array
var rec = nlapiCreateRecord('salesorder', initvalues);

Example 5

//create a script deployment record in dynamic mode and attach a script record to it
var rec = nlapiCreateRecord('scriptdeployment', {recordmode: 'dynamic', script: 68});
rec.setFieldValue('status', 'NOTSCHEDULED');

Country Codes Used for Initialization Parameters

If you are scripting the Tax Group or Tax Type records, you can initialize the record to
source all values related to a specific country. In your script, use the country code for the <
countrycodeid > value, for example:

nlapiCreateRecord('taxgroup', {nexuscountry: 'AR'});

Country Code Country Name

AD Andorra

AE United Arab Emirates

AF Afghanistan

AG Antigua and Barbuda

AI Anguilla

AL Albania

AM Armenia

AN Netherlands Antilles

AO Angola

AQ Antarctica

AR Argentina

AS American Samoa

AT Austria

Record Initialization Defaults 1021

SuiteScript Developer & Reference Guide

Country Code Country Name

AU Australia

AW Aruba

AZ Azerbaijan

BA Bosnia and Herzegovina

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BL Saint Barthélemy

BM Bermuda

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Bhutan

BV Bouvet Island

BW Botswana

BY Belarus

BZ Belize

CA Canada

CC Cocos (Keeling) Islands

CD Congo, Democratic People's Republic

CF Central African Republic

CG Congo, Republic of

CH Switzerland

CI Cote d'Ivoire

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

Record Initialization Defaults 1022

SuiteScript Developer & Reference Guide

Country Code Country Name

CR Costa Rica

CU Cuba

CV Cap Verde

CX Christmas Island

CY Cyprus

CZ Czech Republic

DE Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EE Estonia

EG Egypt

EH Western Sahara

ER Eritrea

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Islands (Malvina)

FM Micronesia, Federal State of

FO Faroe Islands

FR France

GA Gabon

GB United Kingdom (GB)

GD Grenada

GE Georgia

GF French Guiana

GG Guernsey

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

Record Initialization Defaults 1023

SuiteScript Developer & Reference Guide

Country Code Country Name

GN Guinea

GP Guadeloupe

GQ Equatorial Guinea

GR Greece

GS South Georgia

GT Guatemala

GU Guam

GW Guinea-Bissau

GY Guyana

HK Hong Kong

HM Heard and McDonald Islands

HN Honduras

HR Croatia/Hrvatska

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IM Isle of Man

IN India

IO British Indian Ocean Territory

IQ Iraq

IR Iran (Islamic Republic of)

IS Iceland

IT Italy

JE Jersey

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KG Kyrgyzstan

KH Cambodia

KI Kiribati

KM Comoros

KN Saint Kitts and Nevis

Record Initialization Defaults 1024

SuiteScript Developer & Reference Guide

Country Code Country Name

KP Korea, Democratic People's Republic

KR Korea, Republic of

KW Kuwait

KY Cayman Islands

KZ Kazakhstan

LA Lao People's Democratic Republic

LB Lebanon

LC Saint Lucia

LI Liechtenstein

LK Sri Lanka

LR Liberia

LS Lesotho

LT Lithuania

LU Luxembourg

LV Latvia

LY Libyan Arab Jamahiriya

MA Morocco

MC Monaco

MD Moldova, Republic of

ME Montenegro

MF Saint Martin

MG Madagascar

MH Marshall Islands

MK Macedonia

ML Mali

MM Myanmar

MN Mongolia

MO Macau

MP Northern Mariana Islands

MQ Martinique

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

Record Initialization Defaults 1025

SuiteScript Developer & Reference Guide

Country Code Country Name

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New Caledonia

NE Niger

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NU Niue

NZ New Zealand

OM Oman

PA Panama

PE Peru

PF French Polynesia

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM St. Pierre and Miquelon

PN Pitcairn Island

PR Puerto Rico

PS Palestinian Territories

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Reunion Island

RO Romania

RS Serbia

Record Initialization Defaults 1026

SuiteScript Developer & Reference Guide

Country Code Country Name

RU Russian Federation

RW Rwanda

SA Saudi Arabia

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH St. Helena

SI Slovenia

SJ Svalbard and Jan Mayen Islands

SK Slovak Republic

SL Sierra Leone

SM San Marino

SN Senegal

SO Somalia

SR Suriname

ST Sao Tome and Principe

SV El Salvador

SY Syrian Arab Republic

SZ Swaziland

TC Turks and Caicos Islands

TD Chad

TF French Southern Territories

TG Togo

TH Thailand

TJ Tajikistan

TK Tokelau

TM Turkmenistan

TN Tunisia

TO Tonga

TP East Timor

TR Turkey

TT Trinidad and Tobago

TV Tuvalu

Record Initialization Defaults 1027

SuiteScript Developer & Reference Guide

Country Code Country Name

TW Taiwan

TZ Tanzania

UA Ukraine

UG Uganda

UM US Minor Outlying Islands

US United States

UY Uruguay

UZ Uzbekistan

VA Holy See (City Vatican State)

VC Saint Vincent and the Grenadines

VE Venezuela

VG Virgin Islands (British)

VI Virgin Islands (USA)

VN Vietnam

VU Vanuatu

WF Wallis and Futuna Islands

WS Western Samoa

YE Yemen

YT Mayotte

ZA South Africa

ZM Zambia

ZW Zimbabwe

Transaction Type IDs 1028

SuiteScript Developer & Reference Guide

Chapter 76 Transaction Type IDs
When calling nlapiSearchRecord(type, id, filters, columns) for transactions, you can pass the
'type' as a transaction search column filter. The following table list all NetSuite transaction types
and their corresponding transaction type IDs. When scripting, use the Type ID to filter the
transaction type.

Note that the transaction type IDs are case-sensitive. Be sure to type the IDs as they appear in
this table.

Transaction Type Transaction Type ID

Assembly Build Build

Assembly Unbuild Unbuild

Bill VendBill

Bill CCard VendCard

Bill Credit VendCred

Bill Payment VendPymt

Bin Putaway Worksheet BinWksht

Bin Transfer BinTrnfr

CCard Refund CardRfnd

Cash Refund CashRfnd

Cash Sale CashSale

Check Check

Commission Commissn

Credit Card CardChrg

Credit Memo CustCred

Currency Revaluation FxReval

Customer Deposit CustDep

Customer Refund CustRfnd

Deposit Deposit

Deposit Application DepAppl

Estimate Estimate

Expense Report ExpRept

Inventory Adjustment InvAdjst

Inventory Distribution InvDistr

Inventory Transfer InvTrnfr

Inventory Worksheet InvWksht

Invoice CustInvc

Transaction Type IDs 1029

SuiteScript Developer & Reference Guide

Transaction Type Transaction Type ID

Item Fulfillment ItemShip

Item Receipt ItemRcpt

Journal Journal

Liability Adjustment LiaAdjst

Opportunity Opprtnty

Paycheck Paycheck

Payment CustPymt

Payroll Adjustment YtdAdjst

Payroll Liability Check LiabPymt

Purchase Order PurchOrd

Return Authorization RtnAuth

Sales Order SalesOrd

Sales Tax Payment TaxPymt

Statement Charge CustChrg

Tax Liability Cheque TaxLiab

Transfer TrnfrOrd

Vendor Return Authorization VendAuth

Work Order WorkOrd

Permission Names and IDs 1030

SuiteScript Developer & Reference Guide

Chapter 77 Permission Names and IDs
The following table provides permission names and IDs associated with each NetSuite feature.
You can use the permission ID with nlobjContext.getSetting(type, name) to return the
permission levels that have been specified in your account.

Permission ID Permission Name Feature

ADMI_ACCOUNTING Set Up Accounting Accounting

ADMI_ACCTPERIODS Manage Accounting Periods Accounting Periods

ADMI_ACCTSETUP Set Up Accounting Accounting

ADMI_ADVANCED_ANALYTICS SuiteAnalytics Connect SuiteAnalytics Connect

ADMI_BILLPAYSETUP Set Up Bill Pay Online Bill Pay

ADMI_CAMPAIGNEMAIL Set Up Campaign Email Addresses Marketing Automation

ADMI_CAMPAIGNSETUP Setup Campaigns Marketing Automation

ADMI_CASEFORM Online Case Form Customer Support and Service

ADMI_CASEISSUE Support Case Issue Customer Support and Service

ADMI_CASEORIGIN Support Case Origin Customer Support and Service

ADMI_CASEPRIORITY Support Case Priority Customer Support and Service

ADMI_CASERULE Support Case Territory Rule Customer Support and Service

ADMI_CASESTATUS Support Case Status Customer Support and Service

ADMI_CASETERRITORY Support Case Territory Customer Support and Service

ADMI_CASETYPE Support Case Type Customer Support and Service

ADMI_CLASSESTOLOCS Convert Classes to Locations Locations

ADMI_CLOSEPERIOD Lock Transactions Accounting Periods

ADMI_CONSOLIDATED Create Consolidation Company Accounting

ADMI_CONVERTCLASSES Convert Classes to Departments Departments

ADMI_CREATEPEER Copy Chart of Accounts to New
Company

Accounting

ADMI_CREDITCARD Credit Card Processing Credit Card Payments

ADMI_CSVIMPORTPREF Set Up CSV Preferences Accounting

ADMI_CUSTCENTER Custom Centers Custom Records

ADMI_CUSTITEMNUMBERFIELD Custom Item Number Fields Inventory

ADMI_CUSTOMERFORM Online Customer Form Sales Force Automation

ADMI_CUSTOMERRULE Sales Territory Rule Sales Force Automation

ADMI_CUSTOMSCRIPT SuiteScript Client SuiteScript

ADMI_CUSTRECORD Custom Record Types Custom Records

ADMI_CUSTSECTION Custom Center Tabs Custom Records

ADMI_CUSTTASKS Custom Center Links Custom Records

Permission Names and IDs 1031

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

ADMI_DUPLICATESETUP Duplicate Detection Setup Duplicate Detection & Merge

ADMI_EMPLCATEGORY Publish Employee List Intranet

ADMI_ENTITYSTATUS Customer Status Customer Relationship
Management

ADMI_ESCALATIONRULE Escalation Assignment Rule Customer Support and Service

ADMI_ESCALATIONTERRITORY Escalation Assignment Customer Support and Service

ADMI_EXPORTIIF Export as IIF Accounting

ADMI_EXPORTIMPORTEBAY eBay Export/Import eBay Integration

ADMI_FINCHARGEPREF Finance Charge Preferences A/R

ADMI_IMPORTQIFFILE Import Quicken® QIF File Accounting

ADMI_ISSUESETUP Issue Setup Issue Management

ADMI_ISSUESHOWSTOPPER Mark Issue As Showstopper Issue Management

ADMI_KNOWLEDGEBASE Publish Knowledge Base Knowledge Base

ADMI_KPIREPORT KPI Scorecards KPI Scorecards

ADMI_OUTLOOKINTEGRATION Outlook Integration Outlook Integration

ADMI_PAYROLL Set Up Payroll Payroll

ADMI_PENDINGBOOKJOURNAL Allow Pending Book Journal Entry Multi-Book Accounting

ADMI_PERIODOVERRIDE Override Period Restrictions Accounting Periods

ADMI_REPOGROUPS Financial Statement Sections Accounting

ADMI_REPOLAYOUTS Financial Statement Layouts Accounting

ADMI_SALESTERRITORY Sales Territory Sales Force Automation

ADMI_SETUPEBAY Set Up eBay eBay Integration

ADMI_SFASETUP Sales Force Automation Setup Sales Force Automation

ADMI_STATETAXIMPORT Import State Sales Tax Accounting

ADMI_STORESETUP Set Up Web Site Web Site

ADMI_SUPPORTSETUP Support Setup Customer Support and Service

ADMI_SWAPPRICES Swap Prices Between Price Levels Multiple Prices

ADMI_SYNCHRONIZATIONSETUP Set up synchronization Synchronization

ADMI_TEAMSELLINGCONTRIBUT
ION

Team Selling Contribution Team Selling

ADMI_TELEPHONY_SETUP Telephony Integration Telephony Integration

ADMI_TRANSITEMTXT Translation Multi-Language

ADMI_UNCATSITEITEMS Uncategorized Presentation Items Web Store

ADMI_UPSELLSETUP Upsell Setup Upsell Manager

GRAP_AP Accounts Payable Graphing A/P

GRAP_AR Accounts Receivable Graphing A/R

Permission Names and IDs 1032

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

GRAP_EXP Expenses Accounting

GRAP_INC Income Accounting

GRAP_NETWORTH Net Worth Accounting

LIST_ACCOUNT Accounts Accounting

LIST_ALLOCSCHEDULE Allocation Schedules Expense Allocation

LIST_AMORTIZATION Amortization Schedules Amortization

LIST_BILLINGSCHEDULE Billing Schedules Advanced Billing

LIST_BIN Bins Accounting

LIST_CAMPAIGN Marketing Campaigns Marketing Automation

LIST_CAMPAIGNHISTORY Campaign History Marketing Automation

LIST_CASE Cases Customer Support and Service

LIST_CATEGORY Expense Categories Expense Reports

LIST_CLASS Classes Classes

LIST_COMMISSIONRULES Employee Commission Schedules/
Plans

Employee Commissions

LIST_COMPANY Companies Customer Relationship
Management

LIST_COMPETITOR Competitors Sales Force Automation

LIST_CRMTEMPLATE Marketing Template Marketing Automation

LIST_CURRENCY Currency Multiple Currencies

LIST_DEPARTMENT Departments Departments

LIST_ENTITY_DUPLICATES Duplicate Entity Management Duplicate Detection & Merge

LIST_FAXTEMPLATE Fax Template Mail Merge

LIST_FILECABINET Documents and Files File Cabinet

LIST_INFOCATEGORY Store Content Categories Web Store

LIST_ISSUE Issues Issue Management

LIST_JOB Jobs Projects

LIST_KNOWLEDGEBASE Knowledge Base Knowledge Base

LIST_LOCATION Locations Locations

LIST_MAILMERGE Mail Merge Mail Merge

LIST_MAILTEMPLATE Letter Template Mail Merge

LIST_MEDIAITEMFOLDER Media Folders File Cabinet

LIST_PARTNER Partners Partner Relationship Management

LIST_PARTNERCOMMISSNRULES Partner Commission Schedules/Plans Partner Commissions/Royalties

LIST_PAYCHECK Paychecks Payroll

LIST_PAYROLLITEM Payroll Items Payroll

Permission Names and IDs 1033

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

LIST_PDFTEMPLATE PDF Template Mail Merge

LIST_PROJECTTASK Project Tasks Project Management

LIST_PROMOTIONCODE Promotion Code Sales Force Automation

LIST_QUANTITYPRICINGSCHEDU
LE

Quantity pricing Schedules Quantity Pricing

LIST_RELATEDITEMS Related Items Web Site

LIST_REVRECSCHEDULE Revenue Recognition Schedules Revenue Recognition

LIST_REVRECVSOE Revenue Management VSOE VSOE

LIST_SALESCAMPAIGN Sales Campaigns Sales Campaigns

LIST_SALESROLE Sales Roles Team Selling

LIST_SHIPITEM Shipping Items Accounting

LIST_STORECATEGORY Store Categories Web Store

LIST_SUBSIDIARY Subsidiaries Subsidiaries

LIST_SYSTEMEMAILTEMPLATE System Email Template Customer Relationship
Management

LIST_TAXITEM Tax Items Accounting

LIST_TAXSCHEDULE Tax Schedules Advanced Taxes

LIST_TEGATAACCOUNT Tegata Accounts Accounting

LIST_UNIT Units Accounting

LIST_UPSELL Upsell Assistant Upsell Manager

LIST_UPSELLWIZARD Upsell Wizard Upsell Manager

LIST_VENDOR Vendors Accounting

LIST_WEBSITE Website (External) publisher Web Site

LIST_WORKPLACE Workplaces Payroll

REGT_ACCTPAY Accounts Payable Register A/P

REGT_ACCTREC Accounts Receivable Register A/R

REGT_BANK Bank Account Registers Accounting

REGT_COGS Cost of Goods Sold Registers Accounting

REGT_CREDCARD Credit Card Registers Accounting

REGT_DEFEREXPENSE Deferred Expense Registers Amortization

REGT_DEFERREVENUE Deferred Revenue Registers Revenue Recognition

REGT_EQUITY Equity Registers Accounting

REGT_EXPENSE Expense Registers Accounting

REGT_FIXEDASSET Fixed Asset Registers Accounting

REGT_INCOME Income Registers Accounting

REGT_LONGTERMLIAB Long Term Liability Registers Accounting

Permission Names and IDs 1034

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

REGT_NONPOSTING Non Posting Registers Accounting

REGT_OTHASSET Other Asset Registers Accounting

REGT_OTHCURRASSET Other Current Asset Registers Accounting

REGT_OTHCURRLIAB Other Current Liability Registers Accounting

REGT_OTHEXPENSE Other Expense Registers Accounting

REGT_OTHINCOME Other Income Registers Accounting

REGT_STAT Statistical Account Register Statistical Accounts

REGT_PAYROLL Run Payroll Payroll

REGT_UNBILLEDREC Unbilled Receivable Registers Revenue Commitments

REPO_1099 Form 1099 - Federal Miscellaneous
Income

A/P

REPO_940 Form 940 - Employer's Annual Federal
Unemployment Tax Return

Payroll

REPO_941 Form 941 - Employer's Quarterly
Federal Tax Return

Payroll

REPO_AMORTIZATION Amortization Reports Amortization

REPO_AP Accounts Payable A/P

REPO_AR Accounts Receivable A/R

REPO_AUTHPARTNERCOMMISSIO
N

Partner Authorized Commission
Reports

Partner Commissions/Royalties

REPO_BALANCESHEET Balance Sheet Accounting

REPO_BUDGET Budget Accounting

REPO_CASHFLOW Cash Flow Statement Accounting

REPO_COMMISSION Commission Reports Employee Commissions

REPO_FINANCIALS Financial Statements Accounting

REPO_GL General Ledger Accounting

REPO_INVENTORY Inventory Inventory

REPO_ISSUE Issue Reports Issue Management

REPO_MARKETING Marketing Campaign Reports Marketing Automation

REPO_PANDL Income Statement Accounting

REPO_PARTNERCOMMISSION Partner Commission Reports Partner Commissions/Royalties

REPO_PAYCHECKDETAIL Payroll Check Register Payroll

REPO_PAYROLL Payroll Summary & Detail Reports Payroll

REPO_PAYROLLHOURSEARNING Payroll Hours & Earnings Payroll

REPO_PAYROLLJOURNAL Payroll Journal Report Payroll

REPO_PAYROLLLIAB Payroll Liability Report Payroll

REPO_PAYROLLSTATEWITHHOLD Payroll State Withholding Payroll

Permission Names and IDs 1035

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

REPO_PAYROLLW2 Form W-2 - Wage and Tax Statement Payroll

REPO_PURCHASEORDER Purchase Order Reports Purchase Orders

REPO_PURCHASES Purchases Accounting

REPO_QUOTA Quota Reports Sales Force Automation

REPO_RECONCILE Reconcile Reporting Accounting

REPO_RETURNAUTH Return Authorization Reports Return Authorizations

REPO_REVREC Revenue Recognition Reports Revenue Recognition

REPO_SALESORDER Sales Order Fulfillment Reports Sales Orders

REPO_SALES_PARTNER Sales By Partner Partner Relationship Management

REPO_SALES_PROMO Sales By Promotion Code Sales Force Automation

REPO_SFA Sales Force Automation Customer Relationship
Management

REPO_SNAPSHOTCASE Support Case Snapshot/Reminders Customer Support and Service

REPO_SUPPORT Support Customer Support and Service

REPO_TAX Tax Accounting

REPO_TIME Time Tracking Time Tracking

REPO_TRIALBALANCE Trial Balance Accounting

REPO_UNBILLED Accounts Receivable Un-Billed Accounting

REPO_W4 Form W4 - Employee's Withholding
Allowance Certificate

Payroll

REPO_WEBSITE Web Site Report Web Site

REPO_WEBSTORE Web Store Report Web Store

TRAN_ALLOCSCHEDULE Create Allocation Schedules Expense Allocation

TRAN_APPROVECOMMISSN Employee Commission Transaction
Approval

Employee Commissions

TRAN_APPROVEDD Approve Direct Deposit Direct Deposit

TRAN_APPROVEEFT Approve EFT Electronic Funds Transfer

TRAN_APPROVEPARTNERCOMM Partner Commission Transaction
Approval

Partner Commissions/Royalties

TRAN_APPROVEVP Approve Vendor Payments ACH Vendor Payments

TRAN_BILLPAY_APPROVE Approve Online Bill Payments Online Bill Pay

TRAN_BILLPAY_STATUS View Online Bill Pay Status Online Bill Pay

TRAN_BINTRNFR Bin Transfer Bin Management

TRAN_BINWKSHT Bin Putaway Worksheet Bin Management

TRAN_BUDGET Set Up Budgets Accounting

TRAN_BUILD Build Assemblies Assembly Items

TRAN_CARDCHRG Credit Card Accounting

Permission Names and IDs 1036

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

TRAN_CARDRFND Credit Card Refund Accounting

TRAN_CASHRFND Cash Sale Refund Accounting

TRAN_CASHSALE Cash Sale Accounting

TRAN_CHECK Check Accounting

TRAN_COMMISSN Employee Commission Transaction Employee Commissions

TRAN_COMMITPAYROLL Commit Payroll Payroll

TRAN_COPY_BUDGET Copy Budgets Accounting

TRAN_CUSTCHRG Statement Charge A/R

TRAN_CUSTCRED Credit Memo A/R

TRAN_CUSTDEP Customer Deposit A/R

TRAN_CUSTINVC Invoice A/R

TRAN_CUSTPYMT Customer Payment A/R

TRAN_CUSTRFND Customer Refund A/R

TRAN_DEPAPPL Deposit Application A/R

TRAN_DEPOSIT Deposit Accounting

TRAN_ESTIMATE Estimate Estimates

TRAN_ESTIMATEDCOSTOVERRIDE Override Estimated Cost on
Transactions

Gross Profit

TRAN_EXPREPT Expense Report Expense Reports

TRAN_FINCHRG Finance Charge A/R

TRAN_FINDOLBMATCH Find Matching Online Banking
Transactions

Accounting

TRAN_FORECAST Edit Forecast Sales Force Automation

TRAN_FXREVAL Currency Revaluation Multiple Currencies

TRAN_IMPORTOLBFILE Import Online Banking (QIF) File Accounting

TRAN_INVADJST Adjust Inventory Inventory

TRAN_INVDISTR Distribute Inventory Multi-Location Inventory

TRAN_INVTRNFR Transfer Inventory Multi-Location Inventory

TRAN_INVWKSHT Adjust Inventory Worksheet Inventory

TRAN_ITEMRCPT Receive Items Advanced Receiving

TRAN_ITEMSHIP Ship Items Advanced Shipping

TRAN_JOURNAL Make Journal Entry Accounting

TRAN_JOURNALAPPRV Journal Approval Accounting

TRAN_LIABPYMT Payroll Liability Payments Payroll

TRAN_MANAGEPAYROLL Manage Payroll Payroll

TRAN_MGRFORECAST Edit Manager Forecast Sales Force Automation

Permission Names and IDs 1037

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

TRAN_OLBSTATEMENT Online Banking Statement Accounting

TRAN_OPENBAL Enter Opening Balances Accounting

TRAN_OPPRTNTY Opportunity Opportunities

TRAN_PARTNERCOMMISSN Partner Commission Transaction Partner Commissions/Royalties

TRAN_PAYCHECK Individual Paycheck Payroll

TRAN_PAYROLLRUN Process Payroll Payroll

TRAN_POSTPERIODS Posting Period on Transactions Accounting Periods

TRAN_PURCHORD Purchase Order Purchase Orders

TRAN_PURCHORDBILL Bill Purchase Orders Advanced Receiving

TRAN_PURCHORDRECEIVE Receive Purchase Orders Purchase Orders

TRAN_QUOTA Establish Quotas Sales Force Automation

TRAN_RECONCILE Reconcile Accounting

TRAN_REVCOMM Revenue Commitment Revenue Commitments

TRAN_REVCOMRV Revenue Commitment Reversal Revenue Commitments

TRAN_RTNAUTH Return Authorization Return Authorizations

TRAN_RTNAUTHAPPRV Return Auth. Approval Return Authorizations

TRAN_RTNAUTHREVERSEREVCOM
MIT

Generate Revenue Commitment
Reversals

Revenue Commitments

TRAN_SALESORD Sales Order Sales Orders

TRAN_SALESORDAPPRV Sales Order Approval Sales Orders

TRAN_SALESORDCOMMITREVEN
UE

Generate Revenue Commitment Revenue Commitments

TRAN_SALESORDINVOICE Bill Sales Orders Advanced Shipping

TRAN_STATEMENT Generate Statements A/R

TRAN_STATUSDD Direct Deposit Status Direct Deposit

TRAN_STATUSEFT EFT Status Electronic Funds Transfer

TRAN_STATUSVP Vendor Payment Status ACH Vendor Payments

TRAN_TAXLIAB Pay Tax Liability Accounting

TRAN_TAXPYMT Pay Sales Tax Accounting

TRAN_TEGPYBL Tegata Payable Accounting

TRAN_TEGRCVBL Tegata Receivable Accounting

TRAN_TIMEBILL Track Time Time Tracking

TRAN_TIMECALC Calculate Time Time Tracking

TRAN_TIMER Timer Time Tracking

TRAN_TRANSFER Transfer Funds Accounting

TRAN_UNBUILD Unbuild Assemblies Assembly Items

Permission Names and IDs 1038

SuiteScript Developer & Reference Guide

Permission ID Permission Name Feature

TRAN_VENDAUTH Vendor Return Authorization Vendor Return Authorizations

TRAN_VENDAUTHAPPRV Vendor Return Auth. Approval Vendor Return Authorizations

TRAN_VENDAUTHRETURN Vendor Returns Vendor Return Authorizations

TRAN_VENDBILL Bills A/P

TRAN_VENDCRED Enter Vendor Credits A/P

TRAN_VENDPYMT Pay Bills A/P

TRAN_WORKORD Work Order Work Orders

TRAN_WORKORDBUILD Build Work Orders Work Orders

TRAN_YTDADJST Enter Year-To-Date Payroll
Adjustments

Payroll

Feature Names and IDs 1039

SuiteScript Developer & Reference Guide

Chapter 78 Feature Names and IDs
The following table provides the internal IDs and feature names for all NetSuite features. You
can use the feature ID with nlobjContext.getSetting(type, name) to see if a given feature is
enabled in your account.

Feature Internal ID Feature Name

ACCOUNTING Accounting

ACCOUNTINGPERIODS Accounting Periods

ACHVEND ACH Vendor Payments

ADVANCEDJOBS Project Management

ADVANCEDSITECUST Advanced Site Customization

ADVBILLING Advanced Billing

ADVFORECASTING Advanced Forecasting

ADVINVENTORYMGMT Advanced Inventory Management

ADVPARTNERACCESS Advanced Partner Access

ADVRECEIVING Advanced Receiving

ADVSHIPPING Advanced Shipping

ADVTAXENGINE Advanced Taxes

ADVWEBREPORTS Advanced Web Reports

ADVWEBSEARCH Advanced Web Search

ALTSALESAMOUNT Alternate Sales Amount

AMORTIZATION Amortization

APPROVALROUTING Approval Routing

ASSEMBLIES Assembly Items

BARCODES Bar Coding and Item Labels

BILLINGCLASSES Per-Employee Billing Rates

BILLPAY Online Bill Pay

BILLSCOSTS Bill Costs To Customers

BINMANAGEMENT Bin Management

CAMPAIGNSUBSCRIPTIONS Subscription Categories

CCTRACKING Credit Card Payments

CLASSES Classes

COMMISSIONS Employee Commissions

CREATESUITEBUNDLES Create bundles with SuiteBundler?

CRM Customer Relationship Management

CRMTIME Time Tracking for CRM

Feature Names and IDs 1040

SuiteScript Developer & Reference Guide

Feature Internal ID Feature Name

CUSTOMCODE Client SuiteScript

CUSTOMERACCESS Customer Access

CUSTOMRECORDS Custom Records

DEPARTMENTS Departments

DIRECTDEPOSIT Direct Deposit

DOCUMENTPUBLISHING Document Publishing

DOCUMENTS File Cabinet

DOWNLOADITEMS Sell Downloadable Files

DROPSHIPMENTS Drop Shipments & Special Orders

DUPLICATES Duplicate Detection & Merge

EBAY eBay Integration

EFT Electronic Funds Transfer

EMAILINTEGRATION Capture Email Replies

EMPPERMS Global Permissions

ENTERPRISE Enterprise Reporting Views

ESCALATIONRULES Automated Case Escalation

ESTIMATES Estimates

EXPENSEALLOCATION Expense Allocation

EXPREPORTS Expense Reports

EXTCRM Online Forms

EXTREMELIST Inline Editing

EXTSTORE External Catalog Site (WSDK)

FXRATEUPDATES Currency Exchange Rate Integration

GIFTCERTIFICATES Gift Certificates

GROSSPROFIT Gross Profit

HELPDESK Help Desk

HISTORICALMETRICS Historical Metrics

INBOUNDCASEEMAIL Email Case Capture

INTRANET Intranet

INVENTORY Inventory

IPADDRESSRULES IP Address Rules

ISSUEDB Issue Management

ITEMOPTIONS Item Options

JOBS Projects

KNOWLEDGEBASE Knowledge Base

Feature Names and IDs 1041

SuiteScript Developer & Reference Guide

Feature Internal ID Feature Name

KPIREPORTS KPI Scorecards

LANDEDCOST Landed Cost

LOCATIONS Locations

LOTNUMBEREDINVENTORY Lot Tracking

MAILMERGE Mail Merge

MARKETING Marketing Automation

MATRIXITEMS Matrix Items

MULTICURRENCY Multiple Currencies

MULTILANGUAGE Multi-Language

MULTILOCINVT Multi-Location Inventory

MULTIPARTNER Multi-Partner Management

MULTIPLEBUDGETS Multiple Budgets

MULTISHIPTO Multiple Shipping Routes

MULTISITE Multiple Web Sites

MULTIVENDOR Multiple Vendors

MULTPRICE Multiple Prices

SUITEANALYTICSCONNECT SuiteAnalytics Connect

ONLINEORDERING Online Ordering

OPPORTUNITIES Opportunities

OUTLOOKINTEGRATION Outlook Integration

PARTNERACCESS Partner Access

PARTNERCOMMISSIONS Partner Commissions/Royalties

PAYABLES A/P

PAYPALINTEGRATION PayPal Integration

PAYROLL Payroll

PAYROLLSERVICE Payroll Service

PICKPACKSHIP Pick, Pack and Ship

PRM Partner Relationship Management

PROMOCODES Promotion Codes

PURCHASEORDERS Purchase Orders

PURCHASEREQS Purchase Requests

QUANTITYPRICING Quantity Pricing

RECEIVABLES A/R

RETURNAUTHS Return Authorizations

REVENUECOMMITMENTS Revenue Commitments

Feature Names and IDs 1042

SuiteScript Developer & Reference Guide

Feature Internal ID Feature Name

REVENUERECOGNITION Revenue Recognition

REVRECSALESORDERFORECASTING Sales Order Revenue Forecasting

REVRECVSOE VSOE

SALESCAMPAIGNS Sales Campaigns

SALESORDERS Sales Orders

SERIALIZEDINVENTORY Serialized Inventory

SERVERSIDESCRIPTING Server SuiteScript

SERVICEPRINTEDCHECKS Service Printed Checks and Stubs

SERVICEPRINTEDW2S? Service Printed W-2s and 1099s

SFA Sales Force Automation

SHIPPINGLABELS Shipping Label Integration

SITELOCATIONALIASES Descriptive URLs

SOFTDESCRIPTORS Credit Card Soft Descriptors

SUBSIDIARIES Subsidiaries

SUPPORT Customer Support and Service

SYNCHRONIZATION Synchronization

TEAMSELLING Team Selling

TELEPHONY Telephony Integration

TIMETRACKING Time Tracking

UNITSOFMEASURE Multiple Units of Measure

UPSELL Upsell Manager

VENDORACCESS Vendor Access

VENDORRETURNAUTHS Vendor Return Authorizations

WEBHOSTING Host HTML Files

WEBSERVICESEXTERNAL Web Services

WEBSITE Web Site

WEBSTORE Web Store

WORKORDERS Work Orders

Preference Names and IDs 1043

SuiteScript Developer & Reference Guide

Chapter 79 Preference Names and IDs
The following tables list the internal IDs for all NetSuite preference configuration pages that
support SuiteScript. To set valules on any of these pages, you must first load the page using
nlapiLoadConfiguration(type).

Once the page loads, you can then get|set all configuration values using the methods on the
nlobjConfiguration object.

NetSuite configuration preference IDs are grouped into the following categories:

• General Preferences

• Company Information

• User Preferences

• Accounting Preferences

• Accounting Periods

• Tax Setup

General Preferences

These are the account preferences that can be found by going to Setup > Company >
General Preferences.

The internal ID for the General Preferences page is companypreferences.

Preference UI Label Preference Internal ID

Use State Abbreviations in Addresses ABBREVIATESTATES

Assign Tasks to Partners ASSIGNTASKSTOPARTNERS

Auto Name Customers AUTONAMECUSTOMERS

Calendar System CALENDARSYSTEM

Company Logo Folder COMPANYLOGOFOLDER

Add Primary Contact to Bill To Address CONTACTONBILLTO

Default Role for New Customers CUSTOMERROLE

Default Customer Type CUSTOMERTYPE

Customer Center Welcome Message CUSTOMERWELCOMEMESSAGE

Date Format DATEFORMAT

Delay Loading of Sublists DELAYLOADINGSUBLISTS

Default Partner Type DFLTPARTNERTYPE

Default Vendor Type DFLTVENDORTYPE

Preference Names and IDs 1044

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Email Employee on Approvals EMAILEMPLOYEEONAPPROVAL

Maintenance Complete Email Notification EMAILMAINTENANCECOMPLETE

First Day of Week FIRSTDAYOFWEEK

Screen Font FONT

Allow Free-Form States in Addresses FREEFORMSTATES

Hide Attachment Folders HIDEATTACHMENTFOLDERS

Internal Web Site INTERNALWEBSITE

Show Display Name with Item Codes ITEMNUMBERING

Use Last Name First for Employees LASTNAMEFIRST

Use Last Name First for Entities LASTNAMEFIRSTENTITIES

Number of rows in List segments LISTSEGMENTSIZE

Long Date Format LONGDATEFORMAT

Maximum entries in Dropdown MAXDROPDOWNSIZE

Maximum number of dimension columns allowed in a report MAXREPORTDIMENSIONS

Maximum number of rows allowed in a report MAXREPORTROWS

Minimum Password Length MINPASSWORDLENGTH

Password Expiration in Days PASSWORDEXPIREDAYS

Phone Number Format PHONEFORMAT

Pre-Populate Contact Address PREPOPULATECONTACTADDRESS

Show Reports in Grid REPORTGRID

Show Employees as Contacts SHOWEMPLOYEESASCONTACTS

Show Individuals as Contacts SHOWINDIVIDUALSASCONTACTS

Show List When Only One Results SHOWLISTONRESULT

Show Page Feedback Link SHOWPAGEFEEDBACKLINK

Show Quick Add Row on Lists SHOWQUICKADD

Time Format TIMEFORMAT

Company Information

These are the account preferences that can be found by going to Setup > Company > Company
Information.

The internal ID for the Company Information page is companyinformation.

Preference Names and IDs 1045

SuiteScript Developer & Reference Guide

Important: The fields listed below do not correspond exactly to the fields displayed on
the Company Information page as of Version 2014 Release 2. The enhanced
address customization supported as of this release resulted in changes
to the Company Information UI. To preserve backwards compatibility
of pre-existing scripts, the preference internal IDs used for scripting
with the companyinformation configuration object were not changed.
You should continue to use the IDs listed below when scripting with
companyinformation.

Preference Label Preference Internal ID

Company Name companyname

Legal Name legalname

Ship to Attention attention

Address 1 address1

Address 2 address2

City city

County/State/Province state

Zip zip

Country country

Address addresstext

Employer Identification Number (EIN) employerid

SSN or TIN (Social Security Number, Tax ID Number) taxid

Return Email Address email

Phone phone

Fax fax

Web Site url

Company Logo (Forms) formlogo

Company Logo (Pages) pagelogo

 purgeaccount

Display Logo Internally displaylogointernal

First Fiscal Month fiscalmonth

Time Zone timezone

Currency basecurrency

For shipping addresses:

Address1 shippingaddress1

Address2 shippingaddress2

City shippingcity

County/State/Province shippingstate

Preference Names and IDs 1046

SuiteScript Developer & Reference Guide

Preference Label Preference Internal ID

Zip shippingzip

Country shippingcountry

Address shippingaddresstext

For return addresses:

Address1 returnaddress1

Address2 returnaddress2

City returncity

County/State/Province returnstate

Zip returnzip

Country returncountry

Address returnaddresstext

User Preferences
These are the user preferences that can be found by going to Home > Set Preferences.

The internal ID for the user preferences page (which appears as the Set Preferences page in the
UI) is userpreferences.

Be aware that the API for setting user preferences works the same as the UI in terms of setting
a preference permanently or just for a user's session. In the UI if a user sets a preference, and
the preference reverts back to a default setting on the user's next login, the same behavior is
supported in SuiteScript.

Preference UI Label Preference Internal ID

On the General tab

Nickname MESSAGE_NICKNAME

Signature MESSAGE_SIGNATURE

Add Signature to Messages MESSAGE_AUTOSIGNATURE

From Email Address MESSAGE_EMAIL

Language LANGUAGE

PDF Language PDFLANGUAGE

Time Zone TIMEZONE

Date Format DATEFORMAT

Long Date Format LONGDATEFORMAT

Time Format TIMEFORMAT

Number Format NUMBERFORMAT

Negative Number Format NEGATIVE_NUMBER_FORMAT

Phone Number Format PHONEFORMAT

Preference Names and IDs 1047

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Auto Place Decimal AUTOPLACE

Use Multicurrency Expense Reports USE_MC_ON_EXPREPT

Download PDF Files DOWNLOADPDFS

Address Mapping Type MAPTYPE

Show Internal IDs EXPOSEIDS

Only Show Last Subaccount ONLYSHOWLASTSUBACCT

Only Show Last Subentity ONLYSHOWLASTSUBENT

Only Show Last Subitem ONLYSHOWLASTSUBITEM

Submit Warnings SUBMITWARNINGS

Limit CC Field to Contacts & Employees EMAILLIMITCC

Default Issue Email Notification ISSUE_EMAIL_ME_WHEN

Notify Me Upon Issue Assignment ISSUE_NOTIFY_UPON_ASSIGNMENT

Cache Pages in Browser CACHEPAGES

Delay Loading of Sublists DELAYLOADINGSUBLISTS

Number of Rows in List Segments LISTSEGMENTSIZE

Maximum Entries in Dropdowns MAXDROPDOWNSIZE

Type-Ahead on List Fields TYPEAHEADSELECTS

Require Exact Match on Item Type-Ahead ITEMEXACTMATCH

Show Quick Add Row on Lists SHOWQUICKADD

On the Appearance tab

Screen Font FONT

Compensate for Large Fonts SYSTEMLARGEFONTS

Register Look on Lists REGISTERSTYLE

Only Show Field Boarders on Hover SHOWFIELDBORDERONHOVER

Chart Theme CHART_THEME

Chart Background CHART_BACKGROUND

Use Classic Interface BASICCENTER

Landing Page LANDINGPAGE

Show Portlet Hint SHOWPORTLETHINT

Limit Entry Forms to Two Columns LIMITTOTWOCOLUMNS

Expand Tabs on Entry Forms UNLAYEREDTABS

Enable Rich Text Editing RICHTEXTEDITOR

Default Rich Text Editor Font EDITORFONT

Default Rich Text Editor Font Size EDITORFONTSIZE

On the Transactions tab

Preference Names and IDs 1048

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Auto Fill Transactions AUTOFILL

Transaction Email Attachment Format TRANSACTION_ATTACHMENT_FORMAT

Alphabetize Items Regardless of Type ALPHABETIZE_ITEMS

Duplicate Number Warnings DUPLICATEWARNINGS

Inventory Level Warnings STOCKWARNINGS

Customer Credit Limit Handling CUSTCREDLIMHANDLING

Vendor Credit Limit Warnings VENDCREDLIMWARNINGS

Print Using HTML HTMLPRINTING

Email Using HTML HTMLEMAIL

Horizontal Print Offset HORZPRINTOFFSET

Vertical Print Offset VERTPRINTOFFSET

On the Reporting/Search tab

Report by Period REPORTBYPERIOD

Print Company Logo DISPLAYLOGO

Display Report Title on Screen DISPLAYRPTTITLE

Display Report Description DISPLAYRPTDESC

Default Bank Account DEFAULT_BANKREG

Show Forecasts as Weighted FORECASTWEIGHTED

Show List When Only One Result SHOWLISTONERESULT

Quick Search Uses Keywords KEYWORDSEARCH

Popup Search Uses Keywords KEYWORDSEARCHPOPUP

Include Inactives in Global & Quick Search SEARCHINACTIVES

Popup Auto Suggest POPUPAUTOSUGGEST

Global Search Auto Suggest SEARCHAUTOSUGGEST

Global Search Sort by Name/ID GLOBALSEARCHSORTBYNAME

Global Search Customer Prefix Includes Leads and Prospects GLOBALSEARCHCUPREFIX

PDF Page Orientation REPORTPDFORIENTATION

PDF Font Size REPORTPDFFONTSIZE

CSV Export Character Encoding CSVEXPORTENCODING

On the Activities tab

Edit Activities from Calendar EVENT_EDITFROMCALENDAR

Send Invitation Emails EVENT_EMAILNOTIFICATION

Restrict Invitees to Employees EVENT_INTERNALINVITEESONLY

Default Event Access Setting for New Events EVENT_DEFAULTPUBLIC

Default Reminder Type REMINDERTYPE

Preference Names and IDs 1049

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Default Reminder Time REMINDERPERIOD

Play Audio with Popup Event Reminders REMINDERPLAYWAVE

Default Priority for Tasks DEFAULTTASKPRIORITY

Default New Tasks Public TASK_DEFAULTPUBLIC

Default New Phone Calls Public CALL_DEFAULTPUBLIC

Default Sync Category DEFAULT_CONTACT_SYNC_CATEGORY

On the Alerts tab

First Selection EMAILALERT_AM

Second Selection EMAILALERT_NOON

Third Selection EMAILALERT_PM

Include links in HTML alerts LINKS_EMAILALERT

Respect Quick Date Portlet Settings USE_QUICKDATE_IN_ALERTS

E-Mail EMAILALERT_EMAIL

Send an On-Demand Alert from this Role ALERTONDEMAND

On the Restrict View tab

Subsidiary SUBSIDIARY

Include Sub-Subsidiaries SUBSIDIARYSUBS

Department DEPARTMENT

Include Sub-Departments DEPARTMENTSUBS

Include Unassigned DEPARTMENTUNASSIGNED

Location LOCATION

Include Sub-Locations LOCATIONSUBS

Include Unassigned LOCATIONUNASSIGNED

Class CLASS

Include Sub-Classes CLASSSUBS

Include Unassigned CLASSUNASSIGNED

On the Telephony tab

Telephony Option TELEPHONY_OPTION

TAPI Device TELEPHONYDEVICE

CTI URL CTI_URL

Prefix to Dial Out DIALOUTPREFIX

Send Notifications When ISSUE_NOTIFICATION

Send Notifications To ISSUE_NOTIFICATION_EMAILS

Preference Names and IDs 1050

SuiteScript Developer & Reference Guide

Accounting Preferences

These are the account preferences that can be found by going to Setup > Accounting >
Accounting Preferences.

The internal ID for the Accounting Preferences page is accountingpreferences.

Preference UI Label Preference Internal ID

On the General tab

Use Account Numbers ACCOUNTNUMBERS

Aging Reports Use AGEFROM

Allow cross-subsidiary billable time and expenses ALLOWCROSSSUBBILLABLES

Allow manual entry of Gift Certificate Codes ALLOWMANUALGCCODE

Allow subsidiary hierarchy to be modified ALLOWSUBSIDHIERARCHYCHANGE

Default Amortization Journal Date to AMORJOURNALDATEDEFAULT

Expand Account Lists EXPANDACCOUNTLISTS

Revenue Recognition/Adv. Billing: Use Sales Order Amount CALCPCTCOMPTFROMSALESORDERAMT

Cash Basis Reporting CASHBASIS

Always Allow Per-line Classifications on Journals CDLPERLINEONJE

Allow Per-Line Classes CLASSESPERLINE

Make Classes Mandatory CLASSMANDATORY

Accept Payments through Top-level Customer CONSOLPAYMENTS

Days Overdue for Warning/Hold CREDLIMDAYS

Display Current Count on Adjustments CURCOUNTADJUSTMENTS

Display Current Count on Transfers CURCOUNTONTRANSFERS

Display Current Count on Worksheets CURCOUNTONWORKSHEETS

Customer Credit Limit Handling CUSTCREDITLIMHANDLING

Customer Credit Limit Includes Orders CUSTCREDLIMORDERS

Make Departments Mandatory DEPTMANDATORY

Allow Per-Line Departments DEPTSPERLINE

Require Approvals on Journal Entries JOURNALAPPROVALS

Make Locations Mandatory LOCMANDATORY

Allow Per-Line Locations LOCSPERLINE

Maximum number of MLI locations MAXLOCATIONS

Maximum number of Subsidiaries MAXSUBSIDIARIES

Allow Users to Modify Amortization Schedule MODIFYAMORTOTALAMOUNT

Allow Users to Modify Revenue Recognition Schedule MODIFYREVRECTOTALAMOUNT

Allow Users to Modify VSOE Values on Transactions MODIFYVSOEVALSONTRAN

Preference Names and IDs 1051

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Name for Tax Amount NAMINGTAXAMOUNT

Name for Tax Rate NAMINGTAXRATE

Name for Tax Reg. Number NAMINGTAXREGNUMBER

Allow Non-balancing Classifications on Journals NONBALANCINGCDLONJE

Allow Empty Classifications on Journals NULLCDLONJE

Show Only Open Transactions on Statements OPENONLYSTMTS

Prorate Revenue Recognition Dates For Partially Billed Sales
Orders

PROPRATEREVRECINVFROMSO

Restrict Account Balance Viewing for Employees with
Classification Restrictions

RESTRICTBALANCEVIEWING

Void Transactions Using Reversing Journals REVERSALVOIDING

Invoice Revenue Recognition Dates Source from REVRECDATESUPDATEMETHOD

Default Revenue Recognition Journal Date to REVRECJOURNALDATEDEFAULT

Show Journal Memos on Statements STATEMENTJOURNALMEMOS

Include Shipping for Term Discounts TERMDISCOUNTSINCLUDESHIPPING

Include Tax for Term Discounts TERMDISCOUNTSINCLUDETAX

Allow Revenue Commitment Reversals In Advance of Item Receipt UNRECEIVEDREVENUECOMMITMENTS

Allow Revenue Commitments In Advance of Fulfillment UNSHIPPEDREVENUECOMMITMENTS

Use System Calculated Percentage of Completion For Revenue
Recognition/Amortization

USESYSCALCPCT4REVREC

Vendor Credit Limit Includes Orders VENDCREDLIMORDERS

Vendor Credit Limit Warnings VENDCREDLIMWARNINGS

Default Vendor Payments To Be Printed VENDPYMTTOPRINT

On the Items/Transactions tab

Allow Purchase of Assembly Items ALLOWASSEMBLYPURCHASE

Default Asset Account ASSETACCOUNT

Use Credit Card Security Code for Credit Card Transactions CCSECURITYCODE

Centralize Purchasing in a Single Location CENTRALIZEDPURCHASING

Default COGS Account COGSACCOUNT

Consolidate Jobs on Sales Transactions CONSOLINVOICES

Duplicate Number Warnings DUPLICATEWARNINGS

Anyone Can Set Item Accounts EDITITEMACCOUNTS

Default Estimate Expiration (in days) ESTIMATEEXPIRATION

Use the Exact Cost for Linked Returns EXACTCOSTONLINELINKEDRETURNS

Default Expense Account EXPENSEACCOUNT

Customers Can Pay Online EXTERNALPAYMENTS

Preference Names and IDs 1052

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Include Reimbursements in Sales and Forecast Reports FORECASTINCLUDES_REIMB_EXP

Include Shipping in Sales and Forecast Reports FORECASTINCLUDES_SHIPPING

Transaction Types to Exclude from Forecast Reports FORECASTTRANTYPES

Gift Certificate Auth Code Generation GIFTCERTAUTHCODEGENERATION

Default Income Account INCOMEACCOUNT

Inventory Costing Method INVTCOSTMETHOD

Days Before Lot Expiration Warning LOTEXPIRATIONWARNING

Default Payment Account PAYMENTACCOUNT

Payment Due Preference PAYMENTDUEPREFERENCE

Purchase Discount Account PURCHDISCACCT

Maximum # of Quantity-based Price Levels QTYPRICECOUNT

Allow Quantity Discounts per Price Level on Schedules QTYPRICESCHEDULEMULTDISCOUNTS

Sort Reconcile By RECONSORTCOL

Require Bins on All Transactions Except Item Receipts REQUIREBINSONTRANS

Sales Discount Account SALESDISCACCT

Transaction Types to Exclude from Sales Reports SALESTRANTYPES

Scan Individual Items SINGLEITEMBARCODING

Matrix Item Name/Number Separator SKUSEPARATOR

Tegata Maturity Date TEGATAMATURITY

Recalculate Estimated Cost on Creation of Linked Transactions USELATESTCOSTESTIMATE

Use Preferred Bin on Item Receipts USEPREFERREDBINONITEMRCPT

Use Popup to Select Serial/Lot Numbers on Sales USESERIALNUMBERSELECT

Use Zero Cost for Linked Underwater Sales ZEROCOSTUNDERWATER

On the Order Management tab

Build Based on Commitment BUILDCOMMITTED

Filter Bulk Fulfillment Page by Location BULKFULFILLOCFILTERING

Convert Absolute Discounts to Percentage When Billing CONVERTABSOLUTEDISCOUNTS

Default Location for Purchase Orders DEFAULTPURCHASEORDERLOCATION

Default Location for Sales Orders DEFAULTSALESORDERLOCATION

Default Items to Zero Received/Fulfilled DEFAULTUNFULFILLED

Default Return Auth. Status DEFRTNAUTHSTATUS

Default Sales Order Status DEFSALESORDSTATUS

Default Vendor Return Auth. Status DEFVENDAUTHSTATUS

Include Committed Quantities on Drop Shipments/Special Orders DROPSHIPINCLUDECOMMITTED

Drop Ship P.O. Form DROPSHIPTEMPLATE

Preference Names and IDs 1053

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Send Email Confirmation when Sales Order Canceled EMAILCANCELORDER

Automatically Email Drop Ship P.O.s EMAILDROPSHIPPOS

Automatically Fax Drop Ship P.O.s FAXDROPSHIPPOS

Fulfill Based on Commitment FULFILLCOMMITTED

Base Invoice Date on Billing Schedule Date INCOICEUSESCHEDULEDATE

Limit Vendor List on Items LIMITITEMVENDORS

Name for Packed Status NAMINGPACKED

Name for Picked Status NAMINGPICKED

Name for Shipped Status NAMINGSHIPPED

Send Order Fulfilled Confirmation Emails ORDFULFILLCONFEMAIL

Use Web Site Template for Fulfillment Emails ORDFULFILLUSESTORETEMPLATES

Allow Overage on Assembly Builds OVERBUILDS

Allow Overage on Item Fulfillments OVERFULFILLMENTS

Allow Overage on Item Receipts OVERRECEIPTS

Show Drop Ship Items on Packing Slips PACKINGSLIPDROPSHIP

Limit Status on Packing Slip Queu PACKINGSLIPSTATUS

Always Print Kit Items on Picking Tickets PICKINGTICKETKITITEMS

Show Non-Inventory Items on Picking Tickets and Packing Slips PICKINGTICKETNONINVT

Show Uncommitted Items on Picking Tickets PICKINGTICKETUNCOMMITTED

Allow Expenses on Purchase Order POEXPENSES

Queue Drop Ship P.O.s for Printing PRINTDROPSHIPPOS

Require Re-approval on Edit of Sales Order REAPPROVESOONEDIT

Restock Returned Items RESTOCKRETURNS

Show All Ordered Items on Packing Slips SHOWOPENPACKSLIP

Show Unfulfilled Items on Invoices SHOWUNSHIPPEDITEMS

Bill in Advance of Receipt UNCRECEIVEDBILLS

Refund in Advance of Return UNCRECEIVEDRTNAUTHS

Credit in Advance of Vendor Return UNRETURNEDVENDAUTHS

Invoice in Advance of Fulfillment UNSHIPPEDINVOICES

Write-Off Account for Returns WRITEOFFACCOUNT

On the Time & Expenses tab

Automatically Notify Supervisor AUTONOTIFYSUPV

Combine Detail Items on Expense Reports COMBINEEXPENSEITEMS

Copy Expense Memos to Invoices COPYEXPENSEMEMOS

Copy Time Memos to Invoices COPYTIMEMEMOS

Preference Names and IDs 1054

SuiteScript Developer & Reference Guide

Preference UI Label Preference Internal ID

Expenses Billable by Default DEFAULTEXPENSEBILLABLE

Items Billable by Default DEFAULTITEMSBILLABLE

Time Billable by Default DEFAULTTIMEBILLABLE

Override Rates on Time Records OVERRIDETIMERATES

Show Planned Time in Time Entry SHOWPLANNEDTIME

Require Approvals on Time Records TIMEAPPROVALS

Show Jobs Only for Time and Expense Entry TIMEEXPENSEJOBONLY

Accounting Periods

These are the account preferences that can be found by going to Setup > Accounting > Manage
Accounting Periods.

The internal ID for the Accounting Periods page is accountingperiods.

Preference UI Label Preference Internal ID

First Fiscal Month fiscalmonth

Fiscal Year Ene fiscalyear

Period Format periodstyle

Year in Period Name periodname

One-Day Year-End Adjustment Period lastday

Tax Setup

The internal ID for the Set Up Taxes page is taxpreferences.

Preference IDs for fields on this page vary according to the country of the nexus. Field internal
IDs are suffixed with the nexus country code. The format for these preferences is <field internal
id><nexus country code>. Be aware that different fields are available for different nexuses.

The table below shows some scriptable tax preference fields for a US nexus. Fields are suffixed
with us, for the US nexus. This table is provided for example purposes.

Preference UI Label Preference Internal ID

 defaulttaxableus

 type

 chargoutofdistrictus

 perlinetaxesus

 storeordertaxationus

 enabletaxlookupus

Preference Names and IDs 1055

SuiteScript Developer & Reference Guide

Field IDs in your account may be suffixed with a different nexus country code. And different
fields may be available. You may be able to look up field IDs in the user interface, by going to
Setup > Accounting > Set Up Taxes, and clicking on a nexus.

• To make field IDs available, go to Home > Set Preferences and ensure that the Show
Internal IDs box is checked on the General subtab, Defaults area.

• Find the field in the NetSuite user interface and click the field label to display the field
level help text. The field ID is displayed in the popup.

Supported File Types 1056

SuiteScript Developer & Reference Guide

Chapter 80 Supported File Types
This section provides a list of all files types that can be defined in the type argument in the
following APIs:

• nlapiCreateFile(name, type, contents) in SuiteScript Functions .

• nlobjResponse.setContentType(type, name, disposition) in SuiteScript Objects

When referencing a file type in the type argument, use the file type ID. See the following
example:

nlapiCreateFile('helloworld.txt', ' PLAINTEXT ', 'Hello World\nHello World');

Important: Be aware that the nlapiCreateFile function does not support the creation
of non-text file types such as PDFs, unless the contents argument is
base-64 encoded.

File Type ID Name Extension Content Type

AUTOCAD AutoCad .dwg application/x-autocad

BMPIMAGE BMP Image .bmp image/x-xbitmap

CSV CSV File .csv text/csv

EXCEL Excel File .xls application/vnd.ms-excel

FLASH Flash Animation .swf application/x-shockwave-flash

GIFIMAGE GIF Image .gif image/gif

GZIP GNU Zip File .gz application/x-gzip-compressed

HTMLDOC HTML File .htm text/html

ICON Icon Image .ico image/ico

JAVASCRIPT JavaScript File .js text/javascript

JPGIMAGE JPEG Image .jpg image/jpeg

MESSAGERFC Message RFC .eml message/rfc822

MP3 MP3 Audio .mp3 audio/mpeg

MPEGMOVIE MPEG Video .mpg video/mpeg

MSPROJECT Project File .mpp application/vnd.ms-project

PDF PDF File .pdf application/pdf

PJPGIMAGE PJPEG Image .pjpeg image/pjpeg

PLAINTEXT Plain Text File .txt text/plain

PNGIMAGE PNG Image .png image/x-png

POSTSCRIPT PostScript File .ps application/postscript

POWERPOINT PowerPoint File .ppt application/vnd.ms-powerpoint

Supported File Types 1057

SuiteScript Developer & Reference Guide

File Type ID Name Extension Content Type

QUICKTIME QuickTime Video .mov video/quicktime

RTF RTF File .rtf application/rtf

SMS SMS File .sms application/sms

STYLESHEET CSS File .css text/css

TIFFIMAGE TIFF Image .tiff image/tiff

VISIO Visio File .vsd application/vnd.visio

WORD Word File .doc application/msword

XMLDOC XML File .xml text/xml

ZIP Zip File .zip application/zip

Button IDs 1058

SuiteScript Developer & Reference Guide

Chapter 81 Button IDs
The following table lists the internal IDs for standard NetSuite buttons that support SuiteScript.
When using SuiteScript to rename or hide buttons, you will use the nlobjButton methods
setLabel(label) and setVisible(visible), respectively.

On some records, it is possible that certain buttons will appear as actions in the More Actions
menu. You can still use the nlobjButton methods to change the labels of these actions and to
hide or show the actions in the menu. (For information on the More Action menu, see the help
topic More Actions Menu in the NetSuite Help Center.)

Important: Customizing the Save, Edit, Cancel, Back, and Reset buttons is not supported
in SuiteScript or in point-and-click customization.

Note: Also note that you cannot use SuiteScript to change the display of an inline button
to an action in the More Actions menu. Similarly, you cannot use SuiteScript to
display an action as an inline button. To change the display type of buttons and
actions, you must use SuiteBuilder point-and-click customization. See the help topic
Configuring Buttons and Actions for details.

Button UI Label Button Internal ID

Add Items addmatrix

Accept accept

Accept Payment acceptpayment

Apply apply

Approve approve

Approve Return approvereturn

Authorize Return return

Auto Fill autofill

Bill bill

Bill Remaining billremaining

Cancel Order cancelorder

Cancel Return cancelreturn

Clear Splits clearsplits

Close closeremaining

Convert convertlead

Convert to Inventory convertinvt

Convert to Lot Numbered Inventory convertlot

Convert to Serialized Inventory convertserial

Create Build createbuild

Create Matrix creatematrix

https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_N470108.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2857647.html

Button IDs 1059

SuiteScript Developer & Reference Guide

Button UI Label Button Internal ID

Credit credit

Decline decline

Delete delete

Email email

Fax fax

Fulfill process

Generate Price List generatepricelist

Generate Statement generatestatement

GL Impact glimpact

Go To Register gotoregister

Grab grab

Make Copy makecopy

Make Payment payment

Make Standalone Copy makestandalonecopy

Memorize memorize

Merge merge

New new

New Event Field neweventfield

Next Bill nextbill

Next Week next

Prev Week prev

Print print

Print Bill of Materials printbom

Print Label printlabel

Print Labels printlabels

Print Picking Ticket printpicktick

Print Summary depositsummary

Quick Accept quickaccept

Recalc recalc

Receive receive

Refund refund

Reject reject

Renew renewal

Reset resetter

Revenue Commitment Reversal revcomrv

Button IDs 1060

SuiteScript Developer & Reference Guide

Button UI Label Button Internal ID

Save As submitas

Save & Bill submitbill

Save & Convert submitconvert

Save & Copy submitcopy

Save & Edit submitedit

Save & Email saveemail

Save & Fulfill submitfulfill

Save & New submitnew

Save & Next submitnext

Save & Print saveprint

Save & Print BOM saveprintbom

Save & Print Label saveandprintlabel

Save & Refund submitrefund

Save & Same submitsame

Save Baseline savebaseline

Search search

Show Activity showactivity

Submit Invoice submitinvoice

Tentative tentative

Unbuild createunbuild

Update Matrix updatematrix

Update VSOE updatevsoe

View All Transactions viewalltransactions

Void void

W4 Worksheet w4data

Supported Tasklinks 1061

SuiteScript Developer & Reference Guide

Chapter 82 Supported Tasklinks
The following table lists NetSuite tasklinks that can be referenced when using
nlapiResolveURL(type, identifier, id, displayMode) or nlapiSetRedirectURL(type, identifier, id,
editmode, parameters).

Task ID Page Label in NetSuite URL

ADMI_ACCOUNTCLOSE Close Account /app/crm/support/nlcorpsupport.nl?
type=accountclose

ADMI_ACCTSETUP Accounting Preferences /app/setup/acctsetup.nl

ADMI_ACHSETUP Set Up ACH Processing /app/setup/achsetup.nl

ADMI_ACTIVATEBANKACCOU
NT

Activate Bank Account /app/payroll/verifyacct.nl

ADMI_ADP ADP Set Up /app/payroll/adp/setup/adpsetup.nl

ADMI_ADVINVENTORYSETUP Inventory Management
Preferences

/app/setup/advinventorysetup.nl

ADMI_ALLOW_LOGIN NetSuite Support Login /app/crm/support/allowsupportlogin.nl

ADMI_ALTERNATIVEPAYMEN
TS

Alternative Payments /app/setup/altpaymentaccounts.nl

ADMI_BACKUP Full CSV Export /app/external/export/backup/backup.nl?
csv=T

ADMI_BASSETUP Set Up Business Activity
Statement

/app/setup/bassetup.nl

ADMI_BILLINGEVENTS View Billing Information /app/billing/billingevents.nl

ADMI_BILLINGTERMS View Billing Terms /app/billing/billingterms.nl

ADMI_BOUNCEDADDRESS Bounced Email Addresses /app/common/entity/bouncedaddresses.
nl

ADMI_BUDGET Import Set Up Budget /app/setup/assistants/nsimport/
simpleimport.nl?rectype=BUDGETIMPORT

ADMI_BUNDLEDETAILS Bundle Details /app/bundler/bundledetails.nl

ADMI_CLASSESTOLOCS Convert Classes to Locations /app/setup/classestolocs.nl

ADMI_CLEARACCOUNT Delete All Data /pages/setup/clearaccount.jsp

ADMI_CLOSEPERIOD Lock Transactions /app/setup/closeperiod.nl

ADMI_COMMISSIONSETUP Set Up Commissions /app/setup/commissionsetup.nl

ADMI_COMPANY Company Information /app/common/otherlists/subsidiarytype.
nl?forcompany=T

ADMI_CONVERTCLASSES Convert Classes to Departments /app/setup/convertclasses.nl

ADMI_COPYCOA Copy Chart of Accounts to New
Company

/app/signup/consolidation.nl?coa=

ADMI_CREATECONSOLCOMP
ANY

Create Consolidation Company /app/signup/consolidation.nl?parent=t&
coa=

Supported Tasklinks 1062

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ADMI_CREDCARD Set Up Credit Card Processing /app/setup/ccprocessorlist.nl

ADMI_CSVIMPORTPREF CSV Import Preferences /app/setup/upload/csv/csvpreferences.nl

ADMI_CUSTAPPTEXT Customize Fulfillment Email /app/setup/customizetext.nl?scope=APP

ADMI_DUPLICATESETUP Set Up Duplicate Detection /app/setup/duplicatedetectsetup.nl

ADMI_EBAY Set Up eBay /app/setup/ebaysetup.nl

ADMI_EBAY_END_AUCTIONS End eBay Auctions /app/external/ebay/
ebaydelistingmanager.nl

ADMI_EBAY_END_
AUCTIONS_LOG

Ended eBay Auctions /app/external/ebay/
ebaydelistingmanager.nl?cmd=s

ADMI_EBAY_EXPORT Export Items to eBay /app/external/ebay/ebayexportmanager.
nl

ADMI_EBAY_EXPORT_LOG eBay Item Export Log /app/external/ebay/ebayitemexportlist.nl

ADMI_EBAY_IMPORT Import Orders from eBay /app/external/ebay/ebayimportmanager.
nl

ADMI_EBAY_IMPORT_LOG eBay Order Import Log /app/external/ebay/ebayorderimportlist.nl

ADMI_EBAY_STATUS eBay Status /app/external/ebay/ebaystatus.nl

ADMI_EDITNEXUSES New Nexus /app/setup/nexus.nl

ADMI_EDITTAXACCTS New Tax Control Account /app/setup/taxacct.nl

ADMI_EDITTAXTYPES New Tax Types /app/setup/taxtype.nl

ADMI_EDITTEGATA New Tegata Account /app/setup/tegataaccount.nl

ADMI_EMAIL Email Preferences /app/setup/emailpreferences.nl

ADMI_EXPORTIIF Export as IIF /pages/setup/exportiifform.jsp

ADMI_EXPORTPRODUCTFEE
DS

Product Feeds /app/site/setup/exportproductfeeds.nl

ADMI_EXPORTPRODUCTFEED
SADV

Product Feeds /app/site/setup/exportproductfeeds.nl

ADMI_FEATURES Enable Features /app/setup/features.nl

ADMI_FEDEXREG Fedex Registration Wizard /app/common/shipping/fedex/
fedexregistration.nl

ADMI_FINCHARGEPREF Finance Charge Preferences /app/setup/finchargepref.nl

ADMI_FISCALPERIODS Accountng Periods /app/setup/period/generatefiscalperiods.
nl

ADMI_GENERAL General Preferences /app/setup/general.nl

ADMI_IMAGERESIZE Image Resizing /app/site/setup/imageresizeadmin.nl

ADMI_IMPORTADP Import ADP Payroll /pages/setup/xmlframe.jsp

ADMI_IMPORTCSV Import CSV Records /app/setup/assistants/nsimport/
importassistant.nl?new=T

ADMI_IMPORTCSV_LOG View CSV Import Status /app/setup/upload/csv/csvstatus.nl

Supported Tasklinks 1063

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ADMI_IMPORTNLG Import Data from OneCore /pages/setup/importnlgform.jsp

ADMI_IMPORTOLB Import Online Banking Data /pages/setup/importolbform.jsp

ADMI_IMPORTQIF Import Quicken® QIF File /pages/setup/importqifform.jsp

ADMI_IMPORT_
COUPONCODE_STATUS

Import Coupon Codes Status /app/setup/upload/csv/csvstatus.nl?
importtype=COUPONCODE

ADMI_INVOICESETUP Invoicing Preferences /app/setup/invoicesetup.nl

ADMI_ISSUEBUILD Product Builds /app/crm/support/issuedb/issuebuilds.nl

ADMI_ISSUEEXTSTATUS Issue External Statuses /app/crm/support/issuedb/issueextstatus.
nl

ADMI_ISSUEIMPORT Import Issue Records /app/setup/assistants/nsimport/
importassistant.nl

ADMI_ISSUEMODULE Product Modules /app/crm/support/issuedb/issuemodule.nl

ADMI_ISSUEPRIORITY Issue Priorities /app/crm/support/issuedb/issuepriority.nl

ADMI_ISSUEPRODUCT Products /app/crm/support/issuedb/issueproducts.
nl

ADMI_ISSUERELEASEUPDATE Manage Released Issues /app/crm/support/issuedb/
issuereleaseupdate.nl

ADMI_ISSUEREPRODUCE Issue Reproducibility /app/crm/support/issuedb/
issuereproduce.nl

ADMI_ISSUESETUP Issue Preferences /app/setup/issuesetup.nl

ADMI_ISSUESEVERITY Issue Severities /app/crm/support/issuedb/issueseverity.nl

ADMI_ISSUESOURCE Issue Sources /app/crm/support/issuedb/issuesource.nl

ADMI_ISSUESTATUS Issue Statuses /app/crm/support/issuedb/issuestatus.nl

ADMI_ISSUESTATUSFLOW Manage Status Transitions /app/crm/support/issuedb/
issuestatusflow.nl

ADMI_ISSUETAGS Issue Tags /app/crm/support/issuedb/issuetags.nl

ADMI_ISSUETYPE Issue Types /app/crm/support/issuedb/issuetype.nl

ADMI_ISSUEUSERTYPE Issue Roles /app/crm/support/issuedb/
issueusertypes.nl

ADMI_ISSUEVERSION Product Versions /app/crm/support/issuedb/issueversion.nl

ADMI_ITEMATTRGROUP Field Set /app/site/setup/fieldset.nl

ADMI_LEADCUSTOMFIELDM
APPING

Lead Conversion Mapping /app/common/custom/
custleadfieldmapping.nl

ADMI_LOGINAUDIT View Login Audit Trail /app/common/search/search.nl?
searchtype=LoginAudit

ADMI_LOGINRESTRICT View Login Restrictions /app/setup/userloginrestrictions.nl

ADMI_MAINTENANCEDOMA
IN

Site Maintenance Domain /app/site/setup/maintenancedomain.nl

Supported Tasklinks 1064

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ADMI_MAINTENANCEDOMAI
NADV

Site Maintenance Domain /app/site/setup/maintenancedomain.nl

ADMI_MAINTENANCEDOMAI
NLIST

Site Maintenance Domains /app/setup/maintenancedomains.nl

ADMI_MAINTENANCEDOMAI
NLISTADV

Site Maintenance Domains /app/setup/maintenancedomains.nl

ADMI_MANAGEPAYROLL Update Payroll Information /app/payroll/managepayroll.nl

ADMI_MANAGE_PLUGINS Manage Plug-ins /app/common/scripting/manageplugins.
nl

ADMI_NAMING Rename Records/Transactions /app/setup/naming.nl

ADMI_NEXUSES Nexuses /app/setup/nexuses.nl

ADMI_NOTIFICATIONS Administrative Notifications /app/setup/notifications.nl?id=0

ADMI_NUMBERING Set Up Auto-Generated Numbers /app/setup/numbering.nl

ADMI_OAUTHAPP Token-based Authentication /app/setup/oauthapplist.nl

ADMI_OAUTH_TOKENS Access Tokens /app/setup/accesstokens.nl

ADMI_OFFLINECLIENT Setup Offline Client /app/setup/offlinesetup.nl

ADMI_OPENIDSSO OpenID Single Sign-on /app/setup/openidsetup.nl

ADMI_OUTLOOKINTEGRATIO
N

Outlook Integration /app/external/xml/outlook/
outlookDownload.nl

ADMI_OUTLOOKINTEGRATIO
N_V3

Outlook Integration 3.0 /app/external/xml/outlook/
outlookv3download.nl

ADMI_PAYPAL Set Up PayPal Processing /app/common/otherlists/
accountingotherlist.nl?
paymentmethodtype=paypal&system=F&
e=T

ADMI_PAYROLL Set Up Payroll /app/setup/payrollsetup.nl

ADMI_PAYROLLMAP Map Payroll Items /app/payroll/mappayrollitem.nl

ADMI_PAYROLLREP Report Sections /app/setup/payrollreportsections.nl

ADMI_PRINTING Printing & Fax /app/setup/printing.nl

ADMI_REDIRECT Import Redirect /app/setup/assistants/nsimport/
simpleimport.nl?rectype=REDIRECT

ADMI_REDIRECTADV Import Redirect /app/setup/assistants/nsimport/
simpleimport.nl?rectype=REDIRECT

ADMI_REDIRECTS Web Site Redirects /app/site/setup/redirects.nl

ADMI_REDIRECTSADV Web Site Redirects /app/site/setup/redirects.nl

ADMI_SAMLSSO SAML Single Sign-on /app/setup/samlsetup.nl

ADMI_SANDBOXACCOUNTS Sandbox Accounts /app/setup/sandboxaccounts.nl

ADMI_SAVEDASH Publish Dashboard /app/center/setup/savedashboard.nl

Supported Tasklinks 1065

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ADMI_SAVEDIMPORTS Saved CSV Imports /app/setup/assistants/nsimport/
savedimports.nl

ADMI_SCRIPTDEBUGGER Script Debugger /app/common/scripting/scriptdebugger.
nl

ADMI_SETUPMANAGER Setup Manager /app/setup/mainsetup.nl

ADMI_SETUPURLS Bulk Set URL Components /app/site/setup/setupurlcomponents.nl

ADMI_SETUPURLSADV Bulk Set URL Components /app/site/setup/setupurlcomponents.nl

ADMI_SETUPURLSADV_LOG Bulk Set URL Components Status /app/external/xml/upload/uploadlog.nl?
displayType=SITESETUP

ADMI_SETUPURLS_LOG Bulk Set URL Components Status /app/external/xml/upload/uploadlog.nl?
displayType=SITESETUP

ADMI_SETUPYEARSTATUS Set Up Year Status /app/setup/period/generateperiodsstatus.
nl

ADMI_SFASETUP Sales Preferences /app/setup/sfasetup.nl

ADMI_SHIPPING Set Up Shipping /app/setup/shipping.nl

ADMI_SITEMAPGENERATOR Sitemap Generator /app/site/setup/sitemap/
sitemapgenerator.nl

ADMI_SITEMAPGENERATORA
DV

Sitemap Generator /app/site/setup/sitemap/
sitemapgenerator.nl?sitetype=ADVANCED

ADMI_SITEMAP_MANAGER Content Manager /app/site/setup/sitemanager.nl

ADMI_SOFTDESCRIPTORS Set Up Credit Card Soft
Descriptors

/app/setup/softdescriptors.nl

ADMI_STATETAXIMPORT Use State Sales Tax Tables /app/setup/statetaximport.nl

ADMI_STOREADMIN Set Up Web Site /app/site/setup/siteadmin.nl?sitetype=
STANDARD

ADMI_STOREADMINADV Set Up Web Site /app/site/setup/siteadmin.nl?sitetype=
ADVANCED

ADMI_STOREASSISTANT Web Site Assistant /app/setup/assistants/sitesetup.nl

ADMI_STORELIST Set Up Web Site /app/site/setup/sitelist.nl?sitetype=
STANDARD

ADMI_STORELISTADV Set Up Web Site /app/site/setup/sitelist.nl?sitetype=
ADVANCED

ADMI_STOREPREVIEW Preview Web Site /app/site/setup/sitepreview.nl

ADMI_STOREPREVIEWADV Preview Web Site /app/site/setup/sitepreview.nl

ADMI_SUITESIGNON SuiteSignOn /app/setup/ssoapplist.nl

ADMI_SUPPORTSETUP Support Preferences /app/setup/supportsetup.nl

ADMI_SWAPPRICES Swap Prices Between Price Levels /app/common/item/swapprices.nl

ADMI_SYNCHRONIZATIONSE
TUP

Synchronization /app/external/xml/pumatech/
syncDownload.nl

Supported Tasklinks 1066

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ADMI_TAX Set Up Taxes /app/setup/taxpreferences.nl

ADMI_TAXACCTS Tax Control Accounts /app/setup/taxaccts.nl

ADMI_TAXTYPES Tax Types /app/setup/taxtypes.nl

ADMI_TDCLRPOOL Clear Pool Generated from
Testdrive Master

/app/setup/testdrives/cleartestdrivepool.
nl

ADMI_TDMKMSTR Make Testdrive Master /app/setup/testdrives/
maketestdrivemaster.nl

ADMI_TEGATA Tegata Accounts /app/setup/tegataaccounts.nl

ADMI_TEXTCUST Customize Web Site Text /app/setup/customizetextbundles.nl

ADMI_TEXTCUSTADV Customize Web Site Text /app/setup/customizetextbundles.nl

ADMI_TEXTCUSTGROUP Customize Text Group /app/setup/customizetextbundle.nl

ADMI_TEXTCUSTGROUPADV Customize Text Group /app/setup/customizetextbundle.nl

ADMI_TRANSETUP Set Up Transactions /app/setup/acctsetup.nl

ADMI_TRANSITEMTXT Bulk Update Translation /app/setup/translateitems.nl

ADMI_TWOFACTORDEVICES Two-Factor Authentication Tokens /app/setup/twofactordevices.nl

ADMI_TWOFACTORROLES Two-Factor Authentication Roles /app/setup/twofactorroles.nl

ADMI_UPDATEPRICES Update Prices /app/common/bulk/bulkop.nl?
searchtype=Item&opcode=Pricing

ADMI_UPSELLSETUP Upsell Preferences /app/setup/upsellsetup.nl

ADMI_UPSWIZ UPS Registration Wizard /app/common/shipping/ups/
upsregistration.nl

ADMI_URLCOMPONENTS URL Components for Facets /app/site/setup/
faceturlcomponentmanager.nl

ADMI_WEBSERVICEPREFS Web Services Preferences /app/webservices/setup.nl

ADMI_WEBSERVICES_STATUS Web Services Process Status /app/webservices/asyncstatus.nl

ADMI_WEBSERVICES_USAGE_
LOG

Web Services Usage Log /app/webservices/syncstatus.nl

ADMI_XML_ADP_SETUP Set Up ADP Payroll /pages/setup/xmladpsetupeditform.jsp

ADMI_XML_PAYTRUST_
APPROVE

Approve Online Bill Payments /app/external/xml/paytrust/approve.nl

ADMI_XML_PAYTRUST_
SETUP

Set Up Online Bill Pay /app/external/xml/paytrust/setup.nl

ADMI_XML_PAYTRUST_
STATUS

View Online Bill Pay Status /app/external/xml/paytrust/status.nl

ADMI_YTDTAXLIBANDPYMTS Set Up Year-to-Date Information /app/payroll/ytdprocess.nl

EDIT_ACCOUNT New Accounts /app/accounting/account/account.nl

EDIT_ACCOUNTINGBOOK New Accounting Book /app/accounting/multibook/
accountingbook.nl

Supported Tasklinks 1067

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_ACCOUNTINGOTHERLIS
T

New Accounting List Element /app/common/otherlists/
accountingotherlist.nl

EDIT_ACTIVITY New Activity /app/crm/calendar/activity.nl

EDIT_ALLOCATION Create Allocation Schedules /app/accounting/transactions/allocation.
nl

EDIT_ALLOCATIONBATCH Create Allocation Batches /app/accounting/transactions/
allocationbatch.nl

EDIT_AMENDW4 Form W-4 /app/common/entity/amendw4.nl

EDIT_AMORTIZATIONSCHED
ULE

New Amortization Template /app/accounting/otherlists/
revrecschedule.nl?type=Amortization

EDIT_APPDEF New App Definition /app/appdef/appdef.nl

EDIT_APPPKG Upload App Package for New
Bundle

/app/appdef/apppkg.nl

EDIT_APPPKG_UPGRADE Upload App Package for Bundle
Upgrade

/app/appdef/apppkg.nl?upgrade=t

EDIT_APPPUBLISHER New Application Publisher /app/setup/apppublisher.nl

EDIT_BILLINGACCOUNT New Billing Account /app/accounting/otherlists/billingaccount.
nl

EDIT_BILLINGCLASS New Billing Class /app/accounting/otherlists/billingclass.nl

EDIT_BILLINGRULE New Billing Rule /app/accounting/transactions/billing/
billingrule.nl

EDIT_BILLINGSCHEDULE New Billing Schedule /app/accounting/otherlists/
billingschedule.nl

EDIT_BILLING_GROUPS Billing Groups /app/crm/common/crmgroup.nl?
billinggroupsonly=T&grouptype_filter=
CustJob

EDIT_BILLOFDISTRIBUTION New Bill Of Distribution /app/accounting/inventory/
distributionplanning/billofdistribution.nl

EDIT_BILLRUNSCHEDULE Schedule Billing Operations /app/accounting/transactions/
billingworkcenter/billrunschedule.nl

EDIT_BILLRUNSCHEDULES New Billing Operation Schedule /app/accounting/transactions/
billingworkcenter/billrunschedule.nl

EDIT_BINNUMBERRECORD New Bin /app/accounting/transactions/inventory/
binnumberrecord.nl

EDIT_BULKOP Edit Mass Update /app/common/bulk/bulkop.nl

EDIT_BUNDLE Create Bundle /app/setup/assistants/bundlebuilder.nl?
new=T

EDIT_BUNDLEAUDITTRAIL Bundle Audit Trail /app/bundler/bundleaudittrail.nl

EDIT_CALENDARPREFERENCE Calendar Preference /app/crm/calendar/calendarpreference.nl

EDIT_CALL New Phone Call /app/crm/calendar/call.nl

Supported Tasklinks 1068

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_CAMPAIGN New Marketing Campaign /app/crm/marketing/campaign.nl

EDIT_CAMPAIGNAUDIENCE New Campaign Audience /app/crm/marketing/campaignaudience.
nl

EDIT_CAMPAIGNBULK Create Keyword Campaigns /app/crm/marketing/campaign.nl?bulk=T

EDIT_CAMPAIGNBULKIMPORT Import Keywords /app/setup/assistants/nsimport/
simpleimport.nl?rectype=
CAMPAIGNKEYWORD

EDIT_CAMPAIGNCATEGORY New Campaign Category /app/crm/marketing/campaigncategory.nl

EDIT_CAMPAIGNCHANNEL New Campaign Channel /app/crm/marketing/campaignchannel.nl

EDIT_CAMPAIGNEMAIL New Campaign Email Address /app/crm/marketing/campaignemail.nl

EDIT_CAMPAIGNFAMILY New Campaign Family /app/crm/marketing/campaignfamily.nl

EDIT_CAMPAIGNOFFER New Campaign Offer /app/crm/marketing/campaignoffer.nl

EDIT_CAMPAIGNSEARCHENG
INE

New Campaign Search Engine /app/crm/marketing/
campaignsearchengine.nl

EDIT_CAMPAIGNSUBSCRIPTI
ON

New Campaign Subscription /app/crm/marketing/
campaignsubscription.nl

EDIT_CAMPAIGNVERTICAL New Campaign Vertical /app/crm/marketing/campaignvertical.nl

EDIT_CASEFIELDRULE New Case Rule /app/crm/support/casefieldrule.nl

EDIT_CASEFORM New Online Case Forms /app/crm/support/caseform.nl

EDIT_CASEISSUE New Case Issue /app/crm/support/caseissue.nl

EDIT_CASEORIGIN New Case Origin Type /app/crm/support/caseorigin.nl

EDIT_CASEPRIORITY New Case Priority /app/crm/support/casepriority.nl

EDIT_CASEPROFILE New Case Profile /app/crm/support/profiles/caseprofile.nl

EDIT_CASESTATUS New Case Status /app/crm/support/casestatus.nl

EDIT_CASETERRITORY New Case Territory /app/crm/support/supportterritory.nl

EDIT_CASETYPE New Case Type /app/crm/support/casetype.nl

EDIT_CHARGE Create Charges /app/accounting/transactions/billing/
charge.nl

EDIT_CHARGERULE New Charge Rule /app/accounting/transactions/billing/
chargerule.nl

EDIT_CLASS New Class /app/common/otherlists/classtype.nl

EDIT_CLASSSEGMENTMAPPI
NG

New Class Mapping /app/accounting/account/
classsegmentmapping.nl

EDIT_COLORTHEME New Color Theme /app/setup/look/colortheme.nl

EDIT_COMMISSIONSCHEDULE New Employee Schedule /app/crm/sales/commissions/
commissionschedule.nl

EDIT_COMPANY New Company /app/common/entity/company.nl

EDIT_COMPETITOR Competitor /app/crm/sales/competitor.nl

Supported Tasklinks 1069

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_CONTACT New Contacts /app/common/entity/contact.nl

EDIT_CRMGROUP New Groups /app/crm/common/crmgroup.nl

EDIT_CRMMESSAGE New Email /app/crm/common/crmmessage.nl

EDIT_CRMOTHERLIST New CRM List Element /app/common/otherlists/crmotherlist.nl

EDIT_CRMTEMPLATE New Marketing Templates /app/crm/common/merge/
marketingtemplate.nl

EDIT_CURRENCY New Currencies /app/common/multicurrency/currency.nl

EDIT_CURRENCYRATE New Currency Exchange Rate /app/common/multicurrency/
currencyrate.nl

EDIT_CUSTADDRESSENTRYFO
RM

Address Form /app/common/custom/
custaddressentryform.nl

EDIT_CUSTADDRESSFORM Address Form /app/common/custom/custaddressform.
nl?e=T

EDIT_CUSTBODYFIELD New Transaction Body Fields /app/common/custom/bodycustfield.nl

EDIT_CUSTCATEGORY New Center Category /app/common/custom/custcategory.nl

EDIT_CUSTCENTER New Center /app/common/custom/custcenter.nl

EDIT_CUSTCOLUMNFIELD New Transaction Column Fields /app/common/custom/columncustfield.nl

EDIT_CUSTEMAILLAYOUT New Transaction Form HTML
Layouts

/app/common/custom/custemaillayout.nl

EDIT_CUSTENTITYFIELD New Entity Fields /app/common/custom/entitycustfield.nl

EDIT_CUSTENTRYFORM New Entry Forms /app/common/custom/custentryform.nl

EDIT_CUSTEVENTFIELD New CRM Fields /app/common/custom/eventcustfield.nl

EDIT_CUSTFORM New Transaction Forms /app/common/custom/custform.nl

EDIT_CUSTITEMFIELD New Item Fields /app/common/custom/itemcustfield.nl

EDIT_CUSTITEMNUMBERFIEL
D

New Item Number Field /app/common/custom/
itemnumbercustfield.nl

EDIT_CUSTJOB New Customers /app/common/entity/custjob.nl

EDIT_CUSTLAYOUT New Transaction Form PDF
Layouts

/app/common/custom/custlayout.nl

EDIT_CUSTLIST New Lists /app/common/custom/custlist.nl

EDIT_CUSTOMERFIELDRULE New Set Up Sales Rules /app/crm/sales/customerfieldrule.nl

EDIT_CUSTOMERFORM New Online Customer Forms /app/crm/sales/leadform.nl

EDIT_CUSTOMERSTATUS New Customer Statuses /app/crm/sales/customerstatus.nl

EDIT_CUSTOMSEGMENT Edit Custom Segment /app/common/custom/segments/
segment.nl

EDIT_CUSTOTHERFIELD New Other Field /app/common/custom/othercustfield.nl

EDIT_CUSTPROFILE Customer Profile /app/common/entity/custprofile.nl?
category=billing&sc=4

Supported Tasklinks 1070

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_CUSTRECORD New Record Types /app/common/custom/custrecord.nl

EDIT_CUSTRECORDFIELD Custom Record Field /app/common/custom/custreccustfield.nl

EDIT_CUSTRECORDFORM New Custom Record Form /app/common/custom/custrecordform.nl

EDIT_CUSTSCRIPTFIELD New Script Fields /app/common/custom/scriptcustfield.nl

EDIT_CUSTSECTION New Center Tab /app/common/custom/custsection.nl

EDIT_CUSTTASKS Center Links /app/common/custom/custtasks.nl

EDIT_CUSTTRANSACTION New Transaction Type /app/common/custom/
customtransaction.nl

EDIT_CUSTWFSTATEFIELD New Workflow State Fields /app/common/custom/wfstatecustfield.nl

EDIT_CUSTWORKFLOWFIELD New Workflow Fields /app/common/custom/workflowcustfield.
nl

EDIT_CUST_ Custom Record Entry /app/common/custom/custrecordentry.nl

EDIT_DEPARTMENT New Departments /app/common/otherlists/departmenttype.
nl

EDIT_DEPTSEGMENTMAPPIN
G

New Department Mapping /app/accounting/account/
deptsegmentmapping.nl

EDIT_DISTRIBUTIONNETWOR
K

New Distribution Network /app/accounting/inventory/
distributionplanning/distributionnetwork.
nl

EDIT_EDITPROFILE Employee Profile /app/common/entity/editprofile.nl

EDIT_EMAILTEMPLATE New Email Templates /app/crm/common/merge/emailtemplate.
nl

EDIT_EMPLCATEGORY New Employee Directory /app/site/setup/emplcategory.nl

EDIT_EMPLOYEE New Employees /app/common/entity/employee.nl

EDIT_EMPLOYEESFA New Assign Support Reps /app/common/entity/employeesfa.nl

EDIT_EMPOTHERLIST New Employee Related List
Element

/app/common/otherlists/empotherlist.nl

EDIT_ENTITYACCOUNTMAPP
ING

New Entity Account Mapping /app/accounting/account/
entityaccountmapping.nl

EDIT_ESCALATIONRULE New Escalation Rules /app/crm/support/escalationfieldrule.nl

EDIT_ESCALATIONTERRITORY New Manage Escalation
Assignment

/app/crm/support/escalationterritory.nl

EDIT_EVENT New Event /app/crm/calendar/event.nl

EDIT_EXPCATEGORY New Expense Categories /app/accounting/otherlists/expcategory.nl

EDIT_FAIRVALUEFORMULA New Fair Value Formula /app/accounting/revrec/fairvalueformula.
nl

EDIT_FAIRVALUEPRICE New Fair Value Price /app/accounting/revrec/fairvalueprice.nl

EDIT_FAXMESSAGE New Fax Message /app/crm/common/merge/faxmessage.nl

EDIT_FAXTEMPLATE New Fax Templates /app/crm/common/merge/faxtemplate.nl

Supported Tasklinks 1071

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_FISCALCALENDAR New Fiscal Calendar /app/setup/period/fiscalcalendar.nl

EDIT_FISCALPERIOD Setup Fiscal Period /app/setup/period/fiscalperiod.nl

EDIT_GENERICRESOURCE New Generic Resource /app/accounting/project/genericresource.
nl

EDIT_GLOBALACCOUNTMAP
PING

New Global Account Mapping /app/accounting/account/
globalaccountmapping.nl

EDIT_IC_ALLOCATION Create Intercompany Allocation
Schedules

/app/accounting/transactions/
intercompanyallocation.nl

EDIT_IMPORT_COUPONCODE Import Coupon Codes /app/setup/assistants/nsimport/
simpleimport.nl?rectype=COUPONCODE

EDIT_INFOITEM New Information Items /app/site/setup/infoitem.nl?Information_
TYPE=TEXT

EDIT_INFOITEMFORM New Publish Forms /app/site/setup/infoitem.nl?Information_
TYPE=FORM

EDIT_INSTALLBUNDLE Search & Install Bundles /app/bundler/installbundle.nl

EDIT_INSTALLSUITEAPP Install SuiteApp /app/suiteapp/devframework/appinstall.nl

EDIT_INVCOSTTEMPLATE New Inventory Cost Template /app/accounting/inventory/standard/
invcosttemplate.nl

EDIT_ISSUE New Issue /app/crm/support/issuedb/issue.nl

EDIT_ISSUEPRODUCT New Product /app/crm/support/issuedb/issueproduct.
nl

EDIT_ISSUETAG New Issue Tag /app/crm/support/issuedb/issuetag.nl

EDIT_ISSUEUSERTYPE New Issue Role /app/crm/support/issuedb/issueusertype.
nl

EDIT_ITEM New Items /app/common/item/item.nl

EDIT_ITEMACCOUNTMAPPIN
G

New Item Account Mapping /app/accounting/account/
itemaccountmapping.nl

EDIT_ITEMDEMANDPLAN New Item Demand Plan /app/accounting/inventory/
demandplanning/itemdemandplan.nl

EDIT_ITEMOPTION New Transaction Item Options /app/common/custom/itemoption.nl

EDIT_ITEMREVENUECATEGO
RY

New Item Revenue Category /app/accounting/revrec/
itemrevenuecategory.nl

EDIT_ITEMSUPPLYPLAN New Item Supply Plan /app/accounting/inventory/
demandplanning/itemsupplyplan.nl

EDIT_ITEM_REVISION New Item Revision /app/common/item/itemrevision.nl

EDIT_JOB New Job /app/accounting/project/project.nl

EDIT_KBCATEGORY New Knowledge Base /app/site/setup/kbcategory.nl

EDIT_KPIREPORT New KPI Scorecard /app/center/enhanced/kpireportsetup.nl

EDIT_LEAD New Leads /app/common/entity/custjob.nl?stage=
lead

Supported Tasklinks 1072

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_LOCATION New Locations /app/common/otherlists/locationtype.nl

EDIT_LOCATIONASSIGNMENT
SETTINGS

Auto Location Assignment /app/setup/locationassignment/
locationassignmentsettings.nl

EDIT_LOCATIONCOSTINGGRO
UP

New Location Costing Group /app/accounting/inventory/costing/
locationcostinggroup.nl

EDIT_LOCSEGMENTMAPPING New Location Mapping /app/accounting/account/
locsegmentmapping.nl

EDIT_MAILMERGE Bulk Merge /app/crm/common/merge/mailmerge.nl

EDIT_MAILMESSAGE New Word Message /app/crm/common/merge/mailmessage.
nl

EDIT_MAILTEMPLATE New Letter Templates /app/crm/common/merge/mailtemplate.
nl

EDIT_MEDIAITEM New Media Item /app/common/media/mediaitem.nl

EDIT_MEDIAITEMFOLDER New File Cabinet /app/common/media/mediaitemfolder.nl

EDIT_MEMDOC Enter Memorized Transactions /app/accounting/transactions/
bulkmemdoc.nl

EDIT_MFGCOSTTEMPLATE New Manufacturing Cost
Template

/app/accounting/manufacturing/
mfgcosttemplate.nl

EDIT_MFGROUTING New Manufacturing Routing /app/accounting/manufacturing/
mfgrouting.nl

EDIT_NEXUS Nexus /app/setup/nexus.nl

EDIT_OAUTHAPP New Token-based Authentication /app/setup/oauthapp.nl

EDIT_OAUTH_TOKEN New Access Token /app/setup/accesstoken.nl

EDIT_OPENIDSSO OpenID Single Sign-on /app/setup/openidsetup.nl

EDIT_OTHERNAME New Other Names /app/common/entity/othername.nl

EDIT_PARTNER New Partners /app/common/entity/partner.nl

EDIT_PARTNERCOMMISSION
SCHED

New Partner Schedule /app/crm/sales/commissions/
partnercommissionschedule.nl

EDIT_PARTNERPLANASSIGN New Partner Plan /app/crm/sales/commissions/
planassignpartner.nl

EDIT_PAYPALACCOUNT PayPal Accounts /app/external/paypal/paypalaccount.nl

EDIT_PAYROLLBATCH2 New Payroll Batch /app/payroll/payrollbatch2.nl

EDIT_PAYROLLITEM New Payroll Items /app/common/item/payrollitem.nl

EDIT_PDFMESSAGE New PDF Message /app/crm/common/merge/pdfmessage.nl

EDIT_PDFTEMPLATE New PDF Templates /app/crm/common/merge/pdftemplate.nl

EDIT_PERIOD New Manage Accounting Periods /app/setup/period/fiscalperiod.nl

EDIT_PLANASSIGN New Employee Plan /app/crm/sales/commissions/planassign.
nl

Supported Tasklinks 1073

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_PLANNEDSTANDARDC
OST

New Planned Standard Cost /app/accounting/inventory/
plannedstandardcost.nl

EDIT_PLUGIN New Plug-in /app/common/scripting/plugin.nl

EDIT_PLUGINTYPE New Custom Plug-in Type /app/common/scripting/plugintype.nl?
scripttype=PLUGINTYPE

EDIT_PRESCATEGORY New Categories /app/site/setup/prescategory.nl

EDIT_PROCESSHISTTXN Historical Transaction Processing /app/accounting/multibook/htp/
submission.nl

EDIT_PROCESSHISTTXNLOG Historical Transaction Processing
Log

/app/accounting/multibook/htp/log.nl

EDIT_PROJECTEXPENSETYPE New Project Expense Type /app/accounting/otherlists/
projectexpensetype.nl

EDIT_PROJECTTASK New Job Tasks /app/accounting/project/projecttask.nl

EDIT_PROJECTTEMPLATE New Project Template /app/accounting/project/projecttemplate.
nl

EDIT_PROSPECT New Prospects /app/common/entity/custjob.nl?stage=
prospect

EDIT_PUBLISHER Register Publisher /app/suiteapp/devframework/
publisherregistry.nl

EDIT_PUBLISHERAPP New Application /app/suiteapp/devframework/appregistry.
nl

EDIT_QUANTITYPRICINGSCH
EDULE

New Quantity Pricing Schedule /app/accounting/otherlists/
quantitypricingschedule.nl

EDIT_RATEPLAN New Rate Plan /app/accounting/otherlists/rateplan.nl

EDIT_REDIRECT New Redirect /app/site/setup/redirect.nl

EDIT_REDIRECTADV New Redirect /app/site/setup/redirect.nl

EDIT_REFERRALCODE New Promotion /app/crm/sales/referralcode.nl

EDIT_REGION New Region /app/setup/region/region.nl

EDIT_REGISTERPUBLISHER Register Publisher /app/suiteapp/devframework/
publisherregistry.nl

EDIT_RELATEDITEM New Related Items Category /app/site/setup/relateditem.nl

EDIT_RELATEDITEMADV New Related Items Category /app/site/setup/relateditem.nl

EDIT_REPORT Edit Report /app/reporting/reporteditor.nl

EDIT_RESOLVECONFLICTS Resolve Conflicts /app/common/entity/conflictresolution.nl

EDIT_RESOURCE Resource /app/crm/calendar/resource.nl

EDIT_REVENUEALLOCATIONG
ROUP

New Revenue Allocation Group /app/common/otherlists/
accountingotherlist.nl?tname=
revenueallocationgroup

EDIT_REVENUEELEMENT New Revenue Element /app/accounting/revrec/revenueelement.
nl

Supported Tasklinks 1074

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_REVENUEPLAN New Revenue Recognition Plan /app/accounting/revrec/revenueplan.nl

EDIT_REVENUERECOGNITION
RULE

New Revenue Recognition Rule /app/accounting/revrec/
revenuerecognitionrule.nl

EDIT_REVRECSCHEDULE New Revenue Recognition
Template

/app/accounting/otherlists/
revrecschedule.nl

EDIT_ROLE New Role /app/setup/role.nl

EDIT_RSRCALLOCATION New Rsrc Allocation /app/accounting/project/allocation.nl

EDIT_RSSFEED New RSS Feed /app/site/hosting/rssfeed.nl

EDIT_SALESCAMPAIGN New Sales Campaign /app/crm/marketing/salescampaign.nl

EDIT_SALESTEAM New Sales Teams /app/crm/common/crmgroup.nl?
grouptype=SalesTeam

EDIT_SALESTERRITORY New Manage Sales Territories /app/crm/sales/salesterritory.nl

EDIT_SAVEDSEARCH New Saved Search /app/common/search/search.nl?cu=T&e=
F

EDIT_SCRIPT New Script /app/common/scripting/uploadScriptFile.
nl

EDIT_SCRIPTEDRECORD Scripted Record /app/common/scripting/scriptedrecord.nl

EDIT_SCRIPTRECORD New Script Deployment /app/common/scripting/scriptrecord.nl

EDIT_SEARCH New Search /app/common/search/search.nl

EDIT_SEARCHSUITEAPPS Search SuiteApps /app/suiteapp/devframework/appsearch.
nl

EDIT_SHIPITEM New Shipping Items /app/common/item/shipitem.nl

EDIT_SHIPPARTREGISTRATIO
N

New Shipping Partner
Registration

/app/common/shipping/openapi/
registration.nl

EDIT_SITEEMAILTEMPLATE New Web Store Email Template /app/site/setup/siteemailtemplate.nl

EDIT_SITEITEMTEMPLAT Item Template /app/site/setup/siteitemtemplate.nl

EDIT_SITEMEDIA Site Media /app/site/media/sitemedia.nl

EDIT_SITETAG Web Site Tag /app/site/setup/sitetag.nl

EDIT_SITETHEME Web Site Theme /app/site/setup/sitetheme.nl

EDIT_SOLUTION New Solutions /app/crm/support/kb/solution.nl

EDIT_SSCATEGORY New Publish Saved Search /app/site/setup/sscategory.nl

EDIT_STANDARDCOSTVERSIO
N

New Standard Cost Version /app/accounting/inventory/
standardcostversion.nl

EDIT_STATE New State/Province/County /app/setup/state.nl

EDIT_STOREITEMLISTLAYOUT New Layouts /app/site/setup/storeitemlistlayout.nl

EDIT_STORETAB New Tabs /app/site/setup/storetab.nl

EDIT_SUBSCRIPTION Create Subscriptions /app/accounting/subscription/
subscription.nl

Supported Tasklinks 1075

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_SUBSCRIPTIONCHANGE
ORDER

Manage Subscriptions /app/accounting/subscription/
subscriptionchangeorder.nl

EDIT_SUBSCRIPTIONLINE New Subscription Line /app/accounting/subscription/
subscriptionline.nl

EDIT_SUBSCRIPTIONPLAN New Subscription Plan /app/common/item/item.nl?itemtype=
SubscriPlan

EDIT_SUBSIDIARY New Subsidiaries /app/common/otherlists/subsidiarytype.nl

EDIT_SUITEAPPLIST Installed SuiteApp List /app/suiteapp/devframework/
appinstalllist.nl

EDIT_SUITESIGNON SuiteSignOn /app/setup/ssoapp.nl

EDIT_SUPPORTCASE New Cases /app/crm/support/supportcase.nl

EDIT_SYSALERT System Alert /app/common/otherlists/systemalert.nl

EDIT_TASK New Tasks /app/crm/calendar/task.nl

EDIT_TAXACCT Tax Control Account /app/setup/taxacct.nl

EDIT_TAXGROUP New Tax Groups /app/common/item/taxgroup.nl

EDIT_TAXITEM New Tax Codes /app/common/item/taxitem.nl

EDIT_TAXPERIOD New Manage Tax Periods /app/setup/period/taxperiod.nl

EDIT_TAXSCHEDULE New Tax Schedule /app/common/item/taxschedule.nl

EDIT_TAXTYPE Tax Type /app/setup/taxtype.nl

EDIT_TEMPLATECATEGORY New Template Category /app/crm/common/merge/
templatecategory.nl

EDIT_TIMESHEET Enter Time /app/accounting/transactions/timesheet.
nl

EDIT_TOPIC New Topics /app/crm/support/kb/topic.nl

EDIT_TRANSACTIONLIST Paycheck History /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Paycheck

EDIT_TRAN_ADJJOURNAL Make Currency Adjustment
Journal Entries

/app/accounting/transactions/journal.nl?
adjustmentjournal=T

EDIT_TRAN_BINTRNFR Bin Transfer /app/accounting/transactions/bintrnfr.nl

EDIT_TRAN_BINWKSHT Bin Putaway Worksheet /app/accounting/transactions/binwksht.nl

EDIT_TRAN_BLANKORD Enter Blanket Purchase Order /app/accounting/transactions/blankord.nl

EDIT_TRAN_BOOKICJOURNAL Make Book Specific Intercompany
Journal Entries

/app/accounting/transactions/journal.nl?
bookje=T&icj=T

EDIT_TRAN_BOOKICJOURNA
LIMPORT

Import Book Specific
Intercompany Journal Entries

/app/setup/assistants/nsimport/
simpleimport.nl?rectype=
INTERCOMPANYJOURNALENTRY

EDIT_TRAN_BOOKJOURNAL Make Book Specific Journal
Entries

/app/accounting/transactions/journal.nl?
bookje=T

Supported Tasklinks 1076

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_TRAN_
BOOKJOURNALIMPORT

Import Book Specific Journal
Entries

/app/setup/assistants/nsimport/
simpleimport.nl?rectype=JOURNALENTRY

EDIT_TRAN_BUILD Build Assemblies /app/accounting/transactions/build.nl

EDIT_TRAN_CARDCHRG Use Credit Card /app/accounting/transactions/cardchrg.nl

EDIT_TRAN_CASHRFND Refund Cash Sales /app/accounting/transactions/cashrfnd.nl

EDIT_TRAN_CASHSALE Enter Cash Sales /app/accounting/transactions/cashsale.nl

EDIT_TRAN_CHECK Write Checks /app/accounting/transactions/check.nl

EDIT_TRAN_COMMISSN Individual Employee Commission /app/accounting/transactions/commissn.
nl

EDIT_TRAN_CUSTCHRG Create Statement Charges /app/accounting/transactions/custchrg.nl

EDIT_TRAN_CUSTCRED Issue Credit Memos /app/accounting/transactions/custcred.nl

EDIT_TRAN_CUSTDEP Record Customer Deposits /app/accounting/transactions/custdep.nl

EDIT_TRAN_CUSTINVC Create Invoices /app/accounting/transactions/custinvc.nl

EDIT_TRAN_CUSTPYMT Accept Customer Payments /app/accounting/transactions/custpymt.nl

EDIT_TRAN_CUSTRFND Issue Customer Refund /app/accounting/transactions/custrfnd.nl

EDIT_TRAN_DEPAPPL Apply Customer Deposits /app/accounting/transactions/depappl.nl

EDIT_TRAN_DEPOSIT Make Deposits /app/accounting/transactions/deposit.nl

EDIT_TRAN_ESTIMATE Prepare Estimates /app/accounting/transactions/estimate.nl

EDIT_TRAN_EXPREPT Enter Expense Reports /app/accounting/transactions/exprept.nl

EDIT_TRAN_FXREVAL Revalue Open Currency Balances /app/accounting/transactions/
fxrevalsetup.nl

EDIT_TRAN_ICJOURNAL Make Intercompany Journal
Entries

/app/accounting/transactions/journal.nl?
icj=T

EDIT_TRAN_
ICJOURNALIMPORT

Import Intercompany Journal
Entries

/app/setup/assistants/nsimport/
simpleimport.nl?rectype=
INTERCOMPANYJOURNALENTRY

EDIT_TRAN_ICTRNFRORD Enter Intercompany Transfer
Orders

/app/accounting/transactions/trnfrord.nl?
icto=T

EDIT_TRAN_INVADJST Adjust Inventory /app/accounting/transactions/invadjst.nl

EDIT_TRAN_INVCOUNT Enter Inventory Count /app/accounting/transactions/invcount.nl

EDIT_TRAN_INVDISTR Distribute Inventory /app/accounting/transactions/invdistr.nl

EDIT_TRAN_INVREVAL Revalue Inventory Cost /app/accounting/transactions/invreval.nl

EDIT_TRAN_INVTRNFR Transfer Inventory /app/accounting/transactions/invtrnfr.nl

EDIT_TRAN_INVWKSHT Adjust Inventory Worksheet /app/accounting/transactions/invwksht.nl

EDIT_TRAN_
INVWKSHTIMPORT

Import Inventory Worksheets /app/setup/assistants/nsimport/
simpleimport.nl?rectype=
INVENTORYWORKSHEET

EDIT_TRAN_ITEMRCPT New Item Receipt /app/accounting/transactions/itemrcpt.nl

Supported Tasklinks 1077

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_TRAN_ITEMSHIP New Item Fulfillment /app/accounting/transactions/itemship.nl

EDIT_TRAN_JOURNAL Make Journal Entries /app/accounting/transactions/journal.nl

EDIT_TRAN_JOURNALIMPORT Import Journal Entries /app/setup/assistants/nsimport/
simpleimport.nl?rectype=JOURNALENTRY

EDIT_TRAN_LIAADJST Liability Adjustment /app/accounting/transactions/liaadjst.nl

EDIT_TRAN_LIABPYMT Pay Payroll Liabilities /app/accounting/transactions/liabpymt.nl

EDIT_TRAN_OPPRTNTY Create Opportunities /app/accounting/transactions/opprtnty.nl

EDIT_TRAN_
ORDERPURCHREQ

Order Requisitions /app/accounting/transactions/
orderpurchreqs.nl

EDIT_TRAN_
PARTNERCOMMISSN

Individual Partner Commission /app/accounting/transactions/
partnercommissn.nl

EDIT_TRAN_PAYCHECK Create Individual Paycheck /app/accounting/transactions/paycheck.nl

EDIT_TRAN_PAYCHECK2 Create Individual Paycheck /app/accounting/transactions/paycheck2.
nl

EDIT_TRAN_PCHKJRNL Paycheck Journal /app/accounting/transactions/pchkjrnl.nl

EDIT_TRAN_PURCHCON Enter Purchase Contracts /app/accounting/transactions/purchcon.nl

EDIT_TRAN_PURCHORD Enter Purchase Orders /app/accounting/transactions/purchord.nl

EDIT_TRAN_PURCHORD_REQ Enter Purchase Requests /app/accounting/transactions/purchord.nl

EDIT_TRAN_PURCHREQ Enter Requisitions /app/accounting/transactions/purchreq.nl

EDIT_TRAN_REPLENISHLOC Replenish Location /app/accounting/transactions/
replenishloc.nl

EDIT_TRAN_REVARRNG Enter Revenue Arrangements /app/accounting/transactions/revarrng.nl

EDIT_TRAN_REVCOMM RevComm /app/accounting/transactions/revcomm.nl

EDIT_TRAN_REVCOMRV RevComRv /app/accounting/transactions/revcomrv.nl

EDIT_TRAN_REVCONTR RevContr /app/accounting/transactions/revcontr.nl

EDIT_TRAN_RFQ Enter Requests For Quote /app/accounting/transactions/rfq.nl

EDIT_TRAN_RTNAUTH Issue Return Authorizations /app/accounting/transactions/rtnauth.nl

EDIT_TRAN_SALESORD Enter Sales Orders /app/accounting/transactions/salesord.nl

EDIT_TRAN_STATJOURNAL Make Statistical Journal Entries /app/accounting/transactions/
statisticaljournal.nl

EDIT_TRAN_
STATJOURNALIMPORT

Import Statistical Journal Entries /app/setup/assistants/nsimport/
simpleimport.nl?rectype=
STATISTICALJOURNALENTRY

EDIT_TRAN_STATSCHEDULE Create Statistical Schedule /app/accounting/transactions/statistical/
statisticalschedule.nl

EDIT_TRAN_STPICKUP Edit /app/accounting/transactions/stpickup.nl

EDIT_TRAN_TAXLIAB Write GST Liability /app/accounting/transactions/vatliab.nl

EDIT_TRAN_TAXLIAB2 Write Tax Liability /app/accounting/transactions/vatliab.nl

Supported Tasklinks 1078

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_TRAN_TAXPYMT Pay Sales Tax /app/accounting/transactions/taxpymt.nl

EDIT_TRAN_TAXPYMT2 Pay Sales Tax /app/accounting/transactions/taxpymt.nl

EDIT_TRAN_TAXPYMTCA Pay PST /app/accounting/transactions/taxpymt.nl

EDIT_TRAN_TEGCOLLECT Collect Tegata /app/accounting/transactions/tegcollect.
nl

EDIT_TRAN_TEGPAY Pay Tegata /app/accounting/transactions/tegpay.nl

EDIT_TRAN_TEGPYBL Issue Tegata /app/accounting/transactions/tegpybl.nl

EDIT_TRAN_TEGRCVBL Receive Tegata /app/accounting/transactions/tegrcvbl.nl

EDIT_TRAN_TRANSFER Transfer Funds /app/accounting/transactions/transfer.nl

EDIT_TRAN_TRNFRORD Enter Transfer Orders /app/accounting/transactions/trnfrord.nl

EDIT_TRAN_UNBUILD Unbuild Assemblies /app/accounting/transactions/unbuild.nl

EDIT_TRAN_VATLIABAU Pay Tax Liability /app/accounting/transactions/vatliab.nl

EDIT_TRAN_VENDAUTH Enter Vendor Return
Authorizations

/app/accounting/transactions/vendauth.
nl

EDIT_TRAN_VENDBILL Enter Bills /app/accounting/transactions/vendbill.nl

EDIT_TRAN_VENDCRED Enter Vendor Credits /app/accounting/transactions/vendcred.nl

EDIT_TRAN_VENDPYMT Pay Single Vendor /app/accounting/transactions/vendpymt.
nl

EDIT_TRAN_VENDRFQ Enter Vendor Requests For Quote /app/accounting/transactions/vendrfq.nl

EDIT_TRAN_WOCLOSE Close Work Order /app/accounting/transactions/woclose.nl

EDIT_TRAN_WOCOMPL Complete Work Order /app/accounting/transactions/wocompl.nl

EDIT_TRAN_WOISSUE Issue Work Order /app/accounting/transactions/woissue.nl

EDIT_TRAN_WORKORD Enter Work Orders /app/accounting/transactions/workord.nl

EDIT_TRAN_YTDADJST Create Payroll Adjustment /app/accounting/transactions/ytdadjst.nl

EDIT_UNINSTALLSUITEAPP Uninstall SuiteApp /app/suiteapp/devframework/
appuninstall.nl

EDIT_UNITSTYPE New Units Of Measure /app/common/units/unitstype.nl

EDIT_UPGRADEBUNDLE Managed Bundles /app/bundler/bundlelist.nl?type=S&
subtype=m

EDIT_URLALIAS New Promotional URL /app/setup/urlalias.nl

EDIT_USAGE Create Usages /app/accounting/otherlists/usage.nl

EDIT_VENDOR New Vendors /app/common/entity/vendor.nl

EDIT_WEBAPPS New SSP Application /app/common/scripting/webapp.nl

EDIT_WEBAPPSADV New SSP Application /app/common/scripting/webapp.nl

EDIT_WORKCALENDAR New Work Calendar /app/accounting/project/workcalendar.nl

EDIT_WORKFLOW New Workflow /app/common/workflow/setup/
workflowmanager.nl

Supported Tasklinks 1079

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

EDIT_WORKPLACE New Workplaces /app/common/otherlists/workplacetype.
nl

INTL_SECTION New Tabs /internal/admin/section.nl

INTL_SECTIONS Tabs /internal/admin/sections.nl

INTL_TASKLINK New Tasklinks /internal/admin/tasklink.nl

INTL_TASKLINKS Tasklinks /internal/admin/tasklinks.nl

LIST_ACCOUNT Accounts /app/accounting/account/accounts.nl

LIST_ACCOUNTINGBOOK Accounting Books /app/accounting/multibook/
accountingbooklist.nl

LIST_ACCOUNTINGOTHERLIST Accounting Lists /app/common/otherlists/
accountingotherlists.nl

LIST_ACTIVITY Activity List /app/crm/calendar/activitylist.nl

LIST_ADP_BATCHES Payroll Batches /app/payroll/payrollbatchlist2.nl

LIST_ADP_PAYCHECK Individual Paychecks /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Paycheck

LIST_ADVPDFTEMPLATE Advanced PDF/HTML Templates /app/common/custom/pdftemplates.nl?
sc=-90

LIST_ALLOCATION Allocation Schedules /app/accounting/transactions/
allocschedulelist.nl

LIST_ALLOCATIONBATCH Allocation Batches /app/accounting/transactions/
allocationbatchlist.nl

LIST_AMORTIZATION Amortization Templates /app/accounting/otherlists/
amortizationtemplates.nl

LIST_AMORTIZATIONSCHEDU
LE

Amortization Schedules /app/accounting/otherlists/
amortizationschedules.nl

LIST_APPDEF App Definitions /app/appdef/appdeflist.nl

LIST_APPPKG App Packages /app/appdef/apppkglist.nl

LIST_APPPUBLISHERS Application Publishers /app/setup/apppublishers.nl

LIST_APPROVEACH Approve Direct Deposits /app/accounting/transactions/
approveach.nl

LIST_APPROVEEFT Approve Electronic Funds
Transfers

/app/accounting/transactions/approveeft.
nl

LIST_APPROVERSRCALLOCAT
ION

Approve Resource Allocations /app/common/bulk/approval/
recordapproval.nl?type=
resourceallocation

LIST_APPROVERTIMEENTRY Approve Time /app/common/bulk/approval/
recordapproval.nl?type=timeentry

LIST_APPROVEVP Approve Vendor Payment
Transfers

/app/accounting/transactions/approvevp.
nl

Supported Tasklinks 1080

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_BILLINGACCOUNT Billing Accounts /app/accounting/otherlists/
billingaccounts.nl

LIST_BILLINGCLASS Billing Classes /app/accounting/otherlists/billingclasses.
nl

LIST_BILLINGRULE Billing Rule /app/accounting/transactions/billing/
billingrules.nl

LIST_BILLINGRUNRESULTS Billing Run Results /app/accounting/transactions/billing/
billingrunresults.nl

LIST_BILLINGSCHEDULE Billing Schedules /app/accounting/otherlists/
billingschedules.nl

LIST_BILLING_GROUPS Billing Groups /app/crm/common/crmgrouplist.nl?
billinggroupsonly=T

LIST_BILLING_WORK_CENTER Billing Work Center /app/accounting/transactions/
billingworkcenter/billingworkcenter.nl

LIST_BILLOFDISTRIBUTION Bill Of Distribution /app/accounting/inventory/
distributionplanning/billofdistributionlist.
nl

LIST_BILLRUN Billing Operations /app/accounting/transactions/
billingworkcenter/billrunresults.nl

LIST_BILLRUNSCHEDULE Billing Operation Schedules /app/accounting/transactions/
billingworkcenter/billrunschedules.nl

LIST_BIN Bins /app/accounting/transactions/inventory/
binlist.nl

LIST_BUDGET Budgets /app/accounting/transactions/budgetlist.
nl

LIST_BUDGETRATES Budget Exchange Rates /app/accounting/otherlists/budgetrates.nl

LIST_BULKOP Mass Updates /app/common/bulk/bulkops.nl

LIST_BULKRESULTS Mass Update Results /app/common/bulk/bulkresults.nl

LIST_BUNDLE List Bundles /app/bundler/bundlelist.nl?type=S

LIST_CALENDAR Calendar /app/crm/calendar/calendar.nl

LIST_CALL Phone Calls /app/crm/calendar/calllist.nl

LIST_CAMPAIGN Marketing Campaigns /app/crm/marketing/campaignlist.nl?
Campaign_ISSALESCAMPAIGN=F

LIST_CAMPAIGNAUDIENCE Campaign Audiences /app/crm/marketing/campaignaudiences.
nl

LIST_CAMPAIGNCATEGORY Campaign Categories /app/crm/marketing/campaigncategories.
nl

LIST_CAMPAIGNCHANNEL Campaign Channels /app/crm/marketing/campaignchannels.nl

LIST_CAMPAIGNEMAIL Campaign Email Addresses /app/crm/marketing/campaignemails.nl

LIST_CAMPAIGNFAMILY Campaign Families /app/crm/marketing/campaignfamilies.nl

Supported Tasklinks 1081

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_CAMPAIGNOFFER Campaign Offers /app/crm/marketing/campaignoffers.nl

LIST_CAMPAIGNSEARCHENG
INE

Campaign Search Engines /app/crm/marketing/
campaignsearchengines.nl

LIST_CAMPAIGNSUBSCRIPTIO
N

Campaign Subscriptions /app/crm/marketing/
campaignsubscriptions.nl

LIST_CAMPAIGNVERTICAL Campaign Verticals /app/crm/marketing/campaignverticals.nl

LIST_CASEFIELDRULE Set Up Case Rules /app/crm/support/casefieldrules.nl

LIST_CASEFORM Online Case Forms /app/crm/support/caseforms.nl

LIST_CASEISSUE Case Issues /app/crm/support/caseissuelist.nl

LIST_CASEORIGIN Case Origin Types /app/crm/support/caseoriginlist.nl

LIST_CASEPRIORITY Case Priorities /app/crm/support/caseprioritylist.nl

LIST_CASEPROFILE Case Profile /app/crm/support/profiles/caseprofiles.nl

LIST_CASESTATUS Case Statuses /app/crm/support/casestatuslist.nl

LIST_CASETERRITORIES Case Territory List /app/crm/support/supportterritorylist.nl

LIST_CASETERRITORY Manage Case Territories /app/crm/common/automation/
territorymanager.nl?case=T

LIST_CASETERRITORYASSIGN Territory Reassignment /app/common/bulk/bulkop.nl?
searchtype=Case&opcode=ReAssign

LIST_CASETYPE Case Types /app/crm/support/casetypelist.nl

LIST_CCTRAN View Credit Card Transactions /app/accounting/transactions/cardtrans.nl

LIST_CHARGE Charges /app/accounting/transactions/billing/
charges.nl

LIST_CHARGERULE View Charge Rules /app/accounting/transactions/billing/
chargerules.nl

LIST_CHARGERUNRESULTS Charge Run Results /app/accounting/transactions/billing/
chargerunresults.nl

LIST_CHART_ACCOUNT Chart of Accounts /app/accounting/account/accounts.nl?
report=T&code=COA

LIST_CLASS Classes /app/common/otherlists/classlist.nl

LIST_CLASSSEGMENTMAPPIN
G

Class Mapping /app/accounting/account/
classsegmentmappinglist.nl

LIST_COLORTHEME Color Themes /app/setup/look/colorthemes.nl

LIST_COMMISSIONSCHEDULE Employee Schedules /app/crm/sales/commissions/
commissionscheds.nl

LIST_COMPANY All Companies /app/common/entity/companylist.nl

LIST_COMPETITOR Competitors /app/crm/sales/competitorlist.nl

LIST_CONSOLRATES Consolidated Exchange Rates /app/accounting/otherlists/
consolidatedrates.nl

LIST_CONTACT Contacts /app/common/entity/contactlist.nl

Supported Tasklinks 1082

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_COUNTRY Set Up Countries /app/setup/countries.nl

LIST_CRMGROUP Groups /app/crm/common/crmgrouplist.nl

LIST_CRMOTHERLIST CRM Lists /app/common/otherlists/crmotherlists.nl

LIST_CRMTEMPLATE Marketing Templates /app/crm/common/merge/
marketingtemplates.nl

LIST_CURRENCY Currencies /app/common/multicurrency/currencylist.
nl

LIST_CURRENCYRATE Currency Exchange Rates /app/common/multicurrency/
currencyratelist.nl

LIST_CUSTADDRESSENTRYFO
RM

Address Forms /app/common/custom/
custaddressentryforms.nl

LIST_CUSTBODYFIELD Transaction Body Fields /app/common/custom/bodycustfields.nl

LIST_CUSTCATEGORY Center Categories /app/common/custom/custcategories.nl

LIST_CUSTCENTER Centers /app/common/custom/custcenters.nl

LIST_CUSTCOLUMNFIELD Transaction Column Fields /app/common/custom/columncustfields.
nl

LIST_CUSTEMAILLAYOUT Transaction Form HTML Layouts /app/common/custom/custemaillayouts.
nl

LIST_CUSTENTITYFIELD Entity Fields /app/common/custom/entitycustfields.nl

LIST_CUSTENTRYFORM Entry Forms /app/common/custom/custentryforms.nl

LIST_CUSTEVENTFIELD CRM Fields /app/common/custom/eventcustfields.nl

LIST_CUSTFIELDTAB Subtabs /app/common/custom/custfieldtabs.nl

LIST_CUSTFORM Transaction Forms /app/common/custom/custforms.nl

LIST_CUSTITEMFIELD Item Fields /app/common/custom/itemcustfields.nl

LIST_CUSTITEMNUMBERFIELD Item Number Fields /app/common/custom/
itemnumbercustfields.nl

LIST_CUSTJOB Customers /app/common/entity/custjoblist.nl?
Customer_STAGE=CUSTOMER

LIST_CUSTLAYOUT Transaction Form PDF Layouts /app/common/custom/custlayouts.nl

LIST_CUSTLIST Lists /app/common/custom/custlists.nl

LIST_CUSTOMCODEFILES SuiteScripts /app/common/media/mediaitemfolders.
nl?folder=-15

LIST_CUSTOMERFIELDRULE Set Up Sales Rules /app/crm/sales/customerfieldrules.nl

LIST_CUSTOMERFORM Online Customer Forms /app/crm/sales/leadforms.nl

LIST_CUSTOMERSTATUS Customer Statuses /app/crm/sales/customerstatuslist.nl

LIST_CUSTOMSEGMENT Custom Segments /app/common/custom/segments/
segments.nl

LIST_CUSTOMSUBLIST Sublists /app/common/custom/customsublists.nl

LIST_CUSTOTHERFIELD Other Custom Fields /app/common/custom/othercustfields.nl

Supported Tasklinks 1083

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_CUSTRECORD Record Types /app/common/custom/custrecords.nl

LIST_CUSTRECORDFORM Online Custom Record Forms /app/common/custom/custrecordforms.nl

LIST_CUSTSECTION Center Tabs /app/common/custom/custsections.nl

LIST_CUSTTRANSACTION Transaction Types /app/common/custom/
customtransactions.nl

LIST_DEPARTMENT Departments /app/common/otherlists/departmentlist.
nl

LIST_DEPTSEGMENTMAPPING Department Mapping /app/accounting/account/
deptsegmentmappinglist.nl

LIST_DEVICE_ID Device ID /app/setup/deviceauth/devicelist.nl

LIST_DIFFROLE Show Role Differences /app/setup/diffroles.nl

LIST_DISTRIBUTIONNETWORK Distribution Network /app/accounting/inventory/
distributionplanning/
distributionnetworklist.nl

LIST_DUPLICATE_
RESOLUTION_STATUS

Duplicate Resolution Status /app/common/entity/
duplicatemanagement/dupejob.nl

LIST_EMAILTEMPLATE Email Templates /app/crm/common/merge/
emailtemplates.nl

LIST_EMPLCATEGORY Employee Directory /app/site/setup/emplcategories.nl

LIST_EMPLOYEE Employees /app/common/entity/employeelist.nl

LIST_EMPOTHERLIST Employee Related Lists /app/common/otherlists/empotherlists.nl

LIST_ENTITY All Entities /app/common/entity/entitylist.nl

LIST_ENTITYACCOUNTMAPP
ING

Entity Account Mappings /app/accounting/account/
entityaccountmappinglist.nl

LIST_ENTITY_DUPLICATES Entity Duplicate Resolution /app/common/entity/manageduplicates.
nl

LIST_ESCALATIONRULE Set Up Escalation Rules /app/crm/support/escalationfieldrules.nl

LIST_ESCALATIONTERRITORY Manage Escalation Assignment /app/crm/common/automation/
territorymanager.nl?escalation=T

LIST_EVENT Events /app/crm/calendar/eventlist.nl

LIST_EXPCATEGORY Expense Categories /app/accounting/otherlists/expcategories.
nl

LIST_FAIRVALUEDIMENSION Fair Value Dimensions /app/accounting/revrec/
fairvaluedimension.nl

LIST_FAIRVALUEFORMULA Fair Value Formulas /app/accounting/revrec/
fairvalueformulalist.nl

LIST_FAIRVALUEPRICE Fair Value Price Lists /app/accounting/revrec/fairvaluepricelist.
nl

LIST_FAXTEMPLATE Fax Templates /app/crm/common/merge/faxtemplates.
nl

Supported Tasklinks 1084

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_FCSITEFOLDER Web Site Hosting Files /app/common/media/mediaitemfolders.
nl?folder=-100

LIST_FCSITEFOLDERADV Web Site Hosting Files /app/common/media/mediaitemfolders.
nl?folder=-100

LIST_FILECABINET Media Items /app/common/media/mediaitems.nl

LIST_FINCHRG Assess Finance Charges /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustInvc&Transaction_FINCHRG=T

LIST_FISCALCALENDAR Fiscal Calendars /app/setup/period/fiscalcalendars.nl

LIST_FORECAST List Sales Rep Forecast /app/crm/sales/forecastlist.nl?Forecast_
ISTEAM=F

LIST_GENERICRESOURCE Generic Resources /app/accounting/project/
genericresources.nl

LIST_GIFTCERTIFICATES Gift Certificates /app/accounting/otherlists/giftcertificates.
nl

LIST_GLNUMHISTORY GL Audit Numbering History /app/accounting/transactions/
glnumbering/glnumhistory.nl

LIST_GLOBALACCOUNTMAP
PING

Global Account Mappings /app/accounting/account/
globalaccountmappinglist.nl

LIST_IMAGE Images /app/common/media/mediaitemfolders.
nl?folder=-4

LIST_INFOITEM Information Items /app/site/setup/infoitemlist.nl?searchid=-
2540

LIST_INFOITEMFORM Publish Forms /app/site/setup/infoitemlist.nl?searchid=-
2541

LIST_INSTALLEDBUNDLE Installed Bundles /app/bundler/bundlelist.nl?type=I

LIST_INVCOSTTEMPLATE Inventory Cost Template /app/accounting/inventory/standard/
invcosttemplatelist.nl

LIST_ISSUE Issues /app/crm/support/issuedb/issuelist.nl

LIST_ITEM Items /app/common/item/itemlist.nl

LIST_ITEMACCOUNTMAPPING Item Account Mappings /app/accounting/account/
itemaccountmappinglist.nl

LIST_ITEMATTRGROUP Field Sets /app/site/setup/fieldsets.nl

LIST_ITEMDEMANDPLAN Item Demand Plans /app/accounting/inventory/
demandplanning/itemdemandplanlist.nl

LIST_ITEMOPTION Transaction Item Options /app/common/custom/itemoptions.nl

LIST_ITEMREVENUECATEGOR
Y

Item Revenue Categories /app/accounting/revrec/
itemrevenuecategorylist.nl

LIST_ITEMSUPPLYPLAN Item Supply Plans /app/accounting/inventory/
demandplanning/itemsupplyplanlist.nl

LIST_ITEM_REVISION Item Revisions /app/common/item/itemrevisionlist.nl

Supported Tasklinks 1085

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_JOB Jobs /app/accounting/project/projects.nl

LIST_KBCATEGORY Knowledge Base /app/site/setup/kbcategories.nl

LIST_KPIREPORT KPI Scorecards /app/center/enhanced/kpireports.nl

LIST_LEAD Leads /app/common/entity/custjoblist.nl?
Customer_STAGE=LEAD

LIST_LOCATION Locations /app/common/otherlists/locationlist.nl

LIST_LOCATIONCOSTINGGRO
UP

Location Costing Groups /app/accounting/inventory/costing/
locationcostinggrouplist.nl

LIST_LOCSEGMENTMAPPING Location Mapping /app/accounting/account/
locsegmentmappinglist.nl

LIST_MAILMERGE Merge History /app/crm/common/merge/
mailmergehistory.nl

LIST_MAILTEMPLATE Letter Templates /app/crm/common/merge/mailtemplates.
nl

LIST_MEDIAITEMFOLDER File Cabinet /app/common/media/mediaitemfolders.nl

LIST_MEDIAITEMFOLDER_
LOG

Job Status /app/external/xml/upload/uploadlog.nl?
displayType=FILECABINET

LIST_MEMDOC Memorized Transactions /app/accounting/otherlists/memdoclist.nl

LIST_MEMDOCRESULTS Memorized Transactions Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
MEMORIZEDTRANSACTIONS&
BulkProcSubmission_CREATEDDATE=
TODAY

LIST_MFGCOSTTEMPLATE Manufacturing Cost Templates /app/accounting/manufacturing/
mfgcosttemplatelist.nl

LIST_MFGOPERATIONTASK Manufacturing Operation Tasks /app/accounting/manufacturing/
mfgoperationlist.nl

LIST_MFGROUTING Manufacturing Routing /app/accounting/manufacturing/
mfgroutinglist.nl

LIST_MGRFORECAST List Sales Manager Forecast /app/crm/sales/forecastlist.nl?Forecast_
ISTEAM=T

LIST_MYROLES My Roles /app/center/myroles.nl

LIST_OTHERNAME Other Names /app/common/entity/othernames.nl

LIST_PARTNER Partners /app/common/entity/partnerlist.nl

LIST_PARTNERCOMMISSIONS
CHED

Partner Schedules /app/crm/sales/commissions/
partnercommissionscheds.nl

LIST_PARTNERPLANASSIGN Partner Plans /app/crm/sales/commissions/
partnercommissionplans.nl

LIST_PARTNERPLANASSIGNS Partner Plan Assignments /app/crm/sales/commissions/
partnerplanassigns.nl

Supported Tasklinks 1086

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_PAYMENTEVENT View Payment Events /app/paymentprocessing/paymentevents.
nl

LIST_PAYPALACCOUNT PayPal Accounts /app/external/paypal/paypalaccountlist.nl

LIST_PAYROLLBATCH Payroll Batches /app/payroll/payrollbatchlist2.nl

LIST_PAYROLLISSUES Payroll Issues /app/payroll/cdstatus.nl

LIST_PAYROLLITEM Payroll Items /app/common/item/payrollitems.nl

LIST_PDFTEMPLATE PDF Templates /app/crm/common/merge/pdftemplates.
nl

LIST_PERIOD Manage Accounting Periods /app/setup/period/fiscalperiods.nl

LIST_PLANASSIGN Employee Plans /app/crm/sales/commissions/
commissionplans.nl

LIST_PLANASSIGNS Employee Plan Assignments /app/crm/sales/commissions/planassigns.
nl

LIST_PLANNEDSTANDARDCO
ST

Planned Standard Costs /app/accounting/inventory/
plannedstandardcostlist.nl

LIST_PLUGIN Plug-in Implementations /app/common/scripting/pluginlist.nl

LIST_PLUGINTYPE Custom Plug-in Types /app/common/scripting/plugintypelist.nl

LIST_PRESCATEGORY Categories /app/site/setup/prescategories.nl?ctype=
PRES§ion=&siteid=

LIST_PROCESSHISTTXNSTAT
US

Historical Transaction Processing
Status

/app/accounting/multibook/htp/status.nl

LIST_PROJECTEXPENSETYPE Project Expense Types /app/accounting/otherlists/
projectexpensetypes.nl

LIST_PROJECTTASK Project Tasks /app/accounting/project/projecttasks.nl

LIST_PROJECTTASKIMPORT Import Project Tasks /app/setup/assistants/nsimport/
simpleimport.nl?rectype=PROJECTTASK

LIST_PROJECTTEMPLATE Project Templates /app/accounting/project/
projecttemplates.nl

LIST_PROSPECT Prospects /app/common/entity/custjoblist.nl?
Customer_STAGE=PROSPECT

LIST_PUBLISHERAPP List Applications /app/suiteapp/devframework/
appregistrylist.nl

LIST_QUANTITYPRICINGSCHE
DULE

Quantity Pricing Schedules /app/accounting/otherlists/
quantitypricingschedules.nl

LIST_QUOTA Quotas /app/crm/sales/quotalist.nl

LIST_RATEPLAN Rate Plans /app/accounting/otherlists/rateplans.nl

LIST_RECENTRECORDS Recent Records /app/common/otherlists/recentrecords.nl

LIST_RECVDFILES Attachments Received /app/common/media/mediaitemfolders.
nl?folder=-10

LIST_REFERRALCODE Promotions /app/crm/sales/referralcodelist.nl

Supported Tasklinks 1087

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_REGION Set Up Regions /app/setup/region/regionlist.nl

LIST_RELATEDITEM Related Items Categories /app/site/setup/relateditems.nl

LIST_RELATEDITEMADV Related Items Categories /app/site/setup/relateditems.nl

LIST_REPORESULT Report Results /app/reporting/workqueue/
reportresultlist.nl

LIST_REPOSCHEDULE Report Schedules /app/reporting/workqueue/
reportschedulelist.nl

LIST_RESOURCE Resources /app/crm/calendar/resources.nl

LIST_REVENUEALLOCATIONG
ROUP

Revenue Allocation Groups /app/common/otherlists/
accountingotherlists.nl?tname=
revenueallocationgroup

LIST_REVENUEELEMENT Revenue Elements /app/accounting/revrec/
revenueelementlist.nl

LIST_REVENUEPLAN Revenue Recognition Plans /app/accounting/revrec/revenueplanlist.nl

LIST_REVENUERECOGNITION
RULE

Revenue Recognition Rules /app/accounting/revrec/
revenuerecognitionrulelist.nl

LIST_REVRECSCHEDS Revenue Recognition Schedules /app/accounting/otherlists/
revrecschedules.nl

LIST_REVRECSCHEDULE Revenue Recognition Templates /app/accounting/otherlists/
revrectemplates.nl

LIST_ROLE Manage Roles /app/setup/rolelist.nl

LIST_RSRCALLOCATION Rsrc Allocations /app/accounting/project/allocations.nl

LIST_RSSFEED RSS Feeds /app/site/hosting/rssfeeds.nl

LIST_SALESCAMPAIGN Sales Campaigns /app/crm/marketing/salescampaignlist.nl

LIST_SALESTEAM Sales Teams /app/crm/common/salesteamlist.nl

LIST_SALESTERRITORIES Sales Territory List /app/crm/sales/salesterritorylist.nl

LIST_SALESTERRITORY Manage Sales Territories /app/crm/common/automation/
territorymanager.nl?sales=T

LIST_SALESTERRITORYASSIGN Territory Reassignment /app/common/bulk/bulkop.nl?
searchtype=Customer&opcode=ReAssign

LIST_SAVEDASHBOARD Published Dashboards /app/center/setup/savedashboards.nl

LIST_SAVEDBULKOP Saved Mass Updates /app/common/bulk/savedbulkops.nl

LIST_SAVEDSEARCH Saved Searches /app/common/search/savedsearches.nl

LIST_SCRIPT Scripts /app/common/scripting/scriptlist.nl

LIST_SCRIPTEDRECORD Scripted Records /app/common/scripting/scriptedrecords.
nl

LIST_SCRIPTLOGS Script Execution Logs /app/common/scripting/
scriptnotearchive.nl

LIST_SCRIPTRECORD Script Deployments /app/common/scripting/scriptrecordlist.nl

Supported Tasklinks 1088

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_SCRIPTSTATUS Scheduled Script Status /app/common/scripting/scriptstatus.nl

LIST_SEARCHRESULTS Search Results /app/common/search/searchresults.nl

LIST_SEARCHRESULTSARCHI
VE

Search Results /app/common/search/backend/
searchresultsarchive.nl

LIST_SENTFILES Attachments Sent /app/common/media/mediaitemfolders.
nl?folder=-14

LIST_SHIPITEM Shipping Items /app/common/item/shipitems.nl

LIST_SHIPPARTREGISTRATION Shipping Partner Registrations /app/setup/shipping.nl?tab=
partnerregistrations

LIST_SHIPPINGMANIFEST Shipping Manifest /app/common/shipping/fedex/
shippingmanifest.nl

LIST_SITEEMAILTEMPLATE Web Store Email Templates /app/site/setup/siteemailtemplates.nl

LIST_SITEITEMTEMPLAT Item/Category Templates /app/site/setup/siteitemtemplates.nl

LIST_SITETAGS Web Site Tags /app/site/setup/sitetags.nl

LIST_SITETHEMES Web Site Themes /app/site/setup/sitethemes.nl

LIST_SMBIMPORT SMB Import /app/external/xml/upload/upload.nl

LIST_SMTP_SERVERS SMTP Servers /app/setup/smtpservers.nl

LIST_SOLUTION Solutions /app/crm/support/kb/solutions.nl

LIST_SSCATEGORY Publish Saved Search /app/site/setup/sscategories.nl

LIST_STANDARDCOSTVERSIO
N

Standard Cost Versions /app/accounting/inventory/
standardcostversionlist.nl

LIST_STATE Set Up States/Provinces/Counties /app/setup/states.nl

LIST_STATUSACH View Direct Deposit Status /app/accounting/transactions/statusach.nl

LIST_STATUSEFT View Electronic Funds Transfer
Status

/app/accounting/transactions/statuseft.nl

LIST_STATUSVP View Vendor Payment Status /app/accounting/transactions/statusvp.nl

LIST_STOREITEMLISTLAYOUT Layouts /app/site/setup/storeitemlistlayouts.nl

LIST_STORETAB Tabs /app/site/setup/storetabs.nl

LIST_SUBSCRIPTION Subscriptions /app/accounting/subscription/
subscriptionlist.nl

LIST_SUBSCRIPTIONCHANGE
ORDER

Subscription Change Orders /app/accounting/subscription/
subscriptionchangeorders.nl

LIST_SUBSCRIPTIONLINE Subscription Lines /app/accounting/subscription/
subscriptionlinelist.nl

LIST_SUBSCRIPTIONPLAN Subscription Plans /app/accounting/subscription/
subscriptionplans.nl

LIST_SUBSIDIARY Subsidiaries /app/common/otherlists/subsidiarylist.nl

LIST_SUPPORTCASE Cases /app/crm/support/caselist.nl

LIST_SYSALERT System Alerts /app/common/otherlists/systemalerts.nl

Supported Tasklinks 1089

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_SYSTEMEMAILTEMPLATE Set Up System Email Templates /app/crm/common/merge/
systememailtemplates.nl

LIST_TASK Tasks /app/crm/calendar/tasklist.nl

LIST_TAXGROUP Tax Groups /app/common/item/taxgroups.nl

LIST_TAXITEM Tax Codes /app/common/item/taxitems.nl

LIST_TAXPERIOD Manage Tax Periods /app/setup/period/taxperiods.nl

LIST_TAXSCHEDULE Tax Schedules /app/common/item/taxschedules.nl

LIST_TEMPLATEFILES Template Files /app/common/media/mediaitemfolders.
nl?folder=-9

LIST_TEMPLATE_CATEGORY Template Categories /app/crm/common/merge/
templatecategories.nl

LIST_TIMESHEET Timesheets /app/accounting/transactions/timesheets.
nl

LIST_TOPIC Topics /app/crm/support/kb/topics.nl

LIST_TRANNUMBERAUDITLO
G

Transaction Numbering Audit Log /app/accounting/transactions/
trannumberauditlist.nl

LIST_TRANSACTION Transactions /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=@
ALL@

LIST_TRAN_BINTRNFR Bin Transfers /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
BinTrnfr

LIST_TRAN_BINWKSHT Bin Putaway Worksheets /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
BinWksht

LIST_TRAN_BLANKORD Blanket Purchase Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
BlankOrd

LIST_TRAN_BOOKICJOURNAL Accounting Book Intercompany
Journal Entries

/app/accounting/transactions/
transactionlistswitch.nl?TR_Transaction_
TYPE=Journal&icj=T

LIST_TRAN_BOOKJOURNAL Accounting Book Journal Entries /app/accounting/transactions/
transactionlistswitch.nl?TR_Transaction_
TYPE=Journal

LIST_TRAN_BUILD Assembly Builds /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=Build

LIST_TRAN_CARDCHRG Credit Card Charges /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CardChrg

LIST_TRAN_CASHRFND Cash Refunds /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CashRfnd

Supported Tasklinks 1090

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_TRAN_CASHSALE Cash Sales /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CashSale

LIST_TRAN_CHECK Checks /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Check

LIST_TRAN_COMMISSN Individual Employee Commissions /app/accounting/transactions/commissns.
nl

LIST_TRAN_CUSTCHRG Statement Charges /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustChrg

LIST_TRAN_CUSTCRED Credit Memos /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustCred

LIST_TRAN_CUSTDEP Customer Deposits /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustDep

LIST_TRAN_CUSTINVC Invoices /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustInvc

LIST_TRAN_CUSTPYMT Customer Payments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustPymt

LIST_TRAN_CUSTRFND Customer Refunds /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
CustRfnd

LIST_TRAN_DEPAPPL Deposit Applications /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
DepAppl

LIST_TRAN_DEPOSIT Deposits /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Deposit

LIST_TRAN_DOWNLOAD My Downloads /app/common/entity/downloads.nl

LIST_TRAN_ESTIMATE Estimates /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Estimate

LIST_TRAN_EXPREPT Expense Reports /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
ExpRept

LIST_TRAN_FXREVAL Currency Revaluations /app/accounting/transactions/
transactionlistswitch.nl?TR_Transaction_
TYPE=FxReval

LIST_TRAN_ICJOURNAL Intercompany Journal Entries /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Journal&icj=T

Supported Tasklinks 1091

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_TRAN_ICTRNFRORD Intercompany Transfer Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TrnfrOrd&icto=T

LIST_TRAN_INVADJST Inventory Adjustments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvAdjst

LIST_TRAN_INVCOUNT Inventory Counts /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvCount

LIST_TRAN_INVDISTR Inventory Distributions /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvDistr

LIST_TRAN_INVREVAL Inventory Cost Revaluations /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvReval

LIST_TRAN_INVTRNFR Inventory Transfers /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvTrnfr

LIST_TRAN_INVWKSHT Inventory Worksheets /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
InvWksht

LIST_TRAN_ITEMRCPT Item Receipts /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
ItemRcpt

LIST_TRAN_ITEMSHIP Item Fulfillments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
ItemShip

LIST_TRAN_JOURNAL Journal Entries /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Journal

LIST_TRAN_LIABPYMT Liability Payments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
LiabPymt

LIST_TRAN_OPPRTNTY Opportunities /app/accounting/transactions/
opprtntylist.nl

LIST_TRAN_
PARTNERCOMMISSN

Individual Partner Commissions /app/accounting/transactions/
partnercommissns.nl

LIST_TRAN_PAYCHECK Paychecks /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Paycheck

LIST_TRAN_PCHKJRNL Paycheck Journals /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
PChkJrnl

Supported Tasklinks 1092

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_TRAN_PURCHCON Purchase Contracts /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
PurchCon

LIST_TRAN_PURCHORD Purchase Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
PurchOrd

LIST_TRAN_PURCHORD_REQ View Purchase Requests/Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
PurchOrd

LIST_TRAN_PURCHREQ Requisitions /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
PurchReq

LIST_TRAN_REORDER Items Ordered /app/common/item/itemsordered.nl

LIST_TRAN_REVARRNG Revenue Arrangements /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
RevArrng

LIST_TRAN_REVCOMM Revenue Commitments /app/accounting/transactions/
transactionlistswitch.nl?TR_Transaction_
TYPE=RevComm

LIST_TRAN_REVCOMRV View Revenue Commitment
Reversals

/app/accounting/transactions/
transactionlistswitch.nl?TR_Transaction_
TYPE=RevComRv

LIST_TRAN_REVCONTR View Revenue Contracts /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
RevContr

LIST_TRAN_RFQ Requests For Quote /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=Rfq

LIST_TRAN_RTNAUTH Return Authorizations /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
RtnAuth

LIST_TRAN_SALESORD Sales Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
SalesOrd

LIST_TRAN_STATJOURNAL Statistical Journal Entries /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Journal&statistical=T

LIST_TRAN_STATSCHEDULE Statistical Schedules /app/accounting/transactions/statistical/
statisticalschedulelist.nl

LIST_TRAN_STPICKUP Store Pick Up Fulfillments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
StPickUp

LIST_TRAN_TAXLIAB Tax Liabilities /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TaxLiab

Supported Tasklinks 1093

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_TRAN_TAXPYMT Tax Payments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TaxPymt

LIST_TRAN_TEGPYBL Issued Tegatas /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TegPybl

LIST_TRAN_TEGRCVBL Received Tegatas /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TegRcvbl

LIST_TRAN_TRANSFER Bank Transfers /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Transfer

LIST_TRAN_TRNFRORD Transfer Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TrnfrOrd

LIST_TRAN_UNBUILD Assembly Unbuilds /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
Unbuild

LIST_TRAN_VATLIAB Tax Liabilities /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TaxLiab

LIST_TRAN_VATLIABAU GST Liabilities /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TaxLiab

LIST_TRAN_VATLIABUK VAT Liabilities /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
TaxLiab

LIST_TRAN_VENDAUTH Vendor Return Authorizations /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
VendAuth

LIST_TRAN_VENDBILL Bills /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
VendBill

LIST_TRAN_VENDCRED Bill Credits /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
VendCred

LIST_TRAN_VENDPYMT Bill Payments /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
VendPymt

LIST_TRAN_VENDRFQ Vendor Requests For Quote /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
VendRfq

LIST_TRAN_WOCLOSE Work Order Closes /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
WOClose

Supported Tasklinks 1094

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

LIST_TRAN_WOCOMPL Work Order Completions /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
WOCompl

LIST_TRAN_WOISSUE Work Order Issues /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
WOIssue

LIST_TRAN_WORKORD Work Orders /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
WorkOrd

LIST_TRAN_YTDADJST Payroll Adjustment /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
YtdAdjst

LIST_UNCATSITEITEM View Uncategorized Items /app/setup/uncatsiteitems.nl

LIST_UNCATSITEITEMADV View Uncategorized Items /app/setup/uncatsiteitems.nl

LIST_UNITSTYPE Units Of Measure /app/common/units/unitstypelist.nl

LIST_UPSELLPOPUP Upsell Popup /app/crm/sales/upsell/upsellpopup.nl

LIST_UPSELLWIZARD Upsell Manager /app/crm/sales/upsell/upsellmanager.nl

LIST_URLALIASES Promotional URLs /app/setup/urlaliases.nl

LIST_USAGE Usages /app/accounting/otherlists/usages.nl

LIST_USER Manage Users /app/setup/listusers.nl

LIST_VENDOR Vendors /app/common/entity/vendorlist.nl

LIST_WEBAPPS SSP Applications /app/common/scripting/webapplist.nl

LIST_WEBAPPSADV SSP Applications /app/common/scripting/webapplist.nl

LIST_WORKCALENDAR Work Calendars /app/accounting/project/workcalendars.nl

LIST_WORKFLOW Workflows /app/common/workflow/setup/
workflowlist.nl

LIST_WORKPLACE Workplaces /app/common/otherlists/workplacelist.nl

REPO_10 ALT_SALES Pipeline by Sales Rep
Detail

/app/reporting/reportrunner.nl?cr=10

REPO_100 Total Pipeline by Sales Rep /app/reporting/reportrunner.nl?cr=100

REPO_101 Total Pipeline by Sales Rep Detail /app/reporting/reportrunner.nl?cr=101

REPO_102 New Customer Sales Detail /app/reporting/reportrunner.nl?cr=102

REPO_103 New Customer Sales /app/reporting/reportrunner.nl?cr=103

REPO_104 Opportunities Lost /app/reporting/reportrunner.nl?cr=104

REPO_105 Opportunities Won /app/reporting/reportrunner.nl?cr=105

REPO_106 Sales Activity by Customer /app/reporting/reportrunner.nl?cr=106

REPO_107 Sales Activity by Customer Detail /app/reporting/reportrunner.nl?cr=107

REPO_108 Comparative Sales /app/reporting/reportrunner.nl?cr=108

REPO_109 Income Statement /app/reporting/reportrunner.nl?cr=109

Supported Tasklinks 1095

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_11 ALT_SALES Pipeline by Sales Rep
Summary

/app/reporting/reportrunner.nl?cr=11

REPO_110 Income Statement /app/reporting/reportrunner.nl?cr=110

REPO_111 Authorized Commission /app/reporting/reportrunner.nl?cr=111

REPO_112 Authorized Commission Detail /app/reporting/reportrunner.nl?cr=112

REPO_113 GST on Purchases /app/reporting/reportrunner.nl?cr=113

REPO_114 GST on Sales /app/reporting/reportrunner.nl?cr=114

REPO_115 GST on Purchases Detail /app/reporting/reportrunner.nl?cr=115

REPO_116 GST on Sales Detail /app/reporting/reportrunner.nl?cr=116

REPO_118 Commissions Pending
Authorization

/app/reporting/reportrunner.nl?cr=118

REPO_119 Commissions Pending
Authorization Detail

/app/reporting/reportrunner.nl?cr=119

REPO_12 ALT_SALES Forecast by Sales Rep
Detail

/app/reporting/reportrunner.nl?cr=12

REPO_121 Estimated Commission /app/reporting/reportrunner.nl?cr=121

REPO_122 Estimated Commission Detail /app/reporting/reportrunner.nl?cr=122

REPO_123 Campaign Response Detail /app/reporting/reportrunner.nl?cr=123

REPO_126 Pipeline by Customer /app/reporting/reportrunner.nl?cr=126

REPO_127 Pipeline by Customer Detail /app/reporting/reportrunner.nl?cr=127

REPO_128 Pipeline by Sales Rep /app/reporting/reportrunner.nl?cr=128

REPO_129 Pipeline ROI by Manager /app/reporting/reportrunner.nl?cr=129

REPO_13 ALT_SALES Forecast by Sales Rep /app/reporting/reportrunner.nl?cr=13

REPO_130 Pipeline by Sales Rep Detail /app/reporting/reportrunner.nl?cr=130

REPO_131 Pipeline by Status Summary /app/reporting/reportrunner.nl?cr=131

REPO_132 Campaign ROI Analysis Detail /app/reporting/reportrunner.nl?cr=132

REPO_133 Campaign Response /app/reporting/reportrunner.nl?cr=133

REPO_134 Sales Activity by Sales Rep /app/reporting/reportrunner.nl?cr=134

REPO_135 Sales Activity by Sales Rep Detail /app/reporting/reportrunner.nl?cr=135

REPO_14 Billings Forecast vs. Quota /app/reporting/reportrunner.nl?cr=14

REPO_141 Partner Activity /app/reporting/reportrunner.nl?cr=141

REPO_142 Partner Activity Detail /app/reporting/reportrunner.nl?cr=142

REPO_143 Sales by Partner /app/reporting/reportrunner.nl?cr=143

REPO_144 Sales by Partner Detail /app/reporting/reportrunner.nl?cr=144

REPO_145 Shipping Report /app/reporting/reportrunner.nl?cr=145

REPO_146 Total Open Opportunities Detail /app/reporting/reportrunner.nl?cr=146

REPO_147 Forecast vs. Quota /app/reporting/reportrunner.nl?cr=147

Supported Tasklinks 1096

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_148 Sales Orders Pending Fulfillment /app/reporting/reportrunner.nl?cr=148

REPO_149 Forecast by Sales Rep Detail /app/reporting/reportrunner.nl?cr=149

REPO_15 ALT_SALES and Billings Forecast
vs. Quota

/app/reporting/reportrunner.nl?cr=15

REPO_150 Inventory Back Order Report /app/reporting/reportrunner.nl?cr=150

REPO_151 Inventory Activity Detail /app/reporting/reportrunner.nl?cr=151

REPO_152 Realized Exchange Rate Gains and
Losses

/app/reporting/reportrunner.nl?cr=152

REPO_16 ALT_SALES Forecast vs. Quota /app/reporting/reportrunner.nl?cr=16

REPO_161 Customers by Partner Detail /app/reporting/reportrunner.nl?cr=161

REPO_162 Customers by Partner /app/reporting/reportrunner.nl?cr=162

REPO_163 Closed Cases Snapshot /app/reporting/reportrunner.nl?cr=163

REPO_164 New Cases Snapshot /app/reporting/reportrunner.nl?cr=164

REPO_165 Open Cases Snapshot /app/reporting/reportrunner.nl?cr=165

REPO_169 Closed Case Analysis Detail /app/reporting/reportrunner.nl?cr=169

REPO_17 Gross Lead Source Analysis Detail /app/reporting/reportrunner.nl?cr=17

REPO_170 Closed Case Analysis /app/reporting/reportrunner.nl?cr=170

REPO_171 Open Case Analysis Detail /app/reporting/reportrunner.nl?open=T&
cr=171

REPO_172 Open Case Analysis /app/reporting/reportrunner.nl?open=T&
cr=172

REPO_173 Customers by Sales Rep Detail /app/reporting/reportrunner.nl?cr=173

REPO_174 Customers by Sales Rep /app/reporting/reportrunner.nl?cr=174

REPO_175 Customers by Territory Detail /app/reporting/reportrunner.nl?cr=175

REPO_176 Customers by Territory /app/reporting/reportrunner.nl?cr=176

REPO_177 Lead Source Analysis Detail /app/reporting/reportrunner.nl?cr=177

REPO_178 Lead Source Analysis /app/reporting/reportrunner.nl?cr=178

REPO_179 Sales Orders Register /app/reporting/reportrunner.nl?cr=179

REPO_18 Gross Lead Source Analysis /app/reporting/reportrunner.nl?cr=18

REPO_180 Open Sales Orders /app/reporting/reportrunner.nl?cr=180

REPO_183 Shopping Cart Abandonment /app/reporting/reportrunner.nl?cr=183

REPO_184 Shopping Activity Analysis by
Category

/app/reporting/reportrunner.nl?cr=184

REPO_185 Shopping Activity Analysis /app/reporting/reportrunner.nl?cr=185

REPO_188 Item Page Views and Sales
Summary

/app/reporting/reportrunner.nl?cr=188

REPO_189 Hosted Page Hits Detail /app/reporting/reportrunner.nl?cr=189

Supported Tasklinks 1097

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_19 A/P Payment History by Payment /app/reporting/reportrunner.nl?cr=19

REPO_191 Hosted Page Hits /app/reporting/reportrunner.nl?cr=191

REPO_192 Item Orders Detail /app/reporting/reportrunner.nl?cr=192

REPO_193 Item Orders by Category /app/reporting/reportrunner.nl?cr=193

REPO_194 Item Orders /app/reporting/reportrunner.nl?cr=194

REPO_195 Page Hits Detail /app/reporting/reportrunner.nl?cr=195

REPO_196 Page Hits by Category /app/reporting/reportrunner.nl?cr=196

REPO_197 Page Hits /app/reporting/reportrunner.nl?cr=197

REPO_198 Sales by Promotion Detail /app/reporting/reportrunner.nl?subtype=
r&cr=198

REPO_199 Sales by Promotion /app/reporting/reportrunner.nl?subtype=
r&cr=199

REPO_2 Deferred / Capitalized Expense /app/reporting/reportrunner.nl?cr=2

REPO_20 A/P Payment History by Bill /app/reporting/reportrunner.nl?cr=20

REPO_203 Prospect Analysis /app/reporting/reportrunner.nl?cr=203

REPO_204 Prospect Analysis Detail /app/reporting/reportrunner.nl?cr=204

REPO_205 Partner Commissions Pending
Authorization

/app/reporting/reportrunner.nl?cr=205

REPO_206 Partner Commissions Pending
Authorization Detail

/app/reporting/reportrunner.nl?cr=206

REPO_209 Unbilled Cost by Customer Detail /app/reporting/reportrunner.nl?cr=209

REPO_21 A/R Payment History by Payment /app/reporting/reportrunner.nl?cr=21

REPO_210 Unbilled Time by Customer Detail /app/reporting/reportrunner.nl?cr=210

REPO_211 Unbilled Time by Customer /app/reporting/reportrunner.nl?cr=211

REPO_214 Sales Tax Transaction Detail /app/reporting/reportrunner.nl?cr=214

REPO_215 Sales Tax Liability By Tax Item /app/reporting/reportrunner.nl?cr=215

REPO_218 Time by Item Detail /app/reporting/reportrunner.nl?cr=218

REPO_219 Time by Customer Detail /app/reporting/reportrunner.nl?cr=219

REPO_22 A/R Payment History by Invoice /app/reporting/reportrunner.nl?cr=22

REPO_220 Time by Employee Detail /app/reporting/reportrunner.nl?cr=220

REPO_221 Time by Item /app/reporting/reportrunner.nl?cr=221

REPO_222 Time by Customer /app/reporting/reportrunner.nl?cr=222

REPO_223 Time by Employee /app/reporting/reportrunner.nl?cr=223

REPO_225 Unbilled Cost by Customer /app/reporting/reportrunner.nl?cr=225

REPO_226 Inventory Revenue Detail /app/reporting/reportrunner.nl?cr=226

REPO_227 Inventory Valuation Detail /app/reporting/reportrunner.nl?cr=227

REPO_229 Inventory Revenue /app/reporting/reportrunner.nl?cr=229

Supported Tasklinks 1098

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_23 Comparative Sales (ALT_SALES) /app/reporting/reportrunner.nl?cr=23

REPO_230 Inventory Valuation /app/reporting/reportrunner.nl?cr=230

REPO_231 Inventory Profitability /app/reporting/reportrunner.nl?cr=231

REPO_232 Payroll Liability /app/reporting/reportrunner.nl?
payitemtype=&cr=232

REPO_233 Payroll Journal /app/reporting/reportrunner.nl?
payitemtype=&cr=233

REPO_234 Payroll Summary by Employee /app/reporting/reportrunner.nl?cr=-176

REPO_235 Payroll Summary /app/reporting/reportrunner.nl?
payitemtype=&cr=235

REPO_239 Item Transaction Detail /app/reporting/reportrunner.nl?cr=239

REPO_24 Comparative Sales (Orders) /app/reporting/reportrunner.nl?cr=24

REPO_240 Sales Back Order Report /app/reporting/reportrunner.nl?cr=240

REPO_241 Physical Inventory Worksheet /app/reporting/reportrunner.nl?cr=241

REPO_242 Payroll Check Register /app/reporting/reportrunner.nl?cr=242

REPO_243 Current Inventory Status /app/reporting/reportrunner.nl?cr=243

REPO_246 Items Pending Fulfillment /app/reporting/reportrunner.nl?cr=246

REPO_248 Cost by Customer Detail /app/reporting/reportrunner.nl?cr=248

REPO_249 Estimated Partner Commission /app/reporting/reportrunner.nl?cr=249

REPO_25 New Customer Sales Orders Detail /app/reporting/reportrunner.nl?cr=25

REPO_250 Transaction Detail /app/reporting/reportrunner.nl?cr=250

REPO_251 Account Detail /app/reporting/reportrunner.nl?cr=251

REPO_256 Total Open Estimates /app/reporting/reportrunner.nl?cr=256

REPO_257 Estimates Register /app/reporting/reportrunner.nl?cr=257

REPO_258 Estimated Partner Commission
Detail

/app/reporting/reportrunner.nl?cr=258

REPO_26 New Customer Sales Orders /app/reporting/reportrunner.nl?cr=26

REPO_261 Open Invoices /app/reporting/reportrunner.nl?cr=261

REPO_262 A/R Register /app/reporting/reportrunner.nl?cr=262

REPO_264 Customer Profitability Detail /app/reporting/reportrunner.nl?cr=264

REPO_266 Customer Profitability /app/reporting/reportrunner.nl?cr=266

REPO_267 Sales by Sales Rep Detail /app/reporting/reportrunner.nl?cr=267

REPO_268 Sales by Item Detail /app/reporting/reportrunner.nl?cr=268

REPO_269 Sales by Customer Detail /app/reporting/reportrunner.nl?cr=269

REPO_27 Sales Orders by Promotion Detail /app/reporting/reportrunner.nl?cr=27

REPO_270 Sales by Sales Rep /app/reporting/reportrunner.nl?cr=270

REPO_271 Sales by Item /app/reporting/reportrunner.nl?cr=271

Supported Tasklinks 1099

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_272 Sales by Customer /app/reporting/reportrunner.nl?cr=272

REPO_273 A/R Aging Detail /app/reporting/reportrunner.nl?cr=273

REPO_274 A/R Aging /app/reporting/reportrunner.nl?cr=274

REPO_277 Open Purchase Orders /app/reporting/reportrunner.nl?
viewasreport=T&specacct=PurchOrd&
openonly=T&acctid=&cr=277

REPO_278 Purchase Order Register /app/reporting/reportrunner.nl?
viewasreport=T&specacct=PurchOrd&
reporttype=REGISTER&acctid=&cr=278

REPO_279 Purchase by Item Detail /app/reporting/reportrunner.nl?subtype=
i&cr=279

REPO_28 Sales Orders by Promotion /app/reporting/reportrunner.nl?cr=28

REPO_280 Purchase by Vendor Detail /app/reporting/reportrunner.nl?rtype=v&
cr=280

REPO_281 Purchase by Item /app/reporting/reportrunner.nl?subtype=
i&cr=281

REPO_282 Purchase by Vendor /app/reporting/reportrunner.nl?subtype=
v&cr=282

REPO_283 Open Bills /app/reporting/reportrunner.nl?
viewasreport=T&specacct=AcctPay&
openonly=T&acctid=&cr=283

REPO_284 A/P Register /app/reporting/reportrunner.nl?
viewasreport=T&specacct=AcctPay&
reporttype=REGISTER&acctid=&cr=284

REPO_285 A/P Aging Detail /app/reporting/reportrunner.nl?id=&
ddue1=&ddue2=&cr=285

REPO_286 A/P Aging /app/reporting/reportrunner.nl?cr=286

REPO_29 Sales Orders by Partner Detail /app/reporting/reportrunner.nl?cr=29

REPO_292 Trial Balance /app/reporting/reportrunner.nl?cr=292

REPO_293 General Ledger /app/reporting/reportrunner.nl?cr=293

REPO_3 Amortization Forecast Detail /app/reporting/reportrunner.nl?cr=3

REPO_30 Sales Orders by Partner /app/reporting/reportrunner.nl?cr=30

REPO_31 Sales Orders by Historical Team
Detail

/app/reporting/reportrunner.nl?cr=31

REPO_32 Sales Orders by Historical Team /app/reporting/reportrunner.nl?cr=32

REPO_33 Sales Orders by Item Detail /app/reporting/reportrunner.nl?cr=33

REPO_34 Sales Orders by Item /app/reporting/reportrunner.nl?cr=34

REPO_35 Sales Orders by Sales Rep Detail /app/reporting/reportrunner.nl?cr=35

REPO_36 Sales Orders by Sales Rep /app/reporting/reportrunner.nl?cr=36

REPO_37 Sales Orders by Customer Detail /app/reporting/reportrunner.nl?cr=37

Supported Tasklinks 1100

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_38 Sales Orders by Customer /app/reporting/reportrunner.nl?cr=38

REPO_39 Forecast by Status Summary /app/reporting/reportrunner.nl?cr=39

REPO_4 Amortization Forecast /app/reporting/reportrunner.nl?cr=4

REPO_40 Integration and Automation
Usage Detail By Job

/app/reporting/reportrunner.nl?cr=40

REPO_41 Integration and Automation
Usage Summary By Job

/app/reporting/reportrunner.nl?cr=41

REPO_42 Integration and Automation
Usage Summary By Record Type

/app/reporting/reportrunner.nl?cr=42

REPO_43 Hosted Page Hits by Customer /app/reporting/reportrunner.nl?cr=43

REPO_44 Page Hits by Customers /app/reporting/reportrunner.nl?cr=44

REPO_48 Forecast by Item Detail /app/reporting/reportrunner.nl?cr=48

REPO_49 Forecast by Item /app/reporting/reportrunner.nl?cr=49

REPO_5 Aggregated Sales Orders by Sales
Rep Summary

/app/reporting/reportrunner.nl?cr=5

REPO_50 Open Escalations /app/reporting/reportrunner.nl?cr=50

REPO_51 Total Pipeline by Statuses
Summary

/app/reporting/reportrunner.nl?cr=51

REPO_53 Calculated Forecast by Sales Rep /app/reporting/reportrunner.nl?cr=53

REPO_54 Visitor Activity /app/reporting/reportrunner.nl?cr=54

REPO_55 Lead Conversion /app/reporting/reportrunner.nl?cr=55

REPO_56 Visitor Activity Detail /app/reporting/reportrunner.nl?cr=56

REPO_57 Forecast by Sales Rep /app/reporting/reportrunner.nl?cr=57

REPO_58 Sales Tax Liability By Tax Agency /app/reporting/reportrunner.nl?cr=58

REPO_59 GST/HST on Purchases /app/reporting/reportrunner.nl?cr=59

REPO_6 Authorized Partner Commission /app/reporting/reportrunner.nl?cr=6

REPO_60 GST/HST on Sales /app/reporting/reportrunner.nl?cr=60

REPO_61 GST/HST on Purchases Detail /app/reporting/reportrunner.nl?cr=61

REPO_62 GST/HST on Sales Detail /app/reporting/reportrunner.nl?cr=62

REPO_63 GST/HST Audit Summary /app/reporting/reportrunner.nl?cr=63

REPO_64 Inventory Turnover /app/reporting/reportrunner.nl?cr=64

REPO_65 Scheduled Deferred Revenue /app/reporting/reportrunner.nl?cr=65

REPO_66 Revenue Recognition Forecast
Detail

/app/reporting/reportrunner.nl?cr=66

REPO_67 Revenue Recognition Forecast /app/reporting/reportrunner.nl?cr=67

REPO_68 Total Open Opportunities /app/reporting/reportrunner.nl?cr=68

REPO_69 Opportunities to Close /app/reporting/reportrunner.nl?cr=69

Supported Tasklinks 1101

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_7 Authorized Partner Commission
Detail

/app/reporting/reportrunner.nl?cr=7

REPO_71 Sales by Historical Team Detail /app/reporting/reportrunner.nl?cr=71

REPO_72 Sales by Historical Team /app/reporting/reportrunner.nl?cr=72

REPO_73 Forecast (Outstanding) by
Customer Detail

/app/reporting/reportrunner.nl?cr=73

REPO_74 Forecast (Outstanding) by
Customer

/app/reporting/reportrunner.nl?cr=74

REPO_77 State Withholding Detail /app/reporting/reportrunner.nl?cr=77

REPO_78 State Withholding /app/reporting/reportrunner.nl?cr=78

REPO_79 Hours & Earnings /app/reporting/reportrunner.nl?cr=79

REPO_8 ALT_SALES Total Pipeline by Sales
Rep Detail

/app/reporting/reportrunner.nl?cr=8

REPO_80 Closed Case Escalation /app/reporting/reportrunner.nl?cr=80

REPO_81 Open Case Escalation /app/reporting/reportrunner.nl?cr=81

REPO_82 Closed Case Escalation Detail /app/reporting/reportrunner.nl?cr=82

REPO_83 Open Case Escalation Detail /app/reporting/reportrunner.nl?cr=83

REPO_84 Payroll Detail /app/reporting/reportrunner.nl?cr=-177

REPO_85 New Visitor /app/reporting/reportrunner.nl?cr=85

REPO_87 Keywords Detail /app/reporting/reportrunner.nl?cr=87

REPO_88 Referrer Detail /app/reporting/reportrunner.nl?cr=88

REPO_9 ALT_SALES Total Pipeline by Sales
Rep Summary

/app/reporting/reportrunner.nl?cr=9

REPO_90 Keywords /app/reporting/reportrunner.nl?cr=90

REPO_91 Referrer /app/reporting/reportrunner.nl?cr=91

REPO_93 Payroll Liability Detail /app/reporting/reportrunner.nl?cr=93

REPO_94 Total Pipeline by Customer /app/reporting/reportrunner.nl?cr=94

REPO_95 Total Pipeline by Customer Detail /app/reporting/reportrunner.nl?cr=95

REPO_96 Estimates to Close /app/reporting/reportrunner.nl?cr=96

REPO_97 Opportunities to Close Detail /app/reporting/reportrunner.nl?cr=97

REPO_98 Forecast by Customer Detail /app/reporting/reportrunner.nl?cr=98

REPO_99 Forecast by Customer /app/reporting/reportrunner.nl?cr=99

REPO_ASSIGNFINANCIALLAY
OUTS

Row Layout Assignment /app/reporting/
financiallayoutassignments.nl

REPO_BANKREGISTER Bank Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=Bank&
code=CHECK_REG

REPO_CUSTOMIZATION Generic Report Customization /app/reporting/reportcomposer.nl

Supported Tasklinks 1102

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_10 Customize ALT_SALES Pipeline by
Sales Rep Detail

/app/reporting/reportcomposer.nl?cr=10&
e=T

REPO_CUST_100 Customize Total Pipeline by Sales
Rep Summary

/app/reporting/reportcomposer.nl?cr=
100&e=T

REPO_CUST_101 Customize Total Pipeline by Sales
Rep Detail

/app/reporting/reportcomposer.nl?cr=
101&e=T

REPO_CUST_102 Customize New Customer Sales
Detail

/app/reporting/reportcomposer.nl?cr=
102&e=T

REPO_CUST_103 Customize New Customer Sales
Summary

/app/reporting/reportcomposer.nl?cr=
103&e=T

REPO_CUST_104 Customize Opportunities Lost /app/reporting/reportcomposer.nl?cr=
104&e=T

REPO_CUST_105 Customize Opportunities Won /app/reporting/reportcomposer.nl?cr=
105&e=T

REPO_CUST_106 Customize Sales Activity by
Customer Summary

/app/reporting/reportcomposer.nl?cr=
106&e=T

REPO_CUST_107 Customize Sales Activity by
Customer Detail

/app/reporting/reportcomposer.nl?cr=
107&e=T

REPO_CUST_11 Customize ALT_SALES Pipeline by
Sales Rep Summary

/app/reporting/reportcomposer.nl?cr=11&
e=T

REPO_CUST_111 Customize Authorized
Commissions Summary

/app/reporting/reportcomposer.nl?cr=
111&e=T

REPO_CUST_112 Customize Authorized
Commissions Detail

/app/reporting/reportcomposer.nl?cr=
112&e=T

REPO_CUST_113 Customize GST on Purchases
Summary

/app/reporting/reportcomposer.nl?cr=
113&e=T

REPO_CUST_114 Customize GST on Sales Summary /app/reporting/reportcomposer.nl?cr=
114&e=T

REPO_CUST_115 Customize GST on Purchases
Detail

/app/reporting/reportcomposer.nl?cr=
115&e=T

REPO_CUST_116 Customize GST on Sales Detail /app/reporting/reportcomposer.nl?cr=
116&e=T

REPO_CUST_118 Customize Commissions Pending
Authorization Summary

/app/reporting/reportcomposer.nl?cr=
118&e=T

REPO_CUST_119 Customize Commissions Pending
Authorization Detail

/app/reporting/reportcomposer.nl?cr=
119&e=T

REPO_CUST_12 Customize ALT_SALES Forecast by
Sales Rep Detail

/app/reporting/reportcomposer.nl?cr=12&
e=T

REPO_CUST_121 Customize Estimated
Commissions Summary

/app/reporting/reportcomposer.nl?cr=
121&e=T

REPO_CUST_122 Customize Estimated
Commissions Detail

/app/reporting/reportcomposer.nl?cr=
122&e=T

Supported Tasklinks 1103

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_123 Customize Campaign Response
Detail

/app/reporting/reportcomposer.nl?cr=
123&e=T

REPO_CUST_126 Customize Pipeline by Customer
Summary

/app/reporting/reportcomposer.nl?cr=
126&e=T

REPO_CUST_127 Customize Pipeline by Customer
Detail

/app/reporting/reportcomposer.nl?cr=
127&e=T

REPO_CUST_128 Customize Pipeline by Sales Rep
Summary

/app/reporting/reportcomposer.nl?cr=
128&e=T

REPO_CUST_129 Customize Pipeline ROI by
Manager

/app/reporting/reportcomposer.nl?cr=
129&e=T

REPO_CUST_13 Customize ALT_SALES Forecast by
Sales Rep Summary

/app/reporting/reportcomposer.nl?cr=13&
e=T

REPO_CUST_130 Customize Pipeline by Sales Rep
Detail

/app/reporting/reportcomposer.nl?cr=
130&e=T

REPO_CUST_131 Customize Pipeline by Status
Summary

/app/reporting/reportcomposer.nl?cr=
131&e=T

REPO_CUST_132 Customize Campaign ROI Analysis
Detail

/app/reporting/reportcomposer.nl?cr=
132&e=T

REPO_CUST_133 Customize Campaign Response
Summary

/app/reporting/reportcomposer.nl?cr=
133&e=T

REPO_CUST_134 Customize Sales Activity Summary /app/reporting/reportcomposer.nl?cr=
134&e=T

REPO_CUST_135 Customize Sales Activity Detail /app/reporting/reportcomposer.nl?cr=
135&e=T

REPO_CUST_137 Customize VAT on Purchases
Summary

/app/reporting/reportcomposer.nl?cr=
137&e=T

REPO_CUST_138 Customize VAT on Sales Summary /app/reporting/reportcomposer.nl?cr=
138&e=T

REPO_CUST_139 Customize VAT on Purchases
Detail

/app/reporting/reportcomposer.nl?cr=
139&e=T

REPO_CUST_14 Customize Billings Forecast vs.
Quota Report

/app/reporting/reportcomposer.nl?cr=14&
e=T

REPO_CUST_140 Customize VAT on Sales Detail /app/reporting/reportcomposer.nl?cr=
140&e=T

REPO_CUST_141 Customize Partner Activity
Summary

/app/reporting/reportcomposer.nl?cr=
141&e=T

REPO_CUST_142 Customize Partner Activity Detail /app/reporting/reportcomposer.nl?cr=
142&e=T

REPO_CUST_143 Customize Sales by Partner
Summary

/app/reporting/reportcomposer.nl?cr=
143&e=T

REPO_CUST_144 Customize Sales by Partner Detail /app/reporting/reportcomposer.nl?cr=
144&e=T

Supported Tasklinks 1104

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_145 Customize Shipping Report /app/reporting/reportcomposer.nl?cr=
145&e=T

REPO_CUST_146 Customize Total Open
Opportunities Detail

/app/reporting/reportcomposer.nl?cr=
146&e=T

REPO_CUST_147 Customize Forecast vs. Quota /app/reporting/reportcomposer.nl?cr=
147&e=T

REPO_CUST_148 Customize Sales Orders Pending
Fulfillment

/app/reporting/reportcomposer.nl?cr=
148&e=T

REPO_CUST_149 Customize Forecast Detail by Sales
Rep

/app/reporting/reportcomposer.nl?cr=
149&e=T

REPO_CUST_15 Customize Bookings and Billings
Forecast vs. Quota Report

/app/reporting/reportcomposer.nl?cr=15&
e=T

REPO_CUST_150 Customize Inventory Back Order
Report

/app/reporting/reportcomposer.nl?cr=
150&e=T

REPO_CUST_151 Customize Inventory Activity
Detail

/app/reporting/reportcomposer.nl?cr=
151&e=T

REPO_CUST_16 Customize Bookings Forecast vs.
Quota Report

/app/reporting/reportcomposer.nl?cr=16&
e=T

REPO_CUST_161 Customize Customers by Partner
Detail

/app/reporting/reportcomposer.nl?cr=
161&e=T

REPO_CUST_162 Customize Customers by Partner
Summary

/app/reporting/reportcomposer.nl?cr=
162&e=T

REPO_CUST_169 Customize Closed Case Analysis
Detail

/app/reporting/reportcomposer.nl?cr=
169&e=T

REPO_CUST_17 Customize Gross Lead Analysis
Detail Report

/app/reporting/reportcomposer.nl?cr=17&
e=T

REPO_CUST_170 Customize Closed Case Analysis
Summary

/app/reporting/reportcomposer.nl?cr=
170&e=T

REPO_CUST_171 Customize Open Case Analysis
Detail

/app/reporting/reportcomposer.nl?cr=
171&e=T&open=T

REPO_CUST_172 Customize Open Case Analysis
Summary

/app/reporting/reportcomposer.nl?cr=
172&e=T&open=T

REPO_CUST_173 Customize Customers by Sales
Rep Detail

/app/reporting/reportcomposer.nl?cr=
173&e=T

REPO_CUST_174 Customize Customers by Sales
Rep Summary

/app/reporting/reportcomposer.nl?cr=
174&e=T

REPO_CUST_175 Customize Customers by Territory
Detail

/app/reporting/reportcomposer.nl?cr=
175&e=T

REPO_CUST_176 Customize Customers by Territory
Summary

/app/reporting/reportcomposer.nl?cr=
176&e=T

REPO_CUST_177 Customize Lead Source Analysis
Detail

/app/reporting/reportcomposer.nl?cr=
177&e=T

Supported Tasklinks 1105

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_178 Customize Lead Source Analysis
Summary

/app/reporting/reportcomposer.nl?cr=
178&e=T

REPO_CUST_179 Customize Sales Orders Register /app/reporting/reportcomposer.nl?cr=
179&e=T

REPO_CUST_18 Customize Gross Lead Analysis
Summary Report

/app/reporting/reportcomposer.nl?cr=18&
e=T

REPO_CUST_180 Customize Open Sales Orders /app/reporting/reportcomposer.nl?cr=
180&e=T

REPO_CUST_183 Customize Shopping Activity
Analysis by Visitor

/app/reporting/reportcomposer.nl?cr=
183&e=T

REPO_CUST_184 Customize Shopping Activity
Analysis by Category

/app/reporting/reportcomposer.nl?cr=184

REPO_CUST_185 Customize Shopping Activity
Analysis

/app/reporting/reportcomposer.nl?e=T&
cr=185

REPO_CUST_188 Customize Item Page Views and
Sales Summary

/app/reporting/reportcomposer.nl?e=T&
cr=188

REPO_CUST_189 Customize Hosted Page Hits by
Visitor

/app/reporting/reportcomposer.nl?cr=
189&e=T

REPO_CUST_19 A/P Payment History by Payment /app/reporting/reportcomposer.nl?cr=19&
e=T

REPO_CUST_191 Customize Hosted Page Hits /app/reporting/reportcomposer.nl?cr=
191&e=T

REPO_CUST_192 Customize Item Order History
Detail

/app/reporting/reportcomposer.nl?cr=
192&e=T

REPO_CUST_193 Customize Item Order History by
Category

/app/reporting/reportcomposer.nl?cr=193

REPO_CUST_194 Customize Item Order History /app/reporting/reportcomposer.nl?e=T&
cr=194

REPO_CUST_195 Customize Page Hits Detail /app/reporting/reportcomposer.nl?cr=
195&e=T

REPO_CUST_196 Customize Page Hits by Category /app/reporting/reportcomposer.nl?cr=
196&e=T

REPO_CUST_197 Customize Page Hits /app/reporting/reportcomposer.nl?e=T&
cr=197

REPO_CUST_198 Customize Sales by Promotion
Detail

/app/reporting/reportcomposer.nl?e=T&
payitemtype=r&cr=198

REPO_CUST_199 Customize Sales by Promotion
Summary

/app/reporting/reportcomposer.nl?e=T&
subtype=r&cr=199

REPO_CUST_2 Customize Deferred / Capitalized
Expense

/app/reporting/reportcomposer.nl?cr=2&
e=T

REPO_CUST_20 A/P Payment History by Bill /app/reporting/reportcomposer.nl?cr=20&
e=T

Supported Tasklinks 1106

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_203 Customize Prospect Analysis
Summary

/app/reporting/reportcomposer.nl?e=T&
cr=203

REPO_CUST_204 Customize Prospect Analysis
Detail

/app/reporting/reportcomposer.nl?e=T&
cr=204

REPO_CUST_205 Customize Partner Commission
Pending Authorization Summary

/app/reporting/reportcomposer.nl?e=T&
cr=205

REPO_CUST_206 Customize Partner Commission
Pending Authorization Detail

/app/reporting/reportcomposer.nl?e=T&
cr=206

REPO_CUST_209 Customize Unbilled Cost by
Customer Detail

/app/reporting/reportcomposer.nl?e=T&
cr=209

REPO_CUST_21 A/R Payment History by Payment /app/reporting/reportcomposer.nl?cr=21&
e=T

REPO_CUST_210 Customize Unbilled Time by
Customer Detail

/app/reporting/reportcomposer.nl?e=T&
cr=210

REPO_CUST_211 Customize Unbilled Time by
Customer Summary

/app/reporting/reportcomposer.nl?e=T&
cr=211

REPO_CUST_214 Customize Sales Tax Transaction
Detail

/app/reporting/reportcomposer.nl?cr=
214&e=T

REPO_CUST_215 Customize Sales Tax Liability By
Tax Item

/app/reporting/reportcomposer.nl?cr=
215&e=T

REPO_CUST_218 Customize Time by Item Detail /app/reporting/reportcomposer.nl?cr=
218&e=T

REPO_CUST_219 Customize Time by Customer
Detail

/app/reporting/reportcomposer.nl?cr=
219&e=T

REPO_CUST_22 A/R Payment History by Invoice /app/reporting/reportcomposer.nl?cr=22&
e=T

REPO_CUST_220 Customize Time by Employee
Detail

/app/reporting/reportcomposer.nl?cr=
220&e=T

REPO_CUST_221 Customize Time by Item Summary /app/reporting/reportcomposer.nl?cr=
221&e=T

REPO_CUST_222 Customize Time by Customer
Summary

/app/reporting/reportcomposer.nl?cr=
222&e=T

REPO_CUST_223 Customize Time by Employee
Summary

/app/reporting/reportcomposer.nl?cr=
223&e=T

REPO_CUST_225 Customize Unbilled Cost by
Customer Summary

/app/reporting/reportcomposer.nl?e=T&
cr=225

REPO_CUST_226 Customize Inventory Revenue
Detail

/app/reporting/reportcomposer.nl?cr=
226&e=T

REPO_CUST_227 Customize Inventory Valuation
Detail

/app/reporting/reportcomposer.nl?e=T&
cr=227

REPO_CUST_229 Customize Inventory Revenue
Summary

/app/reporting/reportcomposer.nl?cr=
229&e=T

Supported Tasklinks 1107

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_230 Customize Inventory Valuation
Summary

/app/reporting/reportcomposer.nl?cr=
230&e=T

REPO_CUST_231 Customize Inventory Profitability /app/reporting/reportcomposer.nl?cr=
231&e=T

REPO_CUST_232 Customize Payroll Liabilities /app/reporting/reportrunner.nl?
payitemtype=&cr=232

REPO_CUST_233 Customize Payroll Journal /app/reporting/reportrunner.nl?
payitemtype=&cr=233

REPO_CUST_234 Customize Payroll Summary by
Employee

/app/reporting/reportrunner.nl?cr=-176

REPO_CUST_235 Customize Payroll Summary by
Item

/app/reporting/reportrunner.nl?
payitemtype=&cr=235

REPO_CUST_239 Customize Item Transaction Detail /app/reporting/reportcomposer.nl?cr=
239&e=T

REPO_CUST_240 Customize Sales Back Order
Report

/app/reporting/reportcomposer.nl?cr=
240&e=T

REPO_CUST_241 Customize Physical Inventory
Worksheet

/app/reporting/reportcomposer.nl?cr=
241&e=T

REPO_CUST_242 Customize Payroll Check Register /app/reporting/reportrunner.nl?cr=242

REPO_CUST_243 Customize Current Inventory
Status

/app/reporting/reportcomposer.nl?cr=
243&e=T

REPO_CUST_246 Customize Items Pending
Fulfillment

/app/reporting/reportcomposer.nl?e=
T&viewasreport=T&specacct=SalesOrd&
reporttype=REGISTER&code=OPEN_
SALES_ORDERS_DETAIL&acctid=&cr=246

REPO_CUST_248 Customize Cost by Customer
Detail

/app/reporting/reportcomposer.nl?cr=
248&e=T

REPO_CUST_249 Customize Estimated Partner
Commission Summary

/app/reporting/reportcomposer.nl?e=T&
cr=249

REPO_CUST_25 Customize New Customer Sales
Orders Detail

/app/reporting/reportcomposer.nl?cr=25&
e=T

REPO_CUST_250 Customize Transaction Detail /app/reporting/reportcomposer.nl?e=T&
cr=250

REPO_CUST_251 Customize Account Detail /app/reporting/reportcomposer.nl?cr=
251&e=T

REPO_CUST_256 Customize Total Open Estimates /app/reporting/reportcomposer.nl?cr=
256&e=T

REPO_CUST_257 Customize Estimates Register /app/reporting/reportcomposer.nl?cr=
257&e=T

REPO_CUST_258 Customize Estimated Partner
Commission Detail

/app/reporting/reportcomposer.nl?e=T&
cr=258

Supported Tasklinks 1108

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_26 Customize New Customer Sales
Orders Summary

/app/reporting/reportcomposer.nl?cr=26&
e=T

REPO_CUST_261 Customize Open Invoices /app/reporting/reportcomposer.nl?cr=
261&e=T

REPO_CUST_262 Customize A/R Register /app/reporting/reportcomposer.nl?e=T&
cr=262

REPO_CUST_264 Customize Customer Profitability
Detail

/app/reporting/reportcomposer.nl?e=T&
cr=264

REPO_CUST_266 Customize Customer Profitability
Summary

/app/reporting/reportcomposer.nl?cr=
266&e=T

REPO_CUST_267 Customize Sales by Sales Rep
Detail

/app/reporting/reportcomposer.nl?cr=
267&e=T

REPO_CUST_268 Customize Sales by Item Detail /app/reporting/reportcomposer.nl?cr=
268&e=T

REPO_CUST_269 Customize Sales by Customer
Detail

/app/reporting/reportcomposer.nl?cr=
269&e=T

REPO_CUST_27 Customize Sales Orders by
Promotion Detail

/app/reporting/reportcomposer.nl?cr=27&
e=T

REPO_CUST_270 Customize Sales by Sales Rep
Summary

/app/reporting/reportcomposer.nl?cr=
270&e=T

REPO_CUST_271 Customize Sales by Item Summary /app/reporting/reportcomposer.nl?cr=
271&e=T

REPO_CUST_272 Customize Sales by Customer
Summary

/app/reporting/reportcomposer.nl?cr=
272&e=T

REPO_CUST_273 Customize A/R Aging Detail /app/reporting/reportcomposer.nl?cr=
273&e=T

REPO_CUST_274 Customize A/R Aging Summary /app/reporting/reportcomposer.nl?cr=
274&e=T

REPO_CUST_277 Customize Open Purchase Orders /app/reporting/reportcomposer.nl?e=T&
viewasreport=T&specacct=PurchOrd&
openonly=T&reporttype=REGISTER&
code=OPEN_PO&acctid=&cr=277

REPO_CUST_278 Customize Purchase Order
Register

/app/reporting/reportcomposer.nl?e=T&
viewasreport=T&specacct=PurchOrd&
reporttype=REGISTER&code=PO_REG&
acctid=&cr=278

REPO_CUST_279 Customize Purchase by Item
Detail

/app/reporting/reportcomposer.nl?e=T&
payitemtype=i&code=PURCH_DETAIL_
BY_ITEM&cr=279

REPO_CUST_28 Customize Sales Orders by
Promotion Summary

/app/reporting/reportcomposer.nl?cr=28&
e=T

Supported Tasklinks 1109

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_280 Customize Purchase by Vendor
Detail

/app/reporting/reportcomposer.nl?e=
T&rtype=v&code=PURCH_DETAIL_BY_
VENDOR&cr=280

REPO_CUST_281 Customize Purchase by Item
Summary

/app/reporting/reportcomposer.nl?e=T&
payitemtype=i&code=PURCH_SUM_BY_
ITEM&cr=281

REPO_CUST_282 Customize Purchase by Vendor
Summary

/app/reporting/reportcomposer.nl?e=T&
payitemtype=v&code=PURCH_SUM_BY_
VENDOR&cr=282

REPO_CUST_283 Customize Open Bills /app/reporting/reportcomposer.nl?e=
T&viewasreport=T&specacct=AcctPay&
openonly=T&reporttype=REGISTER&
code=OPEN_BILLS&acctid=&cr=283

REPO_CUST_284 Customize A/P Register /app/reporting/reportcomposer.nl?e=
T&viewasreport=T&specacct=AcctPay&
reporttype=REGISTER&code=AP_REG&
acctid=&cr=284

REPO_CUST_285 Customize A/P Aging Detail /app/reporting/reportcomposer.nl?e=
T&acctid=&ddue1=&ddue2=&code=AP_
AGING_DETAIL&cr=285

REPO_CUST_286 Customize A/P Aging Summary /app/reporting/reportcomposer.nl?e=T&
cr=286

REPO_CUST_29 Customize Sales Orders by Partner
Detail

/app/reporting/reportcomposer.nl?cr=29&
e=T

REPO_CUST_292 Customize Trial Balance /app/reporting/reportcomposer.nl?e=T&
cr=292

REPO_CUST_293 Customize General Ledger /app/reporting/reportcomposer.nl?e=T&
cr=293

REPO_CUST_3 Customize Amortization Forecast
Detail

/app/reporting/reportcomposer.nl?cr=3&
e=T

REPO_CUST_30 Customize Sales Orders by Partner
Summary

/app/reporting/reportcomposer.nl?cr=30&
e=T

REPO_CUST_31 Customize Sales Orders by
Historical Team Detail

/app/reporting/reportcomposer.nl?cr=31&
e=T

REPO_CUST_32 Customize Sales Orders by
Historical Team Summary

/app/reporting/reportcomposer.nl?cr=32&
e=T

REPO_CUST_33 Customize Sales Orders by Item
Detail

/app/reporting/reportcomposer.nl?cr=33&
e=T

REPO_CUST_34 Customize Sales Orders by Item
Summary

/app/reporting/reportcomposer.nl?cr=34&
e=T

REPO_CUST_35 Customize Sales Orders by Sales
Rep Detail

/app/reporting/reportcomposer.nl?cr=35&
e=T

REPO_CUST_36 Customize Sales Orders by Sales
Rep Summary

/app/reporting/reportcomposer.nl?cr=36&
e=T

Supported Tasklinks 1110

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_37 Customize Sales Orders by
Customer Detail

/app/reporting/reportcomposer.nl?cr=37&
e=T

REPO_CUST_38 Customize Sales Orders by
Customer Summary

/app/reporting/reportcomposer.nl?cr=38&
e=T

REPO_CUST_39 Customize Forecast by Status
Summary

/app/reporting/reportcomposer.nl?cr=39&
e=T

REPO_CUST_4 Customize Amortization Forecast
Summary

/app/reporting/reportcomposer.nl?cr=4&
e=T

REPO_CUST_40 Customize Integration and
Automation Usage Detail By Job

/app/reporting/reportcomposer.nl?cr=40&
e=T

REPO_CUST_41 Customize Integration and
Automation Usage Summary By
Job

/app/reporting/reportcomposer.nl?cr=41&
e=T

REPO_CUST_42 Customize Integration and
Automation Usage Summary By
Record Type

/app/reporting/reportcomposer.nl?cr=42&
e=T

REPO_CUST_43 Hosted Page Hits by Customer /app/reporting/reportcomposer.nl?cr=43&
e=T

REPO_CUST_44 Page Hits by Customer /app/reporting/reportcomposer.nl?cr=44&
e=T

REPO_CUST_48 Customize Forecast by Item Detail /app/reporting/reportcomposer.nl?cr=48&
e=T

REPO_CUST_49 Customize Forecast by Item
Summary

/app/reporting/reportcomposer.nl?cr=49&
e=T

REPO_CUST_5 Customize Aggregated Sales
Orders by Sales Rep Summary

/app/reporting/reportcomposer.nl?cr=5&
e=T

REPO_CUST_51 Customize Total Pipeline by
Statuses

/app/reporting/reportcomposer.nl?cr=51&
e=T

REPO_CUST_53 Customize Calculated Forecast by
Sales Rep

/app/reporting/reportcomposer.nl?cr=53&
e=T

REPO_CUST_54 Customize Visitor Activity
Summary

/app/reporting/reportcomposer.nl?cr=54&
e=T

REPO_CUST_55 Customize Lead Conversion /app/reporting/reportcomposer.nl?cr=55&
e=T

REPO_CUST_56 Customize Visitor Activity Detail /app/reporting/reportcomposer.nl?cr=56&
e=T

REPO_CUST_57 Customize Forecast by Sales Rep
Summary

/app/reporting/reportcomposer.nl?cr=57&
e=T

REPO_CUST_58 Customize Sales Tax Liability By
Tax Agency

/app/reporting/reportcomposer.nl?cr=58&
e=T

REPO_CUST_59 Customize GST/HST on Purchases
Summary

/app/reporting/reportrunner.nl?cr=59&e=
T

Supported Tasklinks 1111

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_6 Customize Authorized Partner
Commission Summary

/app/reporting/reportcomposer.nl?cr=6&
e=T

REPO_CUST_60 Customize GST/HST on Sales
Summary

/app/reporting/reportrunner.nl?cr=60&e=
T

REPO_CUST_61 Customize GST/HST on Purchases
Detail

/app/reporting/reportrunner.nl?cr=61&e=
T

REPO_CUST_62 Customize GST/HST on Sales
Detail

/app/reporting/reportrunner.nl?cr=62&e=
T

REPO_CUST_63 Customize GST/HST Audit
Summary

/app/reporting/reportrunner.nl?cr=63&e=
T

REPO_CUST_64 Customize Inventory Turnover /app/reporting/reportcomposer.nl?cr=64&
e=T

REPO_CUST_65 Customize Deferred Revenue
Forecast Summary

/app/reporting/reportcomposer.nl?cr=65&
e=T

REPO_CUST_66 Customize Deferred Revenue
Detail

/app/reporting/reportcomposer.nl?cr=66&
e=T

REPO_CUST_67 Customize Deferred Revenue by
Customer Summary

/app/reporting/reportcomposer.nl?cr=67&
e=T

REPO_CUST_68 Customize Total Open
Opportunities Summary

/app/reporting/reportcomposer.nl?cr=68&
e=T

REPO_CUST_69 Customize Opportunities to Close
Summary

/app/reporting/reportcomposer.nl?cr=69&
e=T

REPO_CUST_7 Customize Authorized Partner
Commission Detail

/app/reporting/reportcomposer.nl?cr=7&
e=T

REPO_CUST_71 Customize Sales by Historical
Team Detail

/app/reporting/reportcomposer.nl?cr=71&
e=T

REPO_CUST_72 Customize Sales by Historical
Team Summary

/app/reporting/reportcomposer.nl?cr=72&
e=T

REPO_CUST_73 Customize Forecast (Outstanding)
by Customer Detail

/app/reporting/reportcomposer.nl?cr=73&
e=T

REPO_CUST_74 Customize Forecast (Outstanding)
by Customer Summary

/app/reporting/reportcomposer.nl?cr=74&
e=T

REPO_CUST_8 Customize ALT_SALES Total
Pipeline by Sales Rep Detail

/app/reporting/reportcomposer.nl?cr=8&
e=T

REPO_CUST_80 Closed Case Escalation Summary
Customize

/app/reporting/reportcomposer.nl?cr=80&
e=T

REPO_CUST_81 Open Case Escalation Summary
Customize

/app/reporting/reportcomposer.nl?cr=81&
e=T

REPO_CUST_82 Closed Case Escalation Detail
Customize

/app/reporting/reportcomposer.nl?cr=82&
e=T

REPO_CUST_83 Open Case Escalation Detail
Customize

/app/reporting/reportcomposer.nl?cr=83&
e=T

Supported Tasklinks 1112

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_84 Customize Payroll Detail /app/reporting/reportrunner.nl?cr=-177

REPO_CUST_85 New Visitor /app/reporting/reportcomposer.nl?cr=85&
e=T

REPO_CUST_87 Keywords Detail /app/reporting/reportcomposer.nl?cr=87&
e=T

REPO_CUST_88 Referrer Detail /app/reporting/reportcomposer.nl?cr=88&
e=T

REPO_CUST_9 Customize ALT_SALES Total
Pipeline by Sales Rep Summary

/app/reporting/reportcomposer.nl?cr=9&
e=T

REPO_CUST_90 Keywords Summary /app/reporting/reportcomposer.nl?cr=90&
e=T

REPO_CUST_91 Referrer Summary /app/reporting/reportcomposer.nl?cr=91&
e=T

REPO_CUST_94 Customize Total Pipeline by
Customer Summary

/app/reporting/reportcomposer.nl?cr=94&
e=T

REPO_CUST_95 Customize Total Pipeline by
Customer Detail

/app/reporting/reportcomposer.nl?cr=95&
e=T

REPO_CUST_96 Customize Estimates to Close /app/reporting/reportcomposer.nl?cr=96&
e=T

REPO_CUST_97 Customize Opportunities to Close
Detail

/app/reporting/reportcomposer.nl?cr=97&
e=T

REPO_CUST_98 Customize Forecast by Customer
Detail

/app/reporting/reportcomposer.nl?cr=98&
e=T

REPO_CUST_99 Customize Forecast by Customer
Summary

/app/reporting/reportcomposer.nl?cr=99&
e=T

REPO_CUST_NEG100 Customize Case Activity by
Support Rep Summary

/app/reporting/reportcomposer.nl?cr=-
100&e=T

REPO_CUST_NEG101 Customize Case Activity by
Support Rep Detail

/app/reporting/reportcomposer.nl?cr=-
101&e=T

REPO_CUST_NEG105 Customize Utilization by
Employee Summary (deprecated)

/app/reporting/reportcomposer.nl?cr=-
105&e=T

REPO_CUST_NEG106 Customize Current Backlog by
Resource

/app/reporting/reportcomposer.nl?cr=-
106&e=T

REPO_CUST_NEG108 Customize Sales Orders by Sales
Team Summary

/app/reporting/reportcomposer.nl?cr=-
108&e=T

REPO_CUST_NEG109 Customize Sales Orders by Sales
Team Detail

/app/reporting/reportcomposer.nl?cr=-
109&e=T

REPO_CUST_NEG110 Customize Sales by Sales Team
Summary

/app/reporting/reportcomposer.nl?cr=-
110&e=T

REPO_CUST_NEG111 Customize Sales by Sales Team
Detail

/app/reporting/reportcomposer.nl?cr=-
111&e=T

Supported Tasklinks 1113

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG112 Customize Aggregated Sales
Orders by Customer Summary

/app/reporting/reportcomposer.nl?cr=-
112&e=T

REPO_CUST_NEG113 Customize Aggregated Sales
Orders by Item Summary

/app/reporting/reportcomposer.nl?cr=-
113&e=T

REPO_CUST_NEG114 Customize Internal Search
Summary

/app/reporting/reportcomposer.nl?cr=-
114&e=T

REPO_CUST_NEG115 Customize Internal Search Detail /app/reporting/reportcomposer.nl?cr=-
115&e=T

REPO_CUST_NEG116 Customize Customer Aging
History

/app/reporting/reportcomposer.nl?cr=-
116&e=T

REPO_CUST_NEG118 Customize Estimated Profitability
by Job

/app/reporting/reportcomposer.nl?cr=-
118&e=T

REPO_CUST_NEG120 Customize Sales Tax on Sales
Summary

/app/reporting/reportcomposer.nl?cr=-
120&e=T

REPO_CUST_NEG121 Customize Sales Tax on Sales
Detail

/app/reporting/reportcomposer.nl?cr=-
121&e=T

REPO_CUST_NEG122 Customize Campaign ROI Analysis
Summary

/app/reporting/reportcomposer.nl?cr=-
122&e=T

REPO_CUST_NEG123 Customize Sales by Lead Source
Detail

/app/reporting/reportcomposer.nl?cr=-
123&e=T

REPO_CUST_NEG124 Customize Sales by Lead Source
Summary

/app/reporting/reportcomposer.nl?cr=-
124&e=T

REPO_CUST_NEG125 Customize PST on Sales Detail /app/reporting/reportrunner.nl?cr=-125&
e=T

REPO_CUST_NEG126 Customize PST on Purchases
Detail

/app/reporting/reportrunner.nl?cr=-126&
e=T

REPO_CUST_NEG127 Customize PST on Sales Summary /app/reporting/reportrunner.nl?cr=-127&
e=T

REPO_CUST_NEG128 Customize PST on Purchases
Summary

/app/reporting/reportrunner.nl?cr=-128&
e=T

REPO_CUST_NEG130 Customize Bank Register /app/reporting/reportcomposer.nl?cr=-
130&e=T

REPO_CUST_NEG131 Customize Sales Tax Analysis /app/reporting/reportcomposer.nl?cr=-
131&e=T

REPO_CUST_NEG132 Customize Realized Exchange
Rate Gains and Losses

/app/reporting/reportcomposer.nl?cr=-
132&e=T

REPO_CUST_NEG133 Customize Unrealized Exchange
Rate Gains and Losses

/app/reporting/reportcomposer.nl?cr=-
133&e=T

REPO_CUST_NEG134 Customize Sales by Paid Keyword
Detail

/app/reporting/reportcomposer.nl?cr=-
134&e=T

REPO_CUST_NEG135 Customize Sales by Paid Keyword
Summary

/app/reporting/reportcomposer.nl?cr=-
135&e=T

Supported Tasklinks 1114

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG136 Customize Leads by Paid Keyword
Detail

/app/reporting/reportcomposer.nl?cr=-
136&e=T

REPO_CUST_NEG137 Customize Leads by Paid Keyword
Summary

/app/reporting/reportcomposer.nl?cr=-
137&e=T

REPO_CUST_NEG138 Customize Closed Issues
Summary

/app/reporting/reportcomposer.nl?cr=-
138&e=T&reload=T

REPO_CUST_NEG139 Customize Closed Issues Detail /app/reporting/reportcomposer.nl?cr=-
139&e=T&reload=T

REPO_CUST_NEG140 Customize Open Issues Summary /app/reporting/reportcomposer.nl?cr=-
140&e=T&reload=T

REPO_CUST_NEG141 Customize Open Issues Detail /app/reporting/reportcomposer.nl?cr=-
141&e=T&reload=T

REPO_CUST_NEG144 Customize Paid Employee
Commission Summary

/app/reporting/reportcomposer.nl?cr=-
144&e=T&reload=T

REPO_CUST_NEG145 Customize Paid Employee
Commission Detail

/app/reporting/reportcomposer.nl?cr=-
145&e=T&reload=T

REPO_CUST_NEG146 Customize Paid Partner
Commission Summary

/app/reporting/reportcomposer.nl?cr=-
146&e=T&reload=T

REPO_CUST_NEG147 Customize Paid Partner
Commission Detail

/app/reporting/reportcomposer.nl?cr=-
147&e=T&reload=T

REPO_CUST_NEG148 Customize Sales Order Revenue
Forecast Summary

/app/reporting/reportcomposer.nl?cr=-
148&e=T&reload=T

REPO_CUST_NEG149 Customize Sales Order Revenue
Forecast Detail

/app/reporting/reportcomposer.nl?cr=-
149&e=T&reload=T

REPO_CUST_NEG150 Customize Forecast vs. Quota
(including Class)

/app/reporting/reportcomposer.nl?cr=-
150&e=T&reload=T

REPO_CUST_NEG151 Customize Forecast Accuracy /app/reporting/reportcomposer.nl?cr=-
151&e=T&reload=T

REPO_CUST_NEG152 Customize Forecast (ALT_SALES) /app/reporting/reportcomposer.nl?cr=-
152&e=T&reload=T

REPO_CUST_NEG153 Customize Calculated Forecast
Accuracy

/app/reporting/reportcomposer.nl?cr=-
153&e=T&reload=T

REPO_CUST_NEG154 Customize Calculated Forecast
Accuracy (ALT_SALES)

/app/reporting/reportcomposer.nl?cr=-
154&e=T&reload=T

REPO_CUST_NEG155 Customize Forecast vs. Quota
(including Class)

/app/reporting/reportcomposer.nl?cr=-
155&e=T&reload=T

REPO_CUST_NEG156 Customize Forecast vs. Quota
(including Department)

/app/reporting/reportcomposer.nl?cr=-
156&e=T&reload=T

REPO_CUST_NEG157 Customize ALT_SALES Forecast vs.
Quota (including Class)

/app/reporting/reportcomposer.nl?cr=-
157&e=T&reload=T

REPO_CUST_NEG158 Customize ALT_SALES Forecast vs.
Quota (including Department)

/app/reporting/reportcomposer.nl?cr=-
158&e=T&reload=T

Supported Tasklinks 1115

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG159 Customize ALT_SALES Forecast vs.
Quota (including Location)

/app/reporting/reportcomposer.nl?cr=-
159&e=T&reload=T

REPO_CUST_NEG160 Customize Forecast Accuracy /app/reporting/reportcomposer.nl?cr=-
160&e=T&reload=T

REPO_CUST_NEG161 Customize Calculated Forecast
Accuracy

/app/reporting/reportcomposer.nl?cr=-
161&e=T&reload=T

REPO_CUST_NEG162 Customize Earned Value by Job /app/reporting/reportcomposer.nl?cr=-
162&e=T

REPO_CUST_NEG175 Customize Service Fees /app/reporting/reportrunner.nl?cr=-175

REPO_CUST_NEG178 Customize Utilization by
Employee (deprecated)

/app/reporting/reportcomposer.nl?cr=-
178&e=T

REPO_CUST_NEG179 Customize Deferred Revenue By
Customer

/app/reporting/reportcomposer.nl?cr=-
179&e=T

REPO_CUST_NEG180 Customize Deferred Revenue By
Item

/app/reporting/reportcomposer.nl?cr=-
180&e=T

REPO_CUST_NEG181 Customize Deferred Revenue By
State

/app/reporting/reportcomposer.nl?cr=-
181&e=T

REPO_CUST_NEG182 Customize Revenue By Customer /app/reporting/reportcomposer.nl?cr=-
182&e=T

REPO_CUST_NEG183 Customize Revenue By Item /app/reporting/reportcomposer.nl?cr=-
183&e=T

REPO_CUST_NEG184 Customize Revenue By State /app/reporting/reportcomposer.nl?cr=-
184&e=T

REPO_CUST_NEG185 Customize Commission Overview /app/reporting/reportcomposer.nl?cr=-
185&e=T

REPO_CUST_NEG186 Customize Partner Commission
Overview

/app/reporting/reportcomposer.nl?cr=-
186&e=T

REPO_CUST_NEG187 Customize Receivables by
Customer

/app/reporting/reportcomposer.nl?cr=-
187&e=T

REPO_CUST_NEG188 Customize Billing and Revenue
Summary

/app/reporting/reportcomposer.nl?cr=-
188&e=T

REPO_CUST_NEG195 Customize Budget Income Detail /app/reporting/financialreportcomposer.
nl?e=T&cr=-195

REPO_CUST_NEG196 Customize Budget Income
Statement

/app/reporting/financialreportcomposer.
nl?e=T&cr=-196

REPO_CUST_NEG197 Customize Budget vs. Actual /app/reporting/financialreportcomposer.
nl?e=T&cr=-197

REPO_CUST_NEG198 Customize Comparative Balance
Sheet

/app/reporting/financialreportcomposer.
nl?e=T&cr=-198

REPO_CUST_NEG199 Customize Comparative Income
Statement

/app/reporting/financialreportcomposer.
nl?e=T&cr=-199

Supported Tasklinks 1116

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG200 Customize Income Statement /app/reporting/financialreportcomposer.
nl?e=T&cr=-200

REPO_CUST_NEG201 Customize Cash Statement /app/reporting/financialreportcomposer.
nl?e=T&cr=-201

REPO_CUST_NEG202 Customize Balance Sheet /app/reporting/financialreportcomposer.
nl?e=T&cr=-202

REPO_CUST_NEG203 Customize Cash Flow Statement /app/reporting/financialreportcomposer.
nl?e=T&cr=-203

REPO_CUST_NEG204 Customize Income Statement
Detail

/app/reporting/financialreportcomposer.
nl?e=T&cr=-204

REPO_CUST_NEG205 Customize Cash Detail /app/reporting/financialreportcomposer.
nl?e=T&cr=-205

REPO_CUST_NEG206 Customize Balance Sheet Detail /app/reporting/financialreportcomposer.
nl?e=T&cr=-206

REPO_CUST_NEG209 Customize Open Return
Authorizations

/app/reporting/reportcomposer.nl?cr=-
209&e=T

REPO_CUST_NEG210 Customize Return Authorizations
Pending Receipt

/app/reporting/reportcomposer.nl?cr=-
210&e=T

REPO_CUST_NEG211 Customize Return Authorizations
Register

/app/reporting/reportcomposer.nl?cr=-
211&e=T

REPO_CUST_NEG212 Customize Time Entry Exceptions /app/reporting/reportcomposer.nl?cr=-
212&e=T

REPO_CUST_NEG213 Customize Sales Orders by
Historical Team Summary
(Transaction Date)

/app/reporting/reportcomposer.nl?cr=-
213&e=T

REPO_CUST_NEG214 Customize Sales Orders
by Historical Team Detail
(Transaction Date)

/app/reporting/reportcomposer.nl?cr=-
214&e=T

REPO_CUST_NEG215 Customize Sales by Historical
Team Summary (Transaction Date)

/app/reporting/reportcomposer.nl?cr=-
215&e=T

REPO_CUST_NEG216 Customize Sales by Historical
Team Detail (Transaction Date)

/app/reporting/reportcomposer.nl?cr=-
216&e=T

REPO_CUST_NEG218 Customize Deferred Revenue
Waterfall

/app/reporting/reportcomposer.nl?cr=-
218&e=T

REPO_CUST_NEG221 Customize Transfer Order Register /app/reporting/reportcomposer.nl?cr=-
221&e=T

REPO_CUST_NEG222 Customize Purchase Order History /app/reporting/reportcomposer.nl?cr=-
222&e=T

REPO_CUST_NEG223 Customize Item Demand Forecast
vs Sales

/app/reporting/reportcomposer.nl?cr=-
223&e=T

REPO_CUST_NEG224 Customize Item Demand Plan by
Item

/app/reporting/reportcomposer.nl?cr=-
224&e=T

Supported Tasklinks 1117

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG225 Customize Demand History by
Item

/app/reporting/reportcomposer.nl?cr=-
225&e=T

REPO_CUST_NEG226 Customize Production Variances
by Item

/app/reporting/reportcomposer.nl?cr=-
226&e=T

REPO_CUST_NEG227 Customize Purchase Price
Variances by Item

/app/reporting/reportcomposer.nl?cr=-
227&e=T

REPO_CUST_NEG228 Customize Planned Standard
Costs by Cost Version

/app/reporting/reportcomposer.nl?cr=-
228&e=T

REPO_CUST_NEG231 Customize Intercompany
Elimination

/app/reporting/reportcomposer.nl?cr=-
231&e=T

REPO_CUST_NEG232 Customize Intercompany
Reconciliation

/app/reporting/reportcomposer.nl?cr=-
232&e=T

REPO_CUST_NEG233 Customize Open Estimates By
Lines

/app/reporting/reportcomposer.nl?cr=-
233&e=T

REPO_CUST_NEG234 Customize Open Estimates By
Lines Detail

/app/reporting/reportcomposer.nl?cr=-
234&e=T

REPO_CUST_NEG235 Customize Revenue
Reclassification Detail

/app/reporting/reportcomposer.nl?e=T&
cr=-235

REPO_CUST_NEG236 Customize Revenue
Reclassification

/app/reporting/reportcomposer.nl?e=T&
cr=-236

REPO_CUST_NEG239 Customize Allocated vs. Actual
Hours by Resource

/app/reporting/reportcomposer.nl?cr=-
239&e=T

REPO_CUST_NEG240 Customize Allocated Utilization by
Resource

/app/reporting/reportcomposer.nl?cr=-
240&e=T

REPO_CUST_NEG241 Customize Commission Overview
Detail

/app/reporting/reportcomposer.nl?cr=-
241&e=T

REPO_CUST_NEG242 Customize Partner Commission
Overview Detail

/app/reporting/reportcomposer.nl?cr=-
242&e=T

REPO_CUST_NEG245 Customize GL Audit Numbering /app/reporting/reportcomposer.nl?cr=-
245&e=T

REPO_CUST_NEG246 Customize Planned Utilization by
Resource

/app/reporting/reportcomposer.nl?cr=-
246&e=T

REPO_CUST_NEG247 Customize Actual Utilization by
Resource

/app/reporting/reportcomposer.nl?cr=-
247&e=T

REPO_CUST_NEG248 Customize Allocated Utilization by
Project

/app/reporting/reportcomposer.nl?cr=-
248&e=T

REPO_CUST_NEG249 Customize Planned Utilization by
Project

/app/reporting/reportcomposer.nl?cr=-
249&e=T

REPO_CUST_NEG250 Customize Actual Utilization by
Project

/app/reporting/reportcomposer.nl?cr=-
250&e=T

REPO_CUST_NEG253 Customize Project Billing Report /app/reporting/reportcomposer.nl?e=T&
cr=-253

Supported Tasklinks 1118

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG254 Customize Project Cost Budget vs.
Actual

/app/reporting/reportcomposer.nl?cr=-
254&e=T

REPO_CUST_NEG255 Customize Project Billing Budget
vs. Actual

/app/reporting/reportcomposer.nl?cr=-
255&e=T

REPO_CUST_NEG256 Customize Project Task Cost
Budget vs. Actual

/app/reporting/reportcomposer.nl?cr=-
256&e=T

REPO_CUST_NEG257 Customize Project Task Billing
Budget vs. Actual

/app/reporting/reportcomposer.nl?cr=-
257&e=T

REPO_CUST_NEG258 Customize Project Profitability by
Month

/app/reporting/reportcomposer.nl?cr=-
258&e=T

REPO_CUST_NEG259 Customize Deferred Revenue
Reclassification Activity

/app/reporting/reportcomposer.nl?e=T&
cr=-259

REPO_CUST_NEG260 Customize Deferred Revenue
Reclassification

/app/reporting/reportcomposer.nl?e=T&
cr=-260

REPO_CUST_NEG265 Customize Revenue Contract
Activity

/app/reporting/reportcomposer.nl?e=T&
cr=-265

REPO_CUST_NEG273 Customize Project Cost Budget vs.
Actual Detail

/app/reporting/reportcomposer.nl?cr=-
273&e=T

REPO_CUST_NEG274 Customize Project Billing Budget
vs. Actual Detail

/app/reporting/reportcomposer.nl?cr=-
274&e=T

REPO_CUST_NEG275 Customize Project Profitability
Detail

/app/reporting/reportcomposer.nl?cr=-
275&e=T

REPO_CUST_NEG277 Customize Deferred Revenue
Rollforward

/app/reporting/reportcomposer.nl?e=T&
cr=-277

REPO_CUST_NEG278 Customize Deferred Revenue
Rollforward Detail

/app/reporting/reportcomposer.nl?e=T&
cr=-278

REPO_CUST_NEG279 Customize Deferred Revenue
Rollforward Customer

/app/reporting/reportcomposer.nl?e=T&
cr=-279

REPO_CUST_NEG280 Customize Campaign
Clickthrough Detail

/app/reporting/reportcomposer.nl?cr=-
280&e=T

REPO_CUST_NEG281 Customize Campaign
Clickthrough Summary

/app/reporting/reportcomposer.nl?cr=-
281&e=T

REPO_CUST_NEG284 Customize Project Profitability /app/reporting/reportcomposer.nl?cr=-
284&e=T

REPO_CUST_NEG285 Customize Project Charges
Forecast

/app/reporting/reportcomposer.nl?cr=-
285&e=T

REPO_CUST_NEG289 Customize Deferred Revenue
Reclassification

/app/reporting/reportcomposer.nl?e=T&
cr=-289

REPO_CUST_NEG290 Customize Deferred Revenue
Detail

/app/reporting/reportcomposer.nl?cr=-
290&e=T

REPO_CUST_NEG291 Customize Deferred Revenue by
Customer Summary

/app/reporting/reportcomposer.nl?cr=-
291&e=T

Supported Tasklinks 1119

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_CUST_NEG292 Customize Deferred Revenue
Rollforward

/app/reporting/reportcomposer.nl?e=T&
cr=-292

REPO_CUST_NEG293 Customize Deferred Revenue
Rollforward Detail

/app/reporting/reportcomposer.nl?e=T&
cr=-293

REPO_CUST_NEG294 Customize Deferred Revenue
Rollforward Customer

/app/reporting/reportcomposer.nl?e=T&
cr=-294

REPO_CUST_PAGE All Saved Reports /app/reporting/savedreports.nl

REPO_EMAIL Email Report /app/accounting/reports/emailContact.nl

REPO_FINANCIALLAYOUTS Financial Row Layouts /app/reporting/financiallayouts.nl

REPO_GST34 GST34 Worksheet /app/accounting/reports/intl/ca/gst34.nl

REPO_JPTAXFORM Tax Form /app/accounting/reports/intl/jptaxform.nl

REPO_JP_BS Japanese Balance Sheet /app/accounting/reports/intl/jp/
jpbalancesheet.nl

REPO_JP_CF Japanese Cash Flow Statement /app/accounting/reports/intl/jp/
jpcashflow.nl

REPO_JP_EQUITY_CHANGE Japanese Equity Change Report /app/accounting/reports/intl/jp/
jpequitychange.nl

REPO_JP_FR_PACKAGE Japanese Financial Report
Package

/app/accounting/reports/intl/jp/
jpfrpackage.nl

REPO_JP_IS Japanese Income Statement /app/accounting/reports/intl/jp/
jpincomestatement.nl

REPO_NEG100 Case Activity by Support Rep /app/reporting/reportrunner.nl?cr=-100

REPO_NEG101 Case Activity by Support Rep
Detail

/app/reporting/reportrunner.nl?cr=-101

REPO_NEG105 Utilization by Employee Summary
(deprecated)

/app/reporting/reportrunner.nl?cr=-105

REPO_NEG106 Current Backlog by Resource /app/reporting/reportrunner.nl?cr=-106

REPO_NEG108 Sales Orders by Sales Team /app/reporting/reportrunner.nl?cr=-108

REPO_NEG109 Sales Orders by Sales Team Detail /app/reporting/reportrunner.nl?cr=-109

REPO_NEG110 Sales by Sales Team /app/reporting/reportrunner.nl?cr=-110

REPO_NEG111 Sales by Sales Team Detail /app/reporting/reportrunner.nl?cr=-111

REPO_NEG112 Aggregated Sales Orders by
Customer Summary

/app/reporting/reportrunner.nl?cr=-112

REPO_NEG113 Aggregated Sales Orders by Item
Summary

/app/reporting/reportrunner.nl?cr=-113

REPO_NEG114 Internal Search /app/reporting/reportrunner.nl?cr=-114

REPO_NEG115 Internal Search Detail /app/reporting/reportrunner.nl?cr=-115

REPO_NEG116 Customer Aging History /app/reporting/reportrunner.nl?cr=-116

REPO_NEG118 Estimated Profitability by Job /app/reporting/reportrunner.nl?cr=-118

Supported Tasklinks 1120

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_NEG119 Reconciliation Detail /app/reporting/reportrunner.nl?cr=-119

REPO_NEG120 Sales Tax on Sales /app/reporting/reportrunner.nl?cr=-120

REPO_NEG121 Sales Tax on Sales Detail /app/reporting/reportrunner.nl?cr=-121

REPO_NEG122 Campaign ROI Analysis /app/reporting/reportrunner.nl?cr=-122

REPO_NEG123 Sales by Lead Source Detail /app/reporting/reportrunner.nl?cr=-123

REPO_NEG124 Sales by Lead Source /app/reporting/reportrunner.nl?cr=-124

REPO_NEG125 PST on Sales Detail /app/reporting/reportrunner.nl?cr=-125

REPO_NEG126 PST on Purchases Detail /app/reporting/reportrunner.nl?cr=-126

REPO_NEG127 PST on Sales /app/reporting/reportrunner.nl?cr=-127

REPO_NEG128 PST on Purchases /app/reporting/reportrunner.nl?cr=-128

REPO_NEG129 Reconciliation /app/reporting/reportrunner.nl?cr=-129

REPO_NEG130 Bank Register /app/reporting/reportrunner.nl?cr=-130

REPO_NEG131 Sales Tax Analysis /app/reporting/reportrunner.nl?cr=-131

REPO_NEG132 Realized Exchange Rate Gains and
Losses

/app/reporting/reportrunner.nl?cr=-132

REPO_NEG133 Unrealized Exchange Rate Gains
and Losses

/app/reporting/reportrunner.nl?cr=-133

REPO_NEG134 Sales by Paid Keyword Detail /app/reporting/reportrunner.nl?cr=-134

REPO_NEG135 Sales by Paid Keyword /app/reporting/reportrunner.nl?cr=-135

REPO_NEG136 Leads by Paid Keyword Detail /app/reporting/reportrunner.nl?cr=-136

REPO_NEG137 Leads by Paid Keyword /app/reporting/reportrunner.nl?cr=-137

REPO_NEG138 Closed Issues /app/reporting/reportrunner.nl?cr=-138

REPO_NEG139 Closed Issues Detail /app/reporting/reportrunner.nl?cr=-139

REPO_NEG140 Open Issues /app/reporting/reportrunner.nl?cr=-140

REPO_NEG141 Open Issues Detail /app/reporting/reportrunner.nl?cr=-141

REPO_NEG144 Paid Employee Commission /app/reporting/reportrunner.nl?cr=-144

REPO_NEG145 Paid Employee Commission Detail /app/reporting/reportrunner.nl?cr=-145

REPO_NEG146 Paid Partner Commission /app/reporting/reportrunner.nl?cr=-146

REPO_NEG147 Paid Partner Commission Detail /app/reporting/reportrunner.nl?cr=-147

REPO_NEG148 Sales Order Revenue Forecast /app/reporting/reportrunner.nl?cr=-148

REPO_NEG149 Sales Order Revenue Forecast
Detail

/app/reporting/reportrunner.nl?cr=-149

REPO_NEG150 Forecast vs. Quota by Class /app/reporting/reportrunner.nl?cr=-150

REPO_NEG151 Forecast Accuracy /app/reporting/reportrunner.nl?cr=-151

REPO_NEG152 Forecast Accuracy (ALT_SALES) /app/reporting/reportrunner.nl?cr=-152

REPO_NEG153 Calculated Forecast Accuracy /app/reporting/reportrunner.nl?cr=-153

Supported Tasklinks 1121

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_NEG154 Calculated Forecast Accuracy
(ALT_SALES)

/app/reporting/reportrunner.nl?cr=-154

REPO_NEG155 Forecast vs. Quota by Department /app/reporting/reportrunner.nl?cr=-155

REPO_NEG156 Forecast vs. Quota by Location /app/reporting/reportrunner.nl?cr=-156

REPO_NEG157 ALT_SALES Forecast vs. Quota by
Class

/app/reporting/reportrunner.nl?cr=-157

REPO_NEG158 ALT_SALES Forecast vs. Quota by
Department

/app/reporting/reportrunner.nl?cr=-158

REPO_NEG159 ALT_SALES Forecast vs. Quota by
Location

/app/reporting/reportrunner.nl?cr=-159

REPO_NEG160 Forecast Accuracy /app/reporting/reportrunner.nl?cr=-160

REPO_NEG161 Calculated Forecast Accuracy /app/reporting/reportrunner.nl?cr=-161

REPO_NEG162 Earned Value by Job /app/reporting/reportrunner.nl?cr=-162

REPO_NEG175 Service Fees /app/reporting/reportrunner.nl?cr=-175

REPO_NEG178 Utilization by Employee
(deprecated)

/app/reporting/reportrunner.nl?cr=-178

REPO_NEG179 Deferred Revenue By Customer /app/reporting/reportrunner.nl?cr=-179

REPO_NEG180 Deferred Revenue By Item /app/reporting/reportrunner.nl?cr=-180

REPO_NEG181 Deferred Revenue By State /app/reporting/reportrunner.nl?cr=-181

REPO_NEG182 Revenue By Customer /app/reporting/reportrunner.nl?cr=-182

REPO_NEG183 Revenue By Item /app/reporting/reportrunner.nl?cr=-183

REPO_NEG184 Revenue By State /app/reporting/reportrunner.nl?cr=-184

REPO_NEG185 Commission Overview /app/reporting/reportrunner.nl?cr=-185

REPO_NEG186 Partner Commission Overview /app/reporting/reportrunner.nl?cr=-186

REPO_NEG187 Receivables by Customer /app/reporting/reportrunner.nl?cr=-187

REPO_NEG188 Billing and Revenue Summary /app/reporting/reportrunner.nl?cr=-188

REPO_NEG195 Budget Income Statement Detail /app/reporting/reportrunner.nl?cr=-195

REPO_NEG196 Budget Income Statement /app/reporting/reportrunner.nl?cr=-196

REPO_NEG197 Budget vs. Actual /app/reporting/reportrunner.nl?cr=-197

REPO_NEG198 Comparative Balance Sheet /app/reporting/reportrunner.nl?cr=-198

REPO_NEG199 Comparative Income Statement /app/reporting/reportrunner.nl?cr=-199

REPO_NEG200 Income Statement /app/reporting/reportrunner.nl?cr=-200

REPO_NEG201 Cash Statement /app/reporting/reportrunner.nl?cr=-201

REPO_NEG202 Balance Sheet /app/reporting/reportrunner.nl?cr=-202

REPO_NEG203 Cash Flow Statement /app/reporting/reportrunner.nl?cr=-203

REPO_NEG204 Income Statement Detail /app/reporting/reportrunner.nl?cr=-204

REPO_NEG205 Cash Statement Detail /app/reporting/reportrunner.nl?cr=-205

Supported Tasklinks 1122

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_NEG206 Balance Sheet Detail /app/reporting/reportrunner.nl?cr=-206

REPO_NEG209 Open Return Authorizations /app/reporting/reportrunner.nl?cr=-209

REPO_NEG210 Return Authorizations Pending
Receipt

/app/reporting/reportrunner.nl?cr=-210

REPO_NEG211 Return Authorizations Register /app/reporting/reportrunner.nl?cr=-211

REPO_NEG212 Time Entry Exceptions /app/reporting/reportrunner.nl?cr=-212

REPO_NEG213 Sales Orders by Historical Team
(Transaction Date)

/app/reporting/reportrunner.nl?cr=-213

REPO_NEG214 Sales Orders by Item Detail
(Transaction Date)

/app/reporting/reportrunner.nl?cr=-214

REPO_NEG215 Sales by Historical Team
(Transaction Date)

/app/reporting/reportrunner.nl?cr=-215

REPO_NEG216 Sales by Item Detail (Transaction
Date)

/app/reporting/reportrunner.nl?cr=-216

REPO_NEG218 Deferred Revenue Waterfall /app/reporting/reportrunner.nl?cr=-218

REPO_NEG221 Transfer Order Register /app/reporting/reportrunner.nl?cr=-221

REPO_NEG222 Purchase Order History /app/reporting/reportrunner.nl?cr=-222

REPO_NEG223 Item Demand Forecast vs Actual /app/reporting/reportrunner.nl?cr=-223

REPO_NEG224 Item Demand Plan by Item /app/reporting/reportrunner.nl?cr=-224

REPO_NEG225 Demand History by Item /app/reporting/reportrunner.nl?cr=-225

REPO_NEG226 Production Variances by Item /app/reporting/reportrunner.nl?cr=-226

REPO_NEG227 Purchase Price Variances by Item /app/reporting/reportrunner.nl?cr=-227

REPO_NEG228 Planned Standard Costs by Cost
Version

/app/reporting/reportrunner.nl?cr=-228

REPO_NEG231 Intercompany Elimination /app/reporting/reportrunner.nl?cr=-231

REPO_NEG232 Intercompany Reconciliation /app/reporting/reportrunner.nl?cr=-232

REPO_NEG233 Open Estimates By Lines /app/reporting/reportrunner.nl?cr=-233

REPO_NEG234 Open Estimates By Lines Detail /app/reporting/reportrunner.nl?cr=-234

REPO_NEG235 Revenue Reclassification Detail /app/reporting/reportrunner.nl?cr=-235

REPO_NEG236 Revenue Reclassification /app/reporting/reportrunner.nl?cr=-236

REPO_NEG237 Employee Change History /app/reporting/reportrunner.nl?cr=-237

REPO_NEG239 Allocated vs. Actual Hours by
Resource

/app/reporting/reportrunner.nl?cr=-239

REPO_NEG240 Allocated Utilization by Resource /app/reporting/reportrunner.nl?cr=-240

REPO_NEG241 Commission Overview Detail /app/reporting/reportrunner.nl?cr=-241

REPO_NEG242 Partner Commission Overview
Detail

/app/reporting/reportrunner.nl?cr=-242

REPO_NEG245 GL Audit Numbering /app/reporting/reportrunner.nl?cr=-245

Supported Tasklinks 1123

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_NEG246 Planned Utilization by Resource /app/reporting/reportrunner.nl?cr=-246

REPO_NEG247 Actual Utilization by Resource /app/reporting/reportrunner.nl?cr=-247

REPO_NEG248 Allocated Utilization by Project /app/reporting/reportrunner.nl?cr=-248

REPO_NEG249 Planned Utilization by Project /app/reporting/reportrunner.nl?cr=-249

REPO_NEG250 Actual Utilization by Project /app/reporting/reportrunner.nl?cr=-250

REPO_NEG253 Project Billing Report /app/reporting/reportrunner.nl?cr=-253

REPO_NEG254 Project Cost Budget vs. Actual /app/reporting/reportrunner.nl?cr=-254

REPO_NEG255 Project Billing Budget vs. Actual /app/reporting/reportrunner.nl?cr=-255

REPO_NEG256 Project Task Cost Budget vs.
Actual

/app/reporting/reportrunner.nl?cr=-256

REPO_NEG257 Project Task Billing Budget vs.
Actual

/app/reporting/reportrunner.nl?cr=-257

REPO_NEG258 Project Profitability by Month /app/reporting/reportrunner.nl?cr=-258

REPO_NEG259 Deferred Revenue Reclassification
Activity

/app/reporting/reportrunner.nl?cr=-259

REPO_NEG260 Deferred Revenue Reclassification /app/reporting/reportrunner.nl?cr=-260

REPO_NEG265 Revenue Contract Activity /app/reporting/reportrunner.nl?cr=-265

REPO_NEG271 Employee Payroll Item History /app/reporting/reportrunner.nl?cr=-271

REPO_NEG273 Project Cost Budget vs. Actual
Detail

/app/reporting/reportrunner.nl?cr=-273

REPO_NEG274 Project Billing Budget vs. Actual
Detail

/app/reporting/reportrunner.nl?cr=-274

REPO_NEG275 Project Profitability Detail /app/reporting/reportrunner.nl?cr=-275

REPO_NEG277 Deferred Revenue Rollforward /app/reporting/reportrunner.nl?cr=-277

REPO_NEG278 Deferred Revenue Rollforward
Detail

/app/reporting/reportrunner.nl?cr=-278

REPO_NEG279 Deferred Revenue Rollforward
Customer

/app/reporting/reportrunner.nl?cr=-279

REPO_NEG280 Campaign Clickthrough Detail /app/reporting/reportrunner.nl?cr=-280

REPO_NEG281 Campaign Clickthrough Summary /app/reporting/reportrunner.nl?cr=-281

REPO_NEG284 Project Profitability /app/reporting/reportrunner.nl?cr=-284

REPO_NEG285 Project Charges Forecast /app/reporting/reportrunner.nl?cr=-285

REPO_NEG289 Deferred Revenue Reclassification /app/reporting/reportrunner.nl?cr=-289

REPO_NEG290 Revenue Recognition Forecast
Detail

/app/reporting/reportrunner.nl?cr=-290

REPO_NEG291 Revenue Recognition Forecast /app/reporting/reportrunner.nl?cr=-291

REPO_NEG292 Deferred Revenue Rollforward /app/reporting/reportrunner.nl?cr=-292

Supported Tasklinks 1124

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_NEG293 Deferred Revenue Rollforward
Detail

/app/reporting/reportrunner.nl?cr=-293

REPO_NEG294 Deferred Revenue Rollforward
Customer

/app/reporting/reportrunner.nl?cr=-294

REPO_NEWFINANCIALREPOR
T

New Financial Report /app/reporting/newfinancialreport.nl

REPO_QUICKREPORT New Report /app/reporting/quickreports.nl

REPO_RECENT Recent Reports /app/common/otherlists/recentrecords.nl

REPO_REGISTER_ACCTPAY Accounts Payable Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=AcctPay

REPO_REGISTER_ACCTREC Accounts Receivable Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=AcctRec

REPO_REGISTER_BANK Bank Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=Bank

REPO_REGISTER_COGS COGS Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=COGS

REPO_REGISTER_CREDCARD Credit Card Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=CredCard

REPO_REGISTER_
DEFEREXPENSE

Deferred Expense Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
DeferExpense

REPO_REGISTER_
DEFERREVENUE

Deferred Revenue Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
DeferRevenue

REPO_REGISTER_EQUITY Equity Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=Equity

REPO_REGISTER_EXPENSE Expense Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=Expense

REPO_REGISTER_FIXEDASSET Fixed Asset Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
FixedAsset

REPO_REGISTER_INCOME Income Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=Income

REPO_REGISTER_
LONGTERMLIAB

Long Team Liability Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
LongTermLiab

REPO_REGISTER_
NONPOSTING

Non-Posting Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
NonPosting

REPO_REGISTER_OTHASSET Other Asset Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=OthAsset

Supported Tasklinks 1125

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

REPO_REGISTER_
OTHCURRASSET

Other Current Asset Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
OthCurrAsset

REPO_REGISTER_
OTHCURRLIAB

Other Current Liability Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
OthCurrLiab

REPO_REGISTER_
OTHEXPENSE

Register - Other Expense /app/reporting/reportrunner.nl?acctid=&
showStartBalances=F

REPO_REGISTER_OTHINCOME Other Income Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
OthIncome

REPO_REGISTER_
UNBILLEDREC

Unbilled Receivable Register /app/reporting/reportrunner.nl?
reporttype=REGISTER&accttype=
UnbilledRec

SRCH_ACCOUNT Search Account /app/common/search/search.nl?
searchtype=Account

SRCH_ACCOUNTINGBOOK Search Accounting Book /app/common/search/search.nl?
searchtype=AccountingBook

SRCH_ACCOUNTINGPERIOD Search Accounting Period /app/common/search/search.nl?
searchtype=AccountingPeriod

SRCH_ACCOUNTINGTRANSA
CTION

Search Accounting Transactions /app/common/search/search.nl?
searchtype=AccountingTransaction

SRCH_ACTIVITY Search Activities /app/common/search/search.nl?
searchtype=Activity

SRCH_AMORTIZATIONSCHED
ULE

Search Amortization Schedules /app/common/search/search.nl?
searchtype=AmortizationSchedule

SRCH_APPDEF Search App Definitions /app/common/search/search.nl?
searchtype=AppDefinition

SRCH_APPPKG Search App Packages /app/common/search/search.nl?
searchtype=AppPackage

SRCH_AUDITTRAIL Search Audit Trail /app/common/search/search.nl?
searchtype=AuditTrail

SRCH_BILLINGACCOUNT Search Billing Account /app/common/search/search.nl?
searchtype=BillingAccount

SRCH_BILLINGCLASS Search Billing Class /app/common/search/search.nl?
searchtype=BillingClass

SRCH_BILLINGRULE Search Billing Rule /app/common/search/search.nl?
searchtype=BillingRule

SRCH_BILLINGSCHEDULE Search Billing Schedule /app/common/search/search.nl?
searchtype=BillingSchedule

SRCH_BILLING_GROUPS Billing Groups /app/common/search/search.nl?
searchtype=CRMGroup&adv=T&

Supported Tasklinks 1126

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

CRMGroup_GROUPTYPE=CustJob&
CRMGroup_ISBILLINGGROUP=T

SRCH_BILLOFDISTRIBUTION Search Bill Of Distribution /app/common/search/search.nl?
searchtype=BillOfDistribution

SRCH_BILLRUN Search Billing Operations /app/common/search/search.nl?
searchtype=BillRun

SRCH_BILLRUNSCHEDULE Search Billing Operation
Schedules

/app/common/search/search.nl?
searchtype=BillRunSchedule

SRCH_BIN Search Bin /app/common/search/search.nl?
searchtype=BinNumber

SRCH_BINNUMBER Search Bin /app/common/search/search.nl?
searchtype=BinNumber

SRCH_BUDGET Search Set Up Budget /app/common/search/search.nl?
searchtype=Budget

SRCH_BUDGETRATES Search Budget Rates /app/common/search/search.nl?
searchtype=BudgetExchangeRate

SRCH_CALENDAR Search Calendar/Event /app/common/search/search.nl?
searchtype=Calendar

SRCH_CALL Search Calls /app/common/search/search.nl?
searchtype=Call

SRCH_CAMPAIGN Search Campaigns /app/common/search/search.nl?
searchtype=Campaign

SRCH_CASE Search Case /app/common/search/search.nl?
searchtype=Case

SRCH_CHARGE Search Charge /app/common/search/search.nl?
searchtype=Charge

SRCH_CHARGERULE Search Charge Rule /app/common/search/search.nl?
searchtype=ChargeRule

SRCH_CLASS Search Class /app/common/search/search.nl?
searchtype=Class

SRCH_CLASSSEGMENTMAPP
ING

Search Class Mapping /app/common/search/search.nl?
searchtype=ClassSegmentMapping

SRCH_COMMISSIONABLEITE
M

Search Commissionable Items /app/common/search/search.nl?
searchtype=Transaction

SRCH_COMMISSIONOVERVIE
W

Search Commission Overview /app/common/search/search.nl?
searchtype=Transaction

SRCH_COMPANY Search All Companies /app/common/search/search.nl?
searchtype=Company

SRCH_COMPETITOR Search Competitors /app/common/search/search.nl?
searchtype=Competitor

SRCH_CONSOLEXCHANGERA
TE

Consolidated Exchange Rates /app/common/search/search.nl?
searchtype=ConsolExchangeRate

Supported Tasklinks 1127

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_CONSOLRATES Search Consolidated Rates /app/common/search/search.nl?
searchtype=ConsolExchangeRate

SRCH_CONTACT Search Contact /app/common/search/search.nl?
searchtype=Contact

SRCH_COUPONCODE Search Coupon Code /app/common/search/search.nl?
searchtype=CouponCode

SRCH_CRMGROUP Search Group /app/common/search/search.nl?
searchtype=CRMGroup

SRCH_CUSTOMER Search Customer /app/common/search/search.nl?
searchtype=Customer

SRCH_CUSTOMSEGMENT Search Custom Segments /app/common/search/search.nl?
searchtype=CustomSegment

SRCH_DELETEDRECORD Search Deleted Records /app/common/search/search.nl?
searchtype=DeletedRecord

SRCH_DEPARTMENT Search Department /app/common/search/search.nl?
searchtype=Department

SRCH_DEPTSEGMENTMAPPI
NG

Search Department Mapping /app/common/search/search.nl?
searchtype=DeptSegmentMapping

SRCH_DISTRIBUTIONNETWO
RK

Search Distribution Network /app/common/search/search.nl?
searchtype=DistributionNetwork

SRCH_DOCUMENT Search File Cabinet /app/common/search/search.nl?
searchtype=Document

SRCH_DRIVERSLICENSE Search Driver's Licenses /app/common/search/search.nl?
searchtype=DriversLicense

SRCH_EMPLOYEE Search Employee /app/common/search/search.nl?
searchtype=Employee

SRCH_EMPLOYEEPAYROLLIT
EM

Search Employee Payroll Items /app/common/search/search.nl?
searchtype=EmployeePayrollItem&
rectype

SRCH_ENTITY Search All Entities /app/common/search/search.nl?
searchtype=Entity

SRCH_ENTITYACCOUNTMAP
PING

Search Entity Account Mapping /app/common/search/search.nl?
searchtype=EntityAccountMapping

SRCH_FAIRVALUEFORMULA Search Fair Value Formulas /app/common/search/search.nl?
searchtype=FairValueFormula

SRCH_FAIRVALUEPRICE Search Fair Value Price Form /app/common/search/search.nl?
searchtype=FairValuePrice

SRCH_FIRSTVISIT Search First Site Visit /app/common/search/search.nl?
searchtype=FirstVisit

SRCH_FISCALCALENDAR Search Fiscal Calendars /app/common/search/search.nl?
searchtype=FiscalCalendar

Supported Tasklinks 1128

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_FOLDER Search Folder /app/common/search/search.nl?
searchtype=Folder

SRCH_GENERICRESOURCE Search Generic Resources /app/common/search/search.nl?
searchtype=GenericResource

SRCH_GIFTCERTIFICATE Search Gift Certificates /app/common/search/search.nl?
searchtype=GiftCertificate

SRCH_GLLINESAUDITLOG Search Custom GL Lines Plug-in
Audit Log

/app/common/search/search.nl?
searchtype=GlLinesAuditLog

SRCH_GLOBALACCOUNTMA
PPING

Search Global Account Mapping /app/common/search/search.nl?
searchtype=GlobalAccountMapping

SRCH_GOVISSUEDIDTYPE Search Government-Issued ID
Types

/app/common/search/search.nl?
searchtype=GovIssuedIdType

SRCH_INFOITEM Search Information Items /app/common/search/search.nl?id=-
2540&e=T

SRCH_INFOITEMFORM Search Published Forms /app/common/search/search.nl?id=-
2541&e=T

SRCH_INVCOSTTEMPLATE Search Inventory Cost Template /app/common/search/search.nl?
searchtype=InvCostTemplate

SRCH_INVENTORYNUMBER Search Inventory Number /app/common/search/search.nl?
searchtype=InventoryNumber

SRCH_INVENTORYNUMBERB
IN

Search Inventory Number Bin /app/common/search/search.nl?
searchtype=InventoryNumberBin

SRCH_IPRESTRICTIONS Login Restrictions /app/common/search/search.nl?
searchtype=IPRestrictions

SRCH_ISSUE Search Issue /app/common/search/search.nl?
searchtype=Issue

SRCH_ITEM Search Item /app/common/search/search.nl?
searchtype=Item

SRCH_ITEMACCOUNTMAPPI
NG

Search Item Account Mapping /app/common/search/search.nl?
searchtype=ItemAccountMapping

SRCH_ITEMDEMANDPLAN Search Item Demand Plan /app/common/search/search.nl?
searchtype=ItemDemandPlan

SRCH_ITEMREVENUECATEGO
RY

Search Item Revenue Category
Form

/app/common/search/search.nl?
searchtype=ItemRevenueCategory

SRCH_ITEMSUPPLYPLAN Search Item Supply Plan /app/common/search/search.nl?
searchtype=ItemSupplyPlan

SRCH_ITEM_REVISION Search Item Revision /app/common/search/search.nl?
searchtype=ItemRevision

SRCH_JOB Search Job /app/common/search/search.nl?
searchtype=Job

Supported Tasklinks 1129

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_LEAD Search Leads /app/common/search/search.nl?
searchtype=Customer&Customer_STAGE=
LEAD

SRCH_LOCATION Search Location /app/common/search/search.nl?
searchtype=Location

SRCH_LOCATIONCOSTINGGR
OUP

Search Location Costing Group /app/common/search/search.nl?
searchtype=LocationCostingGroup

SRCH_LOCSEGMENTMAPPIN
G

Search Location Mapping /app/common/search/search.nl?
searchtype=LocSegmentMapping

SRCH_LOGINAUDIT Search Login Audit Trail /app/common/search/search.nl?
searchtype=LoginAudit

SRCH_MEDIAITEM Search Media Items /app/common/search/search.nl?
searchtype=Document

SRCH_MEMDOC Search Memorized Transactions /app/common/search/search.nl?
searchtype=MemDoc

SRCH_MESSAGE Search Messages /app/common/search/search.nl?
searchtype=Message

SRCH_MFGCOSTTEMPLATE Search Manufacturing Cost
Template

/app/common/search/search.nl?
searchtype=MfgCostTemplate

SRCH_MFGOPERATIONTASK Search Manufacturing Operation
Task

/app/common/search/search.nl?
searchtype=MfgOperationTask

SRCH_MFGPLANNEDTIME Search Manufacturing Planned
Time

/app/common/search/search.nl?
searchtype=MfgPlannedTime

SRCH_MFGROUTING Search Manufacturing Routing /app/common/search/search.nl?
searchtype=MfgRouting

SRCH_NEXUS Search Nexus /app/common/search/search.nl?
searchtype=Nexus

SRCH_OAUTHAPP Search Token-based
Authentication

/app/common/search/search.nl?
searchtype=OAuthApp

SRCH_OAUTH_TOKENS Search Access Tokens /app/common/search/search.nl?
searchtype=OAuthToken

SRCH_ONLINECASEFORM Search Online Case Forms /app/common/search/search.nl?
searchtype=OnlineCaseForm

SRCH_ONLINELEADFORM Search Online Lead Forms /app/common/search/search.nl?
searchtype=OnlineLeadForm

SRCH_ORGANIZATIONVALUE Search Organization Values /app/common/search/search.nl?
searchtype=OrganizationValue

SRCH_OTHERGOVISSUEDID Search Other Government-Issued
IDs

/app/common/search/search.nl?
searchtype=OtherGovIssuedId

SRCH_PARTNER Search Partner /app/common/search/search.nl?
searchtype=Partner

Supported Tasklinks 1130

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_PASSPORT Search Passports /app/common/search/search.nl?
searchtype=Passport

SRCH_PAYCHECK Search paycheck /app/common/search/search.nl?
searchtype=Paycheck

SRCH_PAYMENTEVENT Search Payment Events /app/common/search/search.nl?
searchtype=PaymentEvent

SRCH_PAYROLLITEM Search Payroll Item /app/common/search/search.nl?
searchtype=PayrollItem

SRCH_PLANNEDSTANDARDC
OST

Search Planned Standard Cost /app/common/search/search.nl?
searchtype=PlannedStandardCost

SRCH_POSITION Search Position /app/common/search/search.nl?
searchtype=Position

SRCH_PRESCATEGORY Search Categories /app/common/search/search.nl?
searchtype=SiteCategory

SRCH_PRICING Search Pricing /app/common/search/search.nl?
searchtype=Pricing

SRCH_PROJECTEXPENSETYPE Search Project Expense Types /app/common/search/search.nl?
searchtype=ProjectExpenseType

SRCH_PROJECTRESOURCE Search Project Resources /app/common/search/search.nl?
searchtype=ProjectResource

SRCH_PROJECTTASK Search Project Tasks /app/common/search/search.nl?
searchtype=ProjectTask

SRCH_PROJECTTASKANDCRM
TASK

Search Project Tasks and CRM
Tasks

/app/common/search/search.nl?
searchtype=ProjectTaskAndCrmTask

SRCH_PROJECTTEMPLATE Search Project Template /app/common/search/search.nl?
searchtype=ProjectTemplate

SRCH_PROMOTION Search Promotion /app/common/search/search.nl?
searchtype=Promotion

SRCH_PROSPECT Search Prospects /app/common/search/search.nl?
searchtype=Customer&Customer_STAGE=
PROSPECT

SRCH_QUOTA Search Establish Quota /app/common/search/search.nl?
searchtype=Quota

SRCH_RATEPLAN Search Rate Plan /app/common/search/search.nl?
searchtype=RatePlan

SRCH_RECOGNITION Search Recognitions /app/common/search/search.nl?
searchtype=Recognition

SRCH_REGION Search Region /app/common/search/search.nl?
searchtype=Region

SRCH_REPORT Search Reports /app/common/search/search.nl?
searchtype=Report

Supported Tasklinks 1131

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_REVARRNGMESSAGE Search Revenue Arrangement
Message

/app/common/search/search.nl?
searchtype=RevArrngMessage

SRCH_REVENUEALLOCATION
GROUP

Search Revenue Allocation Group /app/common/search/search.nl?
searchtype=RevAllocationGroup

SRCH_REVENUEELEMENT Search Revenue Element /app/common/search/search.nl?
searchtype=RevenueElement

SRCH_REVENUEPLAN Search Revenue Recognition Plan
Form

/app/common/search/search.nl?
searchtype=RevenuePlan

SRCH_REVENUERECOGNITIO
NRULE

Search Revenue Recognition Rule
Form

/app/common/search/search.nl?
searchtype=RevRecRule

SRCH_REVREC Search Revenue Recgonition
Schedules

/app/common/search/search.nl?
searchtype=RevRecTemplate

SRCH_REVRECOGNITIONSCH
ED

Search Revenue Recgonition
Schedules

/app/common/search/search.nl?
searchtype=RevRecognitionSched

SRCH_ROLE Search Role /app/common/search/search.nl?
searchtype=Role

SRCH_RSRCALLOCATION Search Rsrc Allocations /app/common/search/search.nl?
searchtype=RsrcAllocation

SRCH_SALESCAMPAIGN Search Sales Campaigns /app/common/search/search.nl?
searchtype=SalesCampaign

SRCH_SALESTERRITORIES Sales Territory Search /app/common/search/search.nl?
searchtype=SalesTerritory

SRCH_SAVEDSEARCH All Saved Searches /app/common/search/savedsearches.nl

SRCH_SCHEDULEDSCRIPTINS
TANCE

Search Scheduled Script Instance /app/common/search/search.nl?
searchtype=ScheduledScriptInstance

SRCH_SCRIPT Search Script /app/common/search/search.nl?
searchtype=Script

SRCH_SCRIPTDEPLOYMENT Search Script Deployment /app/common/search/search.nl?
searchtype=ScriptDeployment

SRCH_SCRIPTNOTE Search Script Execution Log /app/common/search/search.nl?
searchtype=ScriptNote

SRCH_SHIPITEM Search Ship Item /app/common/search/search.nl?
searchtype=ShipItem

SRCH_SHIPMENTPACKAGE Search Shipping Packages /app/common/search/search.nl?
searchtype=ShipmentPackage

SRCH_SHIPPARTPACKAGE Search Shipping Partner Package /app/common/search/search.nl?
searchtype=ShipPartPackage

SRCH_SHIPPARTREGISTRATIO
N

Search Shipping Partner
Registration

/app/common/search/search.nl?
searchtype=ShipPartRegistration

SRCH_SHIPPARTSHIPMENT Search Shipping Partner Shipment /app/common/search/search.nl?
searchtype=ShipPartShipment

Supported Tasklinks 1132

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_SHOPPINGCART Search Shopping Cart /app/common/search/search.nl?
searchtype=ShoppingCart

SRCH_SOLUTION Search Solution /app/common/search/search.nl?
searchtype=Solution

SRCH_STANDARDCOSTVERSI
ON

Search Standard Cost Version /app/common/search/search.nl?
searchtype=StandardCostVersion

SRCH_SUBSCRIPTION Search Subscriptions /app/common/search/search.nl?
searchtype=Subscription

SRCH_SUBSCRIPTIONCHANG
EORDER

Search Change Orders /app/common/search/search.nl?
searchtype=SubscriptionChangeOrder

SRCH_SUBSCRIPTIONLINE Search Subscription Lines /app/common/search/search.nl?
searchtype=SubscriptionLine

SRCH_SUBSCRIPTIONPLAN Search Subscription Plan /app/common/search/search.nl?
searchtype=Item&Item_TYPE=
SubscriPlan&adv=T

SRCH_SUBSIDIARY Search Subsidiary /app/common/search/search.nl?
searchtype=Subsidiary

SRCH_SYSTEMNOTE Search System Notes /app/common/search/search.nl?
searchtype=SystemNote

SRCH_TASK Search Tasks /app/common/search/search.nl?
searchtype=Task

SRCH_TAXGROUP Search Tax Group /app/common/search/search.nl?
searchtype=TaxGroup

SRCH_TAXITEM Search Tax Code /app/common/search/search.nl?
searchtype=TaxItem

SRCH_TERMINATIONREASON Search Termination Reason /app/common/search/search.nl?
searchtype=TerminationReason

SRCH_TIME Search Track Time /app/common/search/search.nl?
searchtype=Time

SRCH_TIMEENTRY Search Time Entry /app/common/search/search.nl?
searchtype=Timeentry

SRCH_TIMESHEET Search Timesheet /app/common/search/search.nl?
searchtype=Timesheet

SRCH_TOPIC Search Topic /app/common/search/search.nl?
searchtype=Topic

SRCH_TRANNUMBERAUDITL
OG

Search Transaction Numbering
Audit Log

/app/common/search/search.nl?
searchtype=TranNumberAuditLog

SRCH_TRANSACTION Search Transactions /app/common/search/search.nl?
searchtype=Transaction

SRCH_TRAN_BINTRNFR Search Bin Transfers /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=BinTrnfr

Supported Tasklinks 1133

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_TRAN_BINWKSHT Search Bin Putaway Worksheets /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=BinWksht

SRCH_TRAN_BLANKORD Search Blanket Purchase Orders /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=BlankOrd

SRCH_TRAN_BOOKJOURNAL Search Accounting Book Journal
Entries

/app/common/search/search.nl?
searchtype=AccountingTransaction&
AccountingTransaction_TYPE=
Journal&AccountingTransaction_
BOOKSPECIFICTRANSACTION=T

SRCH_TRAN_BUILD Search Assembly Builds /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Build

SRCH_TRAN_CARDCHRG Search Credit Card Charges /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CardChrg

SRCH_TRAN_CASHRFND Search Cash Refunds /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CashRfnd

SRCH_TRAN_CASHSALE Search Cash Sales /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CashSale

SRCH_TRAN_CHECK Search Checks /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Check

SRCH_TRAN_COMMISSN Search Individual Employee
Commissions

/app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Commissn

SRCH_TRAN_CUSTCHRG Search Statement Charges /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustChrg

SRCH_TRAN_CUSTCRED Search Credit Memos /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustCred

SRCH_TRAN_CUSTDEP Search Customer Deposits /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustDep

SRCH_TRAN_CUSTINVC Search Invoices /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustInvc

SRCH_TRAN_CUSTPYMT Search Customer Payments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustPymt

Supported Tasklinks 1134

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_TRAN_CUSTRFND Search Customer Refunds /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=CustRfnd

SRCH_TRAN_DEPAPPL Search Deposit Applications /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=DepAppl

SRCH_TRAN_DEPOSIT Search Deposits /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Deposit

SRCH_TRAN_ESTIMATE Search Estimates /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Estimate

SRCH_TRAN_EXPREPT Search Expense Reports /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=ExpRept

SRCH_TRAN_FXREVAL Search Currency Revaluations /app/accounting/transactions/
transactionsearchswitch.nl?
searchtype=AccountingTransaction&
AccountingTransaction_TYPE=FxReval

SRCH_TRAN_INVADJST Search Inventory Adjustments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvAdjst

SRCH_TRAN_INVCOUNT Search Inventory Counts /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvCount

SRCH_TRAN_INVDISTR Search Inventory Distributions /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvDistr

SRCH_TRAN_INVREVAL Search Inventory Cost
Revaluations

/app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvReval

SRCH_TRAN_INVTRNFR Search Inventory Transfers /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvTrnfr

SRCH_TRAN_INVWKSHT Search Inventory Worksheets /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=InvWksht

SRCH_TRAN_ITEMRCPT Search Item Receipts /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=ItemRcpt

SRCH_TRAN_ITEMSHIP Search Item Fulfillments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=ItemShip

Supported Tasklinks 1135

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_TRAN_JOURNAL Search Journal Entries /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Journal

SRCH_TRAN_LIABPYMT Search Liability Payments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=LiabPymt

SRCH_TRAN_OPPRTNTY Search Opportunities /app/common/search/search.nl?
searchtype=Opprtnty

SRCH_TRAN_PAYCHECK Search Paychecks /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Paycheck

SRCH_TRAN_PCHKJRNL Search Paycheck Journals /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=PChkJrnl

SRCH_TRAN_PURCHCON Search Purchase Contracts /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=PurchCon

SRCH_TRAN_PURCHORD Search Purchase Orders /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=PurchOrd

SRCH_TRAN_PURCHREQ Search Requisitions /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=PurchReq

SRCH_TRAN_REVARRNG Search Revenue Arrangements /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=RevArrng

SRCH_TRAN_REVCOMM Search Revenue Commitments /app/accounting/transactions/
transactionsearchswitch.nl?
searchtype=AccountingTransaction&
AccountingTransaction_TYPE=RevComm

SRCH_TRAN_REVCOMRV Search View Revenue
Commitment Reversals

/app/accounting/transactions/
transactionsearchswitch.nl?
searchtype=AccountingTransaction&
AccountingTransaction_TYPE=RevComRv

SRCH_TRAN_REVCONTR Search View Revenue Contracts /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=RevContr

SRCH_TRAN_RFQ Search Requests For Quote /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Rfq

SRCH_TRAN_RTNAUTH Search Return Authorizations /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=RtnAuth

Supported Tasklinks 1136

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_TRAN_SALESORD Search Sales Orders /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=SalesOrd

SRCH_TRAN_STATJOURNAL Search Statistical Journals /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Journal&Transaction_STATISTICAL=
T

SRCH_TRAN_STPICKUP Search Store Pick Up Fulfillments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=StPickUp

SRCH_TRAN_TAXLIAB Search Tax Liabilities /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=TaxLiab

SRCH_TRAN_TAXPYMT Search Tax Payments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=TaxPymt

SRCH_TRAN_TEGPYBL Search Issued Tegatas /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=TegPybl

SRCH_TRAN_TEGRCVBL Search Received Tegatas /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=TegRcvbl

SRCH_TRAN_TRANSFER Search Bank Transfers /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Transfer

SRCH_TRAN_TRNFRORD Search Transfer Orders /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=TrnfrOrd

SRCH_TRAN_UNBUILD Search Assembly Unbuilds /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=Unbuild

SRCH_TRAN_VENDAUTH Search Vendor Return
Authorizations

/app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=VendAuth

SRCH_TRAN_VENDBILL Search Bills /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=VendBill

SRCH_TRAN_VENDCRED Search Bill Credits /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=VendCred

SRCH_TRAN_VENDPYMT Search Bill Payments /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=VendPymt

Supported Tasklinks 1137

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

SRCH_TRAN_VENDRFQ Search Vendor Requests For
Quote

/app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=VendRfq

SRCH_TRAN_WOCLOSE Search Work Order Closes /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=WOClose

SRCH_TRAN_WOCOMPL Search Work Order Completions /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=WOCompl

SRCH_TRAN_WOISSUE Search Work Order Issues /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=WOIssue

SRCH_TRAN_WORKORD Search Work Orders /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=WorkOrd

SRCH_TRAN_YTDADJST Search Payroll Adjustment /app/common/search/search.nl?
searchtype=Transaction&Transaction_
TYPE=YtdAdjst

SRCH_TWOFACTORDEVICE Two-Factor Tokens /app/common/search/search.nl?
searchtype=TwoFactorDevice

SRCH_UNITSTYPE Search Unit of Measure /app/common/search/search.nl?
searchtype=UnitsType

SRCH_USAGE Search Usage /app/common/search/search.nl?
searchtype=Usage

SRCH_USERNOTE Search User Notes /app/common/search/search.nl?
searchtype=UserNote

SRCH_VENDOR Search Vendor /app/common/search/search.nl?
searchtype=Vendor

SRCH_WORKCALENDAR Search Work Calendar /app/common/search/search.nl?
searchtype=WorkCalendar

SRCH_WORKFLOW Search Workflow /app/common/search/search.nl?
searchtype=Workflow

SRCH_WORKFLOWINSTANCE Search Workflow Instances /app/common/search/search.nl?
searchtype=WorkflowInstance

SRCH_WORKPLACE Search Workplace /app/common/search/search.nl?
searchtype=Workplace

SUPT_ALLOW_LOGIN NetSuite Support Login /app/crm/support/allowsupportlogin.nl

SUPT_CENTER_ROLE NetSuite Support Center /app/login/dashboard.nl?id=

TRAN_ACTIVITY Activity /app/crm/calendar/activity.nl

TRAN_ADDCONTENT Add Content /app/center/setup/addcontent.nl

TRAN_ADDSHORTCUT Short Cuts /core/pages/addShortcut.nl

Supported Tasklinks 1138

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_ALLOCATEPAYCHECKS
TOJOBS

Allocate Paycheck Expenses to
Jobs

/app/accounting/transactions/
allocatepaycheckstojobs.nl

TRAN_ALLOCATEREVENUEAR
RANGEMENTS

Allocate Revenue Arrangements /app/accounting/revrec/
allocaterevenuearrangements.nl

TRAN_ALLOCATEREVENUEAR
RANGEMENTS_STATUS

Allocate Revenue Arrangements
Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
ALLOCATEREVARRANGEMENT&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_ALLOCATIONBATCH Allocation Batch Status /app/accounting/transactions/
allocationbatchstatus.nl

TRAN_APPROVAL_EXPREPT Approve Expense Reports /app/accounting/transactions/
approveexpensereport.nl

TRAN_APPROVAL_
PURCHORD

Approve Purchase Requests /app/accounting/transactions/approval.
nl?type=purchord&label=Purchase%
20Request

TRAN_APPROVECOMMISSN Approve Employee Commissions /app/accounting/transactions/
approvecommissn.nl

TRAN_APPROVEPARTNERCO
MMISSN

Approve Partner Commissions /app/accounting/transactions/
approvepartnercommissn.nl

TRAN_AUDIT View Audit Trail /app/accounting/transactions/audit.nl

TRAN_BANKRECON Find Matching Transactions /app/accounting/transactions/bankrecon.
nl

TRAN_BANKVIEW Online Banking Statement /app/accounting/transactions/bankview.
nl

TRAN_BAS Business Activity Statement /app/accounting/reports/intl/bas.nl

TRAN_BATCHCHECK Batch Check /app/payroll/batchcheck.nl

TRAN_BILLOFMATERIALSINQ
UIRY

Bill of Materials Inquiry /app/accounting/transactions/inventory/
billofmaterialsinquiry.nl

TRAN_BILLPAY_LOG Job Status /app/external/xml/upload/uploadlog.nl?
displayType=BILLPAY

TRAN_BILLRUN Process Billing Operations /app/accounting/transactions/
billingworkcenter/billrun.nl

TRAN_BILLRUNRESULT View Billing Operations /app/accounting/transactions/
billingworkcenter/billrunresults.nl

TRAN_BLANKORDAPPRV Approve Blanket Purchase Orders /app/accounting/transactions/
transactionapproval.nl?type=BlankOrd

TRAN_BUDGET Set Up Budgets /app/accounting/transactions/budgets.nl

TRAN_BULKAUTHCOMMISSN
_LOG

Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=BULKAUTHCOMMISSN&
BulkProcSubmission_CREATEDDATE=
TODAY

Supported Tasklinks 1139

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_BULKAUTHPARTNERC
OMMISSN_LOG

Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKAUTHPARTNERCOMMISSN&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKBILL_LOG Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BILLSALESORDERS&BulkProcSubmission_
CREATEDDATE=TODAY

TRAN_BULKCOMMITREVENU
E_LOG

Job Status /app/external/xml/upload/uploadlog.nl?
displayType=BULKCOMMITREVENUE

TRAN_BULKFULFILL_LOG Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=FULFILLSALESORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKINVOICE_LOG Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
INVOICEBILLABLECUSTOMERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKITEMSHIPSTATUS
PACK_LOG

Mark Orders Packed Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKITEMSHIPSTATUSPACK&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKITEMSHIPSTATUS
SHIP_LOG

Mark Orders Shipped Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKITEMSHIPSTATUSSHIP&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKRECEIVE_LOG Process Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=BULKRECEIVEORDER&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_BULKREVENUECONTRA
CT_LOG

Job Status /app/external/xml/upload/uploadlog.nl?
displayType=BULKREVENUECONTRACT

TRAN_CALCULATEITEMDEMA
NDPLAN

Calculate Item Demand Plan /app/accounting/inventory/
demandplanning/
calculateitemdemandplan.nl

TRAN_CALCULATEITEMDEMA
NDPLAN_STATUS

Calculate Item Demand Plan
Status

/app/accounting/inventory/
demandplanning/
calculateitemdemandplanstatus.nl

TRAN_CALENDARPREFERENC
E

Calendar Preferences /app/crm/calendar/calendarpreference.nl

Supported Tasklinks 1140

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_CAMPAIGNSETUP Marketing Preferences /app/setup/campaignsetup.nl

TRAN_CHARGEMANAGER Manage Charge Stages /app/accounting/transactions/billing/
chargemanager.nl

TRAN_CHECKITEMAVAILABIL
ITY

Check Item Availability /app/accounting/inventory/atp/
checkitemavailability.nl

TRAN_CLEARHOLD Manage Payment Holds /app/accounting/transactions/
salesordermanager.nl?type=clearholds

TRAN_CLOSEWORKORDERS_
LOG

Close Work Orders Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=CLOSEWORKORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_COMPLETEWORKORDE
RS_LOG

Enter Completions Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
COMPLETEWORKORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_COMPONENTWHEREU
SEDINQUIRY

Component Where Used Inquiry /app/accounting/
transactions/manufacturing/
componentwhereusedinquiry.nl

TRAN_COPY_BUDGET Copy Budgets /app/accounting/transactions/
copybudget.nl

TRAN_COSTEDBOMINQUIRY Costed Bill of Materials Inquiry /app/accounting/
transactions/manufacturing/
costedbillofmaterialsinquiry.nl

TRAN_CREATEAMORTIZATIO
NJE

Create Amortization Journal
Entries

/app/accounting/transactions/
createamortizationje.nl

TRAN_CREATEAMORTIZATIO
NJE_LOG

Create Journal Entries Status /app/accounting/transactions/
createrecognitionjestatus.nl?type=
AMORTIZATION

TRAN_CREATEDEGROSSJE Create Deferred Revenue
Reclassification Journal Entries

/app/accounting/transactions/
createdegrossje.nl

TRAN_CREATEDEGROSSJE_
LOG

Create Reclassification Journal
Entries Status

/app/accounting/transactions/
createdegrossjestatus.nl

TRAN_CREATEINTERCOADJJE Create Intercompany Adjustment
Journal Entries

/app/accounting/transactions/intercoadj/
createintercoadjje.nl

TRAN_CREATEINTERCOADJJE
_LOG

Create Journal Entries Status /app/accounting/transactions/intercoadj/
createintercoadjjestatus.nl

TRAN_CREATENEXTGENRECL
ASSJE

Create Deferred Revenue
Reclassification Journal Entries

/app/accounting/transactions/
createdegrossje.nl

TRAN_CREATENEXTGENRECL
ASSJE_LOG

Create Reclassification Journal
Entries Status

/app/accounting/transactions/
createreclassjournalstatus.
nl?bulkproctype=
DEFERREDREVENUERECLASS&

Supported Tasklinks 1141

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

ReclassificationStatus_CREATEDDATE=
TODAY

TRAN_CREATEREVRECJE Create Revenue Recognition
Journal Entries

/app/accounting/transactions/
createrevrecje.nl

TRAN_CREATEREVRECJE_LOG Create Journal Entries Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKREVREC&bulkproctype=
RECOGNIZEREVENUE&bulkproctype=
RECOGNIZEPLANNEDREVENUE&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_CREATE_INVCOUNT Create Inventory Count /app/accounting/transactions/
createinvcount.nl

TRAN_CREATE_JOBS_FROM_
ORDERS

Create Jobs From Sales Orders /app/accounting/transactions/
jobcreationmanager.nl

TRAN_CREATE_WORK_
ORDERS_FOR_STOCK

Mass Create Work Orders /app/accounting/transactions/
createworkordersforstock.nl

TRAN_CREATE_WORK_
ORDERS_FOR_STOCK_
DEMAND_PLANNING

Mass Create Work Orders /app/accounting/transactions/
createworkordersforstock.nl

TRAN_CREATE_WORK_
ORDERS_FOR_STOCK_LOG

Process Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
CREATEWORKORDERSFORSTOCK&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_CUSTCATEGORY Translate Category /app/common/custom/custcategory.nl

TRAN_CUSTINVCAPPRV Approve Invoices /app/accounting/transactions/
transactionapproval.nl?type=CustInvc

TRAN_CUSTOMIZEITEMLIST Customize Item List /app/accounting/transactions/
customizeitemlist.nl

TRAN_CUSTOMIZETRANLIST Customize Transaction List /app/accounting/transactions/
customizetranlist.nl

TRAN_DEPOSITSUMMARY Deposit Summary /app/accounting/transactions/
depositsummary.nl

TRAN_DOMAINS Set Up Domains /app/setup/domains.nl

TRAN_DOMAINSADV Set Up Domains /app/setup/domains.nl

TRAN_EMAILPWD Change Email Password /app/center/emailpwd.nl

TRAN_EMPLOYEESFA Assign Reps /app/common/entity/employeesfa.nl

TRAN_FINCHRG Assess Finance Charges /app/accounting/transactions/finchrg.nl

TRAN_FORECAST Edit Sales Rep Forecast /app/crm/sales/forecast.nl

TRAN_FXREVAL_STATUS Revalue Open Currency Balances
Status

/app/accounting/transactions/
fxrevalstatus.nl

Supported Tasklinks 1142

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_GENERATEFISCALPERI
ODS

Generate Fiscal Periods /app/setup/period/generatefiscalperiods.
nl

TRAN_GENERATEITEMSUPPL
YPLAN

Generate Item Supply Plan /app/accounting/inventory/
demandplanning/
generateitemsupplyplan.nl

TRAN_GENERATEITEMSUPPLY
PLAN_STATUS

Generate Item Supply Plan Status /app/accounting/inventory/
demandplanning/
generateitemsupplyplanstatus.nl

TRAN_GENERATETAXPERIOD
S

Generate Tax Periods /app/setup/period/generatetaxperiods.nl

TRAN_GIFTCERTCREATEJE Recognize Gift Certificate Income /app/accounting/transactions/
giftcertcreateje.nl

TRAN_GLNUMSTATUS GL Audit Numbering Status /app/accounting/transactions/
glnumbering/glnumstatus.nl

TRAN_GSTREFUND Process GST/HST Refund /app/accounting/transactions/gstrefund.
nl

TRAN_HISTORY History /app/accounting/transactions/history.nl

TRAN_IMPACT GL Impact /app/accounting/transactions/impact.nl

TRAN_INVOICECUSTOMERS Invoice Billable Customers /app/accounting/transactions/
invoicecustomers.nl

TRAN_ISSUEWORKORDERS_
LOG

Issue Components Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=ISSUEWORKORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_ITEMGROSSREQUIREM
ENTS

Gross Requirements Inquiry /app/accounting/inventory/
demandplanning/itemgrossrequirements.
nl

TRAN_ITEMSHIPPACK Mark Orders Packed /app/accounting/transactions/
itemshipmanager.nl?type=pack

TRAN_ITEMSHIPSHIP Mark Orders Shipped /app/accounting/transactions/
itemshipmanager.nl?type=ship

TRAN_JOURNALAPPROVAL Approve Journal Entries /app/accounting/transactions/
journalapproval.nl

TRAN_LASTLOGIN My Login Audit Portlet /app/setup/lastlogin.nl

TRAN_LOGINAUDIT Login Audit /app/setup/loginAudit.nl

TRAN_MANAGEARRANGEME
NTS

Manage Revenue Arrangements /app/accounting/revrec/
managearrangementsandplans.nl?type=
arrangement

TRAN_MANAGEREVENUEARR
ANGEMENTS

Manage Revenue Arrangements
and Revenue Plans

/app/accounting/revrec/
managerevenuearrangements.nl

TRAN_MANAGEREVENUEARR
ANGEMENTS_STATUS

Create/Update Revenue
Arrangements Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=

Supported Tasklinks 1143

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

MANAGEREVENUEARRANGEMENT&
bulkproctype=
MANAGEREVENUEELEMENTS&
bulkproctype=
DELETEREVENUEELEMENTS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_MANAGEREVENUEPLA
NS

Manage Revenue Recognition
Plans

/app/accounting/revrec/
managearrangementsandplans.nl?type=
plan

TRAN_MARKBUILTWORKORD
ERS_LOG

Mark Work Orders Built Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
MARKBUILTWORKORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_MARKVSOEDELIVERED Mark VSOE Delivered Status /app/accounting/transactions/revrec/
markvsoedelivered.nl

TRAN_MARKVSOEDELIVERED
_LOG

Mark VSOE Delivered Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=MARKVSOEDELIVERED&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_MERGEREVENUEARRA
NGEMENTS

Merge Revenue Arrangements /app/accounting/revrec/
mergerevenuearrangements.nl

TRAN_MERGEREVENUEARRA
NGEMENTS_STATUS

Merge Revenue Arrangements
Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
MERGEREVARRANGEMENT&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_MGRFORECAST Edit Sales Manager Forecast /app/crm/sales/mgrforecast.nl

TRAN_NLVENDOR Vendor Center /app/center/nlvendor.nl.nl

TRAN_OPENBAL Enter Opening Balances /app/accounting/transactions/openbal.nl

TRAN_ORDERDEMANDPLANI
TEMS

Order Items /app/accounting/transactions/orderitems.
nl

TRAN_ORDERITEMS Order Items /app/accounting/transactions/orderitems.
nl

TRAN_ORDERPURCHREQ_
LOG

Order Requisitions Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKORDERREQUISITIONS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_ORDER_
REALLOCATION

Commit Orders /app/accounting/transactions/
orderreallocation.nl

TRAN_ORDER_
REALLOCATION_LOG

Commit Orders Job Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?

Supported Tasklinks 1144

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

bulkproctype=ORDERREALLOCATION&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_PAYMENTS Payments /app/accounting/transactions/payments.
nl

TRAN_PAYROLLBATCH Payroll Batch /app/payroll/payrollbatch.nl

TRAN_PAYROLLRUN Create Payroll /app/accounting/transactions/payroll/
payrollrun.nl

TRAN_PAYROLLSTATUS View Payroll Status /app/payroll/cdstatus.nl

TRAN_PDF_F940 Annual Federal Unemployment
(940)

/app/accounting/reports/taxformfederal.
nl?formtype=f940

TRAN_PDF_F941 Quarterly Federal Tax Return (941) /app/accounting/reports/taxformfederal.
nl?formtype=f941

TRAN_PLANNEDSTANDARDC
OSTROLLUP

Planned Standard Cost Rollup /app/accounting/inventory/
plannedstandardcostrollup.nl

TRAN_PLANNEDSTANDARDC
OSTROLLUP_STATUS

Planned Standard Cost Rollup
Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
ROLLUPITEMCOST&BulkProcSubmission_
CREATEDDATE=TODAY

TRAN_POSTVENDORBILLVAR
IANCES

Post Vendor Bill Variances /app/accounting/transactions/
vendorbillvariance/
postvendorbillvariances.nl

TRAN_POSTVENDORBILLVARI
ANCES_STATUS

Post Vendor Bill Variances Status /app/accounting/transactions/
vendorbillvariance/
postvendorbillvariancesstatus.nl

TRAN_PREVIEWW2 Form W-2 Preview /app/accounting/reports/w2preview.nl

TRAN_PRINT Print Checks and Forms /app/accounting/print/print.nl

TRAN_PRINT1096 Form 1096 /app/accounting/reports/NLPrint1096s.nl?
mode=frame

TRAN_PRINT1099 Form 1099-MISC /app/accounting/reports/NLPrint1099s.nl?
mode=frame

TRAN_PRINTBARCODES Generate Barcodes /app/accounting/print/printbarcodes.nl?
printtype=null&method=print

TRAN_PRINTMAILINGLABELS Print Mailing Labels /app/accounting/print/printmailinglabels.
nl?printtype=null&method=print

TRAN_PRINTPRICELIST Individual Price List /app/accounting/print/printpricelist.nl

TRAN_PRINTSTATEMENT Individual Statement /app/accounting/print/printstatement.nl

TRAN_PRINTW2 Form W-2 /app/accounting/reports/NLPrintW2s.nl?
mode=frame

TRAN_PRINTW2AUDIT W-2 and 1099 Audit Information /app/accounting/reports/printw2audit.nl?
mode=frame

Supported Tasklinks 1145

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_PRINTW3 Form W-3 /app/accounting/reports/NLPrintW3s.nl?
mode=frame

TRAN_PRINT_BOM Print Bills of Materials /app/accounting/print/printframe.nl?
trantype=workord&printtype=bom&
method=print

TRAN_PRINT_CASHSALE Print Receipts /app/accounting/print/printframe.
nl?trantype=cashsale&printtype=
transaction&method=print

TRAN_PRINT_CHECK Print Checks /app/accounting/print/printframe.nl?
trantype=check&printtype=transaction&
method=print

TRAN_PRINT_
COMMERCIALINVOICE

Print Commerical Invoice /app/accounting/print/commericalinvoice.
nl

TRAN_PRINT_CUSTCRED Print Credits Memos /app/accounting/print/printframe.
nl?trantype=custcred&printtype=
transaction&method=print

TRAN_PRINT_CUSTINVC Print Invoices /app/accounting/print/printframe.
nl?trantype=custinvc&printtype=
transaction&method=print

TRAN_PRINT_ESTIMATE Print Estimates /app/accounting/print/printframe.
nl?trantype=estimate&printtype=
transaction&method=print

TRAN_PRINT_INTEGRATEDSH
IPPINGLABEL

Print Intetgrated Shipping Labels /app/accounting/print/printlabels.nl?
printtype=integratedshippinglabel&
method=print&title=Integrated Shipping
Labels

TRAN_PRINT_ITEM_DETAIL_
STATEMENT

Generate Item Detail Statements /app/accounting/print/printframe.
nl?trantype=&printtype=
itemdetailstatement&method=print

TRAN_PRINT_ONE_ITEM_
DETAIL_STATEMENT

Individual Item Detail Statement /app/accounting/print/
printitemdetailstatement.nl

TRAN_PRINT_PACKINGSLIP Print Packing Slips /app/accounting/print/printframe.nl?
trantype=&printtype=packingslip&
method=print

TRAN_PRINT_PAYCHECK Print Paychecks /app/accounting/print/printframe.
nl?trantype=paycheck&printtype=
transaction&method=print

TRAN_PRINT_
PAYMENTVOUCHER

Print Payment Vouchers /app/accounting/print/printframe.
nl?trantype=vendpymt&printtype=
paymentvoucher&method=print

TRAN_PRINT_PICKINGTICKET Print Picking Tickets /app/accounting/print/printframe.
nl?trantype=salesord&printtype=
pickingticket&method=print

Supported Tasklinks 1146

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_PRINT_PRICELIST Generate Price Lists /app/accounting/print/printframe.nl?
trantype=&printtype=pricelist&method=
print

TRAN_PRINT_PURCHORD Print Purchase Orders /app/accounting/print/printframe.
nl?trantype=purchord&printtype=
transaction&method=print

TRAN_PRINT_RTNAUTH Return Authorizations /app/accounting/print/printform.nl?
printtype=transaction&trantype=
rtnauth&method=print&title=Return%
20Authorizations

TRAN_PRINT_SALESORD Print Sales Orders /app/accounting/print/printframe.
nl?trantype=salesord&printtype=
transaction&method=print

TRAN_PRINT_SHIPPINGLABEL Print Shipping Labels /app/accounting/print/printframe.nl?
trantype=&printtype=shippinglabel&
method=print

TRAN_PRINT_STATEMENT Generate Statements /app/accounting/print/printframe.
nl?trantype=&printtype=statement&
method=print

TRAN_PROCESSCOMMISSN Authorize Employee Commissions /app/accounting/transactions/
processcommissn.nl

TRAN_PROCESSICRTNAUTHS Manage Intercompany Return
Authorizations

/app/accounting/transactions/interco/
rtnauthqueue.nl

TRAN_PROCESSICSALESORD
ERS

Manage Intercompany Sales
Orders

/app/accounting/transactions/interco/
salesordqueue.nl

TRAN_PROCESSORDER Process Individual Order /app/accounting/transactions/
processorder.nl

TRAN_PROCESSPARTNERCO
MMISSN

Authorize Partner Commissions /app/accounting/transactions/
processpartnercommissn.nl

TRAN_PURCHCONAPPRV Approve Purchase Contracts /app/accounting/transactions/
transactionapproval.nl?type=PurchCon

TRAN_PURCHORDPROC Bill Purchase Orders /app/accounting/transactions/
purchordermanager.nl?type=proc

TRAN_PURCHORDRECEIVE Receive Orders /app/accounting/transactions/
purchordermanager.nl?type=receive

TRAN_PURCHREQAPPRV Approve Requisitions /app/accounting/transactions/
transactionapproval.nl?type=PurchReq

TRAN_QUOTA Establish Quotas /app/crm/sales/quota.nl

TRAN_REALLOCITEMS Reallocate Items /app/accounting/transactions/
reallocitems.nl

TRAN_RECONCILE Reconcile Bank Statement /app/accounting/transactions/reconcile.nl

TRAN_RECONCILE_CC Reconcile Credit Card Statement /app/accounting/transactions/reconcile.
nl?page_type=cc

Supported Tasklinks 1147

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_REIMBURSEMENTS Reimbursements /app/accounting/transactions/
reimbursements.nl

TRAN_REMINDERS Setup Reminders /app/center/setup/reminders.nl

TRAN_REVALUESTANDARDC
OSTINVENTORY

Revalue Standard Cost Inventory /app/accounting/inventory/
revaluestandardcostinventory.nl

TRAN_REVALUESTANDARDC
OSTINVENTORY_STATUS

Revalue Standard Cost Inventory
Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
REVALUESTDCOSTINVENTORY&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_REVARRNGAPPRV Approve Revenue Arrangements /app/accounting/transactions/
transactionapproval.nl?type=RevArrng

TRAN_REVIEWNEGATIVEINVE
NTORY

Review Negative Inventory /app/accounting/transactions/inventory/
reviewnegativeinventory.nl

TRAN_REVRECCREATEJE Revenue Recognition Schedules /app/accounting/transactions/
revreccreateje.nl

TRAN_RTNAUTHAPPRV Approve Return Authorizations /app/accounting/transactions/
returnauthmanager.nl?type=apprv

TRAN_RTNAUTHCREDIT Refund Returns /app/accounting/transactions/
returnauthmanager.nl?type=credit

TRAN_RTNAUTHRECEIVE Receive Returned Order /app/accounting/transactions/
returnauthmanager.nl?type=receive

TRAN_RTNAUTHREVERSEREV
COMMITMENT

Generate Revenue Commitment
Reversals

/app/accounting/transactions/
returnauthmanager.nl?type=
reverserevcommitment

TRAN_SALESORDAPPRV Approve Sales Orders /app/accounting/transactions/
salesordermanager.nl?type=apprv

TRAN_SALESORDCOMMITRE
VENUE

Generate Revenue Commitments /app/accounting/transactions/
salesordermanager.nl?type=
commitrevenue

TRAN_SALESORDFULFILL Fulfill Orders /app/accounting/transactions/
salesordermanager.nl?type=fulfill

TRAN_SALESORDPROC Bill Sales Orders /app/accounting/transactions/
salesordermanager.nl?type=proc

TRAN_SALESORDREVENUECO
NTRACT

Generate Single Order Revenue
Contracts

/app/accounting/transactions/
salesordermanager.nl?type=
createrevenuecontracts

TRAN_SAVEDASHBOARD Publish Dashboard /app/center/setup/savedashboard.nl

TRAN_SEARCH Search /app/common/search/search.nl

TRAN_SHORTCUTS Add Shortcuts /app/center/shortcuts.nl

TRAN_SNAPSHOTCOMPOSER Custom Snapshot Report /app/reporting/snapshotcomposer.nl

TRAN_SNAPSHOTS Setup Snaphots /app/center/setup/snapshots.nl

Supported Tasklinks 1148

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_STATSCHEDULE Statistical Schedule Status /app/accounting/transactions/statistical/
statisticalschedulestatus.nl

TRAN_STPICKUP Manage Store Pickup /app/accounting/transactions/
transactionlist.nl?Transaction_TYPE=
StPickUp

TRAN_TAXPERIODS Generate Tax Reporting Periods /app/setup/period/generatetaxperiods.nl

TRAN_TIMEAPPROVAL Approve Time /app/accounting/transactions/
timeapproval.nl

TRAN_TIMEBILL Track Time /app/accounting/transactions/timebill.nl

TRAN_TIMEBILL_WEEKLY Weekly Time Sheet /app/accounting/transactions/timebill.nl?
weekly=T

TRAN_TIMECALC Calculate Time /core/pages/timecalc.nl

TRAN_TIMEENTRYAPPROVAL Approve Time Entry /app/accounting/transactions/
timeentryapproval.nl

TRAN_TIMEPOST Post Time /app/accounting/transactions/timepost.nl

TRAN_TIMER Timer /core/pages/timer.nl

TRAN_TIMESHEETAPPROVAL Approve Time /app/accounting/transactions/
timesheetapproval.nl

TRAN_TIMEVOID Void Time /app/accounting/transactions/timevoid.nl

TRAN_TRNFRORDAPPRV Approve Transfer Orders /app/accounting/transactions/
transferordermanager.nl?type=apprv

TRAN_UPDATEREVENUERECO
GNITIONPLANS

Update Revenue Recognition
Plans

/app/accounting/revrec/
updaterevenuerecognitionplans.nl

TRAN_UPDATEREVENUERECO
GNITIONPLANS_LOG

Update Revenue Recognition
Plans Status

/app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=UPDATEREVRECPLANS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_USERPREFS Set Preferences /app/center/userprefs.nl

TRAN_VENDAUTHAPPRV Approve Vendor Returns /app/accounting/transactions/
vendauthmanager.nl?type=apprv

TRAN_VENDAUTHCREDIT Credit Vendor Returns /app/accounting/transactions/
vendauthmanager.nl?type=credit

TRAN_VENDAUTHRETURN Ship Vendor Returns /app/accounting/transactions/
vendauthmanager.nl?type=return

TRAN_VENDBILLAPPRV Approve Bills /app/accounting/transactions/
vendorbillmanager.nl?type=apprv

TRAN_VENDBILLPURCHORD New Purchase Order /app/accounting/transactions/
vendbillpurchord.nl

TRAN_VENDPYMTS Pay Bills /app/accounting/transactions/vendpymts.
nl

Supported Tasklinks 1149

SuiteScript Developer & Reference Guide

Task ID Page Label in NetSuite URL

TRAN_VENDPYMT_LOG Pay Bills Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?bulkproctype=
BULKPAYBILLS&BulkProcSubmission_
CREATEDDATE=TODAY

TRAN_WORKORDBUILD Build Work Orders /app/accounting/transactions/
salesordermanager.nl?type=build

TRAN_WORKORDBUILD_LOG Build Work Orders Status /app/accounting/bulkprocessing/
bulkprocessingstatus.nl?
bulkproctype=BUILDWORKORDERS&
BulkProcSubmission_CREATEDDATE=
TODAY

TRAN_WORKORDCLOSE Close Work Orders /app/accounting/transactions/
workordermanager.nl?type=close

TRAN_WORKORDCOMPLETE Enter Completions /app/accounting/transactions/
workordermanager.nl?type=complete

TRAN_WORKORDISSUE Issue Components /app/accounting/transactions/
workordermanager.nl?type=issue

TRAN_WORKORDMARKBUILT Mark Work Orders Built /app/accounting/transactions/
workordermanager.nl?type=markbuilt

TRAN_WORKORDMARKFIRM
ED

Mark Work Orders Firmed /app/accounting/transactions/
workordermanager.nl?type=markfirmed

TRAN_WORKORDMARKRELE
ASED

Mark Work Orders Released /app/accounting/transactions/
workordermanager.nl?type=markreleased

SuiteScript Errors 1150

SuiteScript Developer & Reference Guide

Chapter 83 SuiteScript Errors
In addition to the errors listed in this table, you may also receive runtime errors generated by
the JavaScript engine. These errors are standard JavaScript errors that are not NetSuite-specific
and should be handled the same as in any other JavaScript scripting environment.

SuiteScript Errors

Error Code Returned Long Description or Message

SSS_AUTHOR_MUST_BE_
EMPLOYEE

The author internal id or email must match an employee.

SSS_AUTHOR_REQUIRED

SSS_CONNECTION_CLOSED Connection closed.

SSS_CONNECTION_TIME_OUT The host you are trying to connect to is not responding.

SSS_FILE_CONTENT_SIZE_
EXCEEDED

The file content you are attempting to access exceeds the maximum
allowed size of 5MB.

SSS_FILE_OBJECT_NOT_
SERIALIZABLE

The file object you are attempting to serialize exceeds the maximum
allowed size of 5MB.

SSS_FILE_SIZE_EXCEEDED The file you are trying to load exceeds the maximum allowed file size of {1}
megabyte.

SSS_INSTRUCTION_COUNT_
EXCEEDED

Script Execution Instruction Count Exceeded.

SSS_INVALID_ATTACH_RECORD_
TYPE

Attaching of record type {1} to {2} is not supported.

SSS_INVALID_BCC_EMAIL One or more bcc emails are not valid.

SSS_INVALID_CC_EMAIL One or more cc emails are not valid.

SSS_INVALID_CSV_CONTENT Input string is not valid CSV content.

SSS_INVALID_CSV_QUEUE The specified queue is not valid.

SSS_INVALID_EMAIL_TEMPLATE That email template is invalid, disabled, or no longer exists. Please select
an active email template.

SSS_INVALID_FORM_ELEMENT_
NAME

You have entered an invalid form element name. It must be prefixed with
"custpage", unique, and cannot contain any non-alphanumeric characters
to be added to the form or sublist.

SSS_INVALID_HEADER One or more headers are not valid.

SSS_INVALID_HOST_CERT An untrusted, unsupported, or invalid certificate was found for this host.

SSS_INVALID_LIST_COLUMN_
NAME

You have entered an invalid list column name. It must be unique and
cannot contain any non-alphanumeric characters.

SSS_INVALID_LOG_TYPE Execution log type must be one of AUDIT, DEBUG, ERROR, or EMERGENCY.

SSS_INVALID_RECIPIENT_ID

SSS_INVALID_SCRIPTLET_ID That Suitelet is invalid, disabled, or no longer exists.

SuiteScript Errors 1151

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

SSS_INVALID_SRCH_COL An nlobjSearchColumn contains an invalid column, or is not in proper
syntax: {1}.

SSS_INVALID_SRCH_COLUMN_
JOIN

An nlobjSearchColumn contains an invalid column join ID, or is not in
proper syntax: {1}.

SSS_INVALID_SRCH_COLUMN_
SUM

An nlobjSearchColumn contains an invalid column summary type, or is
not in proper syntax: {1}.

SSS_INVALID_SRCH_FILTER An nlobjSearchFilter contains invalid search criteria: {1}.

SSS_INVALID_SRCH_FILTER_EXPR Malformed search filter expression.

This is a general error raised when a filter expression cannot be parsed. For
example:

[f1, 'and', 'and', f2]

SSS_INVALID_SRCH_FILTER_
EXPR_DANGLING_OP

Malformed search filter expression: Dangling operator.

This an error raised when a filter expression has an operator at the end. For
example:

[f1, 'and', f2, 'or']

SSS_INVALID_SRCH_FILTER_
EXPR_OBJ_TYPE

Malformed search filter expression: Unrecognized object type.

This is an error raised when a filter expression contains something that is
not a string or parenthesized term. For example:

[f1, 17, f2]

SSS_INVALID_SRCH_FILTER_
EXPR_PAREN_DEPTH

Malformed search filter expression: Maximum parentheses depth
exceeded.

This is an error raised when adjacent parentheses exceeded a depth of
more than three, excluding the outermost left and right parentheses. For
example:

[f1, 'and', [f2, 'and', [f3, 'and', [f4, 'and', [f5, 'and', f6]]]]]

SSS_INVALID_SRCH_FILTER_JOIN An nlobjSearchFilter contains an invalid join ID, or is not in proper syntax:
{1}.

SSS_INVALID_SRCH_FILTER_LIST_
PARENS

Malformed search filter list: Unbalanced parentheses.

This is an error raised when the number of parentheses in an
nlobjSearchFilter list does not add up right.

SSS_INVALID_SRCH_FILTER_LIST_
TERM

Malformed search filter list: Unexpected object seen where term is
expected.

This is an error raised when the nlobjSearchFilter list produces nonsense
during processing. The most likely scenario is having extra right
parentheses.

SSS_INVALID_SRCH_OPERATOR An nlobjSearchFilter contains an invalid operator, or is not in proper
syntax: {1}.

SuiteScript Errors 1152

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

SSS_INVALID_SUBLIST_
OPERATION

You have attempted an invalid sublist or line item operation. You are
either trying to cannot access a field on a non-existent line or you are
trying to add or remove lines from a static sublist.

SSS_INVALID_TO_EMAIL

SSS_INVALID_TYPE_ARG You have entered an invalid type argument: {type argument}

SSS_INVALID_UI_OBJECT_TYPE That operation is not supported for this type of UI object: {1}. It is only
supported for type: {2}.

SSS_INVALID_URL Invalid URL — Connection Closed.

The URL must be a fully qualified HTTPS URL if it is referencing a non-
NetSuite resource.

The URL cannot contain white space.

SSS_INVALID_URL_CATEGORY The URL category must be one of RECORD, TASKLINK or SUITELET.

SSS_MAXIMUM_NUMBER_
RECIPIENTS_EXCEEDED

You may have a maximum number of 10 recipients when
"notifySenderOnBounce" is set to true.

SSS_MERGER_ERROR_OCCURRED Merger error occurred: {error detail}

SSS_MISSING_REQD_ARGUMENT {1}: Missing a required argument: {2}

SSS_QUEUE_LIMIT_EXCEEDED Script Queue Usage Limit Exceeded

SSS_RECIPIENT_REQD

SSS_RECORD_TYPE_MISMATCH The record you are attempting to load has a different type: {1} from the
type specified: {2}.

SSS_REQUEST_TIME_EXCEEDED The host you are trying to connect to has exceeded the maximum allowed
response time.

SSS_SEARCH_TIMEOUT Your search request has timed out. You may need to refine your search or
combine the results of multiple searches to achieve the desired result.

SSS_TIME_LIMIT_EXCEEDED Script Execution Time Exceeded.

SSS_UNKNOWN_HOST The host you requested {1} is unknown or cannot be found.

SSS_USAGE_LIMIT_EXCEEDED Script Execution Usage Limit Exceeded

SSS_XML_DOES_NOT_
CONFORM_TO_SCHEMA

See nlapiValidateXML(xmlDocument, schemaDocument, schemaFolderId)
for information on error messages associated with this error code.

SSS_XML_SCHEMA_MISSING_
DEPENDECY_FOLDER_ID

The provided XML schema utilizes an <import> or <include> tag that
references child schema(s) by file path. Please upload these file(s) to
the file cabinet and supply the file cabinet folder internal ID for the
schemaFolderId argument.

System Errors

Error Code Returned Long Description or Message

ABORT_SEARCH_EXCEEDED_
MAX_TIME

This search has timed out. You can choose to schedule it to run in the
background and have the results emailed to you when complete. On the saved
search form, click the Email tab, check Send According to Schedule, choose an

SuiteScript Errors 1153

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

email address on the Specific Recipients subtab and a recurrence pattern on
the Schedule subtab.

ABORT_UPLOAD_VIRUS_
DETECTED

The file {1} contains a virus {2}. Upload abort.

ACCTNG_PRD_REQD Missing next accounting period

ACCT_DISABLED account disabled

ACCT_DISABLED This account has been disabled.

ACCT_DISABLED Please contact Accounts Receivable at 650.627.1316
to re-enable this company.

ACCT_DISABLED Your account has been inactivated by an administrator.

ACCT_NAME_REQD Accounts require a name.

ACCT_NEEDS_CAMPAIGN_
PROVISION

Please contact your account representative to provision campaign emailing for
your account.

ACCT_NUMS_REQD_OR_
DONT_MATCH

Missing ACCT # or ACCT numbers don't match

ACCT_NUM_REQD Missing Account Number. Account number is a required field and it cannot be
null or empty.

ACCT_PRDS_BEING_ADDED Periods are currently being added to this account. Please try again later.

ACCT_REQD Attempting to adjust provisioning for a customer without an existing account

ACCT_TEMP_DISABLED You have entered an invalid password on {1} consecutive attempts. Access to
your account has been suspended for {2} minutes. If you have forgotten your
password, please contact Customer Support.

ACCT_TEMP_UNAVAILABLE Can't update information - this company's database is currently offline for
maintenance. Please try again later.

ACCT_TEMP_UNAVAILABLE (Temporarily unavailable)

ACCT_TEMP_UNAVAILABLE The account you are trying to access is currently unavailable while we undergo
our regularly scheduled maintenance.

ACCT_TEMP_UNAVAILABLE We are currently performing maintenance on our system. Please try again
soon.

ACCT_TEMP_UNAVAILABLE The account you are trying to access is currently unavailable while we undergo
our regularly scheduled maintenance.

ACCT_TEMP_UNAVAILABLE Your account is disabled for {1} more minutes due to {2} consecutive failed
login attempts.

ACCT_TEMP_UNAVAILABLE Your account is not yet ready for you to log in. Please wait and try again.

ACCT_TEMP_UNAVAILABLE Your company database is offline.

ACCT_TEMP_UNAVAILABLE Your data is still being loaded. Please try again later. Contact <a href='/app/cr
m/support/nlcorpsupport.nl?type=bug&spf=31'>Professional Services if
you have questions.

ACH_SETUP_REQD Account {1} is not setup for ACH transactions.

ACTIVE_ROLE_REQD You can only set an active login role as the Web Services default role.

SuiteScript Errors 1154

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

ACTIVE_TRANS_EXIST There are active direct deposit transactions for this paycheck

ADDRESS_LINE_1_REQD Address Line 1 is a required field and it cannot be null or empty.

ADMIN_ACCESS_REQ At least one active administrator for each account must have access.

ADMIN_ACCESS_REQ At least one active administrator for this account must have access.

ADMIN_ACCESS_REQD Only administrators may enter a memorized transaction in a closed period.

ADMIN_ONLY_ACCESS {1} only the administrator may access this page.

ADMIN_ONLY_ACCESS {1} only the adminstrator may currently access this page.

ADMISSIBILITY_PACKG_TYP_
REQD

An Admissibility Package Type is required for this international shipment.

ALL_DATA_DELETE_REQD You must first delete all the data in your account before performing this
action. Click here to
delete your data.

ALL_MTRX_SUBITMES_
OPTNS_REQD

The following matrix subitems exist but aren't included in the options you
specified. On the Matrix tab, please make sure the options you select include
all existing subitems:<p> {1}

ALREADY_IN_INVT The following {1} numbers are already in inventory: {2}

ALREADY_IN_INVT The following {1} number is already in inventory: {2}

AMORTZN_INVALID_DATE_
RANGE

Amortization end date can not be before amortization start date.

AMORTZN_TMPLT_DATA_
MISSING

One or more line items on this transaction have Variable Amortization
Templates, but do not have the required {1} also populated. Please either
change the Template for these items or indicate which {1} will be used to
schedule the amortization.

AMT_DISALLWD Description items may not have an amount.

AMT_EXCEEDS_APPROVAL_
LIMIT

No one in your chain of command has a sufficient spending limit to approve
this transaction.

APPROVAL_PERMS_REQD {1} The restrictions on your role do not allow you to approve or reject this
record.

AREA_CODE_REQD Please include an area code with the phone number.

ASSIGNEE_REQD {1} must be assigned to {2}

ATTACHMNT_CONTAINS_
VIRUS

The attachment with file name {1} contains a virus {2}. It is removed from the
message.

ATTACHMNT_CONTAINS_
VIRUS

The attachment file {0} contains virus {1}. Save message abort.

ATTACH_SIZE_EXCEEDED The data you are uploading exceeds the maximum allowable size of {1}. Please
change your selection and try again

ATTACH_SIZE_EXCEEDED You have exceeded the maximum attachments size of 5.0 MB. Please remove
one or more attachments and try again.

AT_LEAST_ONE_PACKAGE_
REQD

1 or more packages are required.

SuiteScript Errors 1155

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

AT_LEAST_ONE_SUB_REQD You must choose at least one subsidiary.

AUTO_NUM_UPDATE_
DISALLWD

We currently do not support an automatic numbering update of more than
{1} {2} records. Please contact <A href='/app/crm/support/nlcorpsupport.nl?
type=support'>NetSuite support to request a full numbering update of
your {2}s.

BALANCE_EXCEEDS_CREDIT_
LIMIT

Customer balance exceeds credit limit

BANK_ACCT_REQD You must have a bank account to perform this operation. Click <a href='/app/
accounting/account/account.nl'>here to add one.

BASE_CRNCY_REQD You may not delete you base currency.

BILLABLES_DISALLWD {1} does not allow billables.

BILLING_ISSUES Your account has been locked due to billing issues. You must call your NetSuite
Sales Representative for further assistance.

BILLING_ISSUES Your account has not been fully paid for. Please log in to your account and
follow the billing process or contact your Account Manager.

BILLING_SCHDUL_INVALID_
RECURR

Billing schedules may not have a recurrence count greater than 500

BILLPAY_APPROVAL_
UNAVAILBL

Approve Online Bill Payments is currently not available. Please try again in a
few minutes.

BILLPAY_REGSTRTN_REQD Online bill pay approve payments is not available until your billpay registration
is complete.

BILLPAY_SRVC_UNAVAILBL Online Bill Pay service is temporarily suspended.

If you prefer to wait
until Online Bill Pay service is restored, leave payments to be approved in this
list.

We will notify you by email as soon as the service is available
again.

If you need to make an urgent payment, we suggest that you
print a check. To do this:

1. Clear the Online Bill Pay check box for that
payment.
2. Click the underlined date of the payment, and you will return
to the Bill Payment page.
3. On the Bill Payment page, click To Be Printed
instead of Bill Pay.
4. Click Submit.
5. Go to Transactions > Print
Checks and Forms > Checks, and then mark the check to be printed.
6.
Click Submit.

BILLPAY_SRVC_UNAVAILBL The Online Bill Pay service is currently not available. Please try again in a few
minutes.

BILL_PAY_STATUS_
UNAVAILABLE

View Online Bill Pay Status information is currently not available. Please try
again in a few minutes.

BILL_PAY_STATUS_
UNAVAILABLE

View Online Bill Pay Status is not available until your bill pay registration is
complete.

BILL_PMTS_MADE_FROM_
ACCT_ONLY

Your payment has been recorded, but online bill payments can only be made
from the account {1}, so no online bill pay payment will be made. You
should return to the payment screen if you wish to print the check.

BIN_DSNT_CONTAIN_
ENOUGH_ITEM

The following bins do not contain enough of the requested item ({1}): {2}

BIN_DSNT_CONTAIN_
ENOUGH_ITEM

The following bin does not contain enough of the requested item ({1}): {2}

SuiteScript Errors 1156

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

BIN_ITEM_UNAVAILBL The following bins are not available for the specified item: {1}

BIN_ITEM_UNAVAILBL The following bins are not available for the specified item ({1}): {2}

BIN_ITEM_UNAVAILBL The following bin in not available for the specified item ({1}): {2}

BIN_ITEM_UNAVAILBL The following bin is not available for the specified item: {1}

BIN_SETUP_REQD The following bins are not associated with the item '{1}': {2}.
You can
associate bins with an item on the inventory tab of the item record.

BIN_UNDEFND The following bins specified for the item {1} are not defined in the transaction
location ({2}): {3}

CALENDAR_PREFS_REQD Set up {1} Calendar Preferences first.

CALENDAR_PREFS_REQD Set up Calendar Preferences first

CAMPAGIN_ALREADY_
EXECUTED

You cannot delete email campaigns that have already been executed

CAMPAIGN_IN_USE You cannot delete a campaign event that already has activity.

CAMPAIGN_SET_UP_REQD The following steps need to be performed before a campaign can be
created:<p>{1}

CANT_CALC_FEDEX_RATES FedEx rates cannot be calculated:

CANT_CANCEL_APPRVD_
RETRN_AUTH

You cannot cancel this return authorization because it has already been
approved.

CANT_CANCEL_BILL_PMT The Online Bill Payment cannot be stopped because the payment may already
have been made.

CANT_CHANGE_CONTACT_
RESTRICTN

You cannot change the restriction on this contact.

CANT_CHANGE_
CRMRECORDTYPELINKS

Cannot alter standard CrmRecordTypeLinks

CANT_CHANGE_EVENT_
PRIMARY_TYP

You cannot change the primary type for this event

CANT_CHANGE_LEAD_
SOURCE_CAT

You cannot change the category for a leadsource that is defined as the default
leadsource for another category

CANT_CHANGE_PSWD Cannot change password as the company user does not exist.

CANT_CHANGE_PSWD You changed your password less than 24 hours ago. NetSuite only allows one
password change per 24-hour period.

CANT_CHANGE_REV_REC_
TMPLT

The rev rec template on a billable expense can not be changed or removed
once it is saved.

CANT_CHANGE_REV_REC_
TMPLT

The rev rec template on billable time and items can not be changed or
removed once it is saved.

CANT_CHANGE_SUB You cannot change the subsidiary on this record because doing so will change
the subsidiary selected on the associated employee record.

CANT_CHANGE_TASK_LINK Cannot alter standard task links

CANT_CHANGE_UNITS_TYP You may not change the units type of an item after it has been set.

SuiteScript Errors 1157

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_CHANGE_VSOE_
ALLOCTN

You are attempting to change the VSOE Allocation for a transaction in a closed
period. You must either change the posting period for the related transaction
or open the period.

CANT_COMPLETE_FULFILL The fulfillment cannot be completed.

CANT_CONNECT_TO_STORE Error - Unable to connect to store {1}

CANT_CREATE_FILES Could not create files for uploading your data

CANT_CREATE_NON_
UNIQUE_RCRD

A record with the same unique signatures already exists. You must enter
unique signatures for each record you create.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because a currency must be defined
for the "Ship From" country "{1}" when using the Insured Value option. Go to
Lists -> Accounting -> Currencies to create a currency for {1}.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because a currency must be defined
for the "Ship To" country "{1}" when using the COD option. Go to Lists ->
Accounting -> Currencies to create a currency for {1}.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Addressee field of the
"Ship To" address is not set. Please enter a "Ship To" Addressee on the Item
Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Address 1 field of the
"Ship From" address is not set. Please go to $(regex) to enter the "Ship From"
Address 1.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Address 1 field of the
"Ship To" address is not set. Please enter a "Ship To" Address 1 on the Item
Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Attention field of the
"Ship From" address is not set. Please go to $(regex) to enter the "Ship From"
Attention.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the City field of the "Ship To"
address is not set. Please enter a "Ship To" City on the Item Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the City of the "Ship From"
address is not set. Please go to $(regex) to enter the "Ship From" City.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Company or Location
Name of the "Ship From" address is not set. Please go to $(regex) to enter the
"Ship From" Company/Location Name.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Country field of the
"Ship To" address is not set. Please enter a "Ship To" Country on the Item
Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Country of the "Ship
From" address is not set. Please go to $(regex) to set the "Ship From" Country.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Package Weight was
not entered. Please enter a value in the Package Weight field on the Item
Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Phone Number of the
"Ship From" address is not set. Please go to $(regex) to set the "Ship From"
Phone Number.

SuiteScript Errors 1158

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Phone Number of the
"Ship To" address is not set. Please enter a "Ship To" Phone Number on the
Item Fulfillment page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Pickup Type was not set.
Please go to Setup > Set Up Shipping to select a shipping Pickup Type.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the shipping method
was not set. Please go to Lists > Shipping Items to select a Shipping Label
Integration shipping method for this shipping item.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the State field of the "Ship
To" address is not set. Please enter a "Ship To" State on the Item Fulfillment
page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the State of the "Ship From"
address is not set. Please go to $(regex) to enter the "Ship From" State.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Zip Code of the "Ship
From" address is not set. Please go to $(regex) to enter the "Ship From" Zip
Code.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because the Zip field of the "Ship To"
address is not set. Please enter a "Ship To" Zip code on the Item Fulfillment
page.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Account Number
is not set. Go to Setup > Set Up Shipping > {2} Registration to enter your {3}
Account Number.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration Address
Line 1 is not set. Go to Setup > {2} Registration to complete the Address Line 1
field.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration City is
not set. Go to Setup > {2} Registration to enter your City.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration
Company field is not set. Go to Setup > {2} Registration to enter a name in the
Company field.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration Country
is not set. Go to Setup > {2} Registration to select your Country.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration Ship to
Attention field is not set. Go to Setup > {2} Registration to enter a name in the
Ship to Attention field.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration State is
not set. Go to Setup > {2} Registration to select or enter your State.

CANT_CREATE_SHIP_LABEL A shipping label could not be generated because your {1} Registration Zip
Code is not set. Go to Setup > {2} Registration to enter your Zip Code.

CANT_CREATE_USER Could not create the user. Please confirm that you have entered a legal
password.

CANT_CREAT_SHIP_LABEL A shipping label could not be generated because the In Bond Code field is not
set. Please enter a value in the In Bond Code field on the Item Fulfillment page.

CANT_DELETE_ACCT This account cannot be deleted because it has associated transactions.

SuiteScript Errors 1159

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_DELETE_ACCT This account cannot be deleted because it is a special type of account needed
by {1}

CANT_DELETE_ACCT This account cannot be deleted because it is a special type of account needed
by NetSuite

CANT_DELETE_ACCT This account cannot be deleted because it is a special type of account needed
by the system.

CANT_DELETE_ACCT This account cannot be deleted because it is used by one or more transactions
or it has child accounts or it is used by one or more items.

CANT_DELETE_ACCT_PRD You may not delete an accounting period with transactions posted to it. You
must first edit the transactions, change the posting period and then delete the
period.

CANT_DELETE_ALLOCTN This allocation detail can not be deleted because it has a journal entry.

CANT_DELETE_BIN You may not delete this bin record because it is already in use. You must either
remove all references to it in item records and transactions or make it inactive.

CANT_DELETE_CATEGORY This category cannot be deleted because it has child items

CANT_DELETE_CATEGORY This category cannot be deleted because it has subcategories

CANT_DELETE_CC_
PROCESSOR

This credit card processor is used in transaction and cannot be deleted.

CANT_DELETE_CELL This cell cannot be deleted because it has child items

CANT_DELETE_CHILD_
RCRDS_EXIST

This record can not be deleted because it has child records.

CANT_DELETE_CHILD_RCRD_
FOUND

This {1} record cannot be deleted because it is referenced by other records.

CANT_DELETE_CLASS This class cannot be deleted because it has child items

CANT_DELETE_COLOR_
THEME

This color theme cannot be deleted because it is being used

CANT_DELETE_COMMSSN_
SCHDUL

This schedule has already been used to generate commission calculations
and can't be deleted. If no authorizations have been made, schedule can be
deleted after being removed from all active plans.

CANT_DELETE_COMPANY This company cannot be deleted because it has child entities

CANT_DELETE_COMPANY_
TYP

This company type cannot be deleted because the company has associated
transactions.

CANT_DELETE_CONTACT_
HAS_CHILD

The contact record cannot be deleted because it has child records.

CANT_DELETE_CONTACT_
HAS_CHILD

This contact cannot be deleted because it has child entities

CANT_DELETE_CSTM_FIELD This custom field cannot be deleted because it is referred to by other custom
fields

CANT_DELETE_CSTM_FORM This custom form cannot be deleted because it is referred to by other custom
forms

SuiteScript Errors 1160

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_DELETE_CSTM_ITEM_
FIELD

This custom item field has dependent matrix items. It can not be deleted.

CANT_DELETE_CSTM_
LAYOUT

This custom layout cannot be deleted because it is used by custom forms

CANT_DELETE_CSTM_LIST This custom list cannot be deleted because it is referred to by custom fields

CANT_DELETE_CSTM_RCRD This custom record cannot be deleted because it is referred to by custom fields

CANT_DELETE_CSTM_RCRD_
ENTRY

This custom record entry cannot be deleted because it is referred to by other
records

CANT_DELETE_CUST You can't delete this customer because it's set up as default Anonymous
Customer

CANT_DELETE_CUSTOMER This customer or job cannot be deleted because it has child entities.

CANT_DELETE_DEFAULT_
FLDR

You cannot delete the default folders.

CANT_DELETE_DEFAULT_
PRIORITY

You cannot delete the default case priority. Please select a new default first.

CANT_DELETE_DEFAULT_
SALES_REP

Default Sales Rep Role cannot be deleted.

CANT_DELETE_DEFAULT_
STATUS

You cannot delete a default case status. Please select a new default first.

CANT_DELETE_DEFAULT_
STATUS

You can't delete or inactivate that status because it is a set up as a
default status. Please navigate to <a href='/app/setup/sfasetup.nl'
target='_blank'>Sales Preferences and change that status

CANT_DELETE_DEFAULT_
VALUE

You may not delete or inactivate that value because it is a default. Please select
a new default first.

CANT_DELETE_EMPL This employee cannot be deleted because it has child entities

CANT_DELETE_ENTITY This entity cannot be deleted because it has child items

CANT_DELETE_FIN_
STATMNT_LAYOUT

This financial statement layout cannot be deleted because it is referred to by
other layouts.

CANT_DELETE_FLDR These predefined folders cannot be deleted

CANT_DELETE_HAS_CHILD_
ITEM

This {1} cannot be deleted because it has child items

CANT_DELETE_INFO_ITEM This information item cannot be deleted because it has child items

CANT_DELETE_ITEM This item cannot be deleted because it has child items

CANT_DELETE_ITEM_LAYOUT This item/category layout cannot be deleted because it is used by store tabs

CANT_DELETE_ITEM_TMPLT This item/category template cannot be deleted because it is referred to by a
theme or an item

CANT_DELETE_JOB_
RESOURCE_ROLE

Default Job Resource Role cannot be deleted.

CANT_DELETE_LEGACY_
CATEGORY

Legacy category cannot be removed

SuiteScript Errors 1161

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_DELETE_LINE This line cannot be deleted, because it is referred to by other records. Before
removing this line, remove any discount or markup lines applied to it.

CANT_DELETE_MEDIA_ITEM This media item cannot be deleted because it is being referenced by another
item.

CANT_DELETE_MEMRZD_
TRANS

This memorized transaction cannot be deleted because it referenced in
transactions

CANT_DELETE_OR_CHANGE_
ACCT

Special accounts cannot be deleted and their type cannot be changed

CANT_DELETE_PLAN_
ASSGNMNT

Trying to delete plan assignment referenced by precalcs.

CANT_DELETE_PRESNTN_CAT This presentation category cannot be deleted because it has subcategories

CANT_DELETE_RCRD This {1} record cannot be deleted because it referenced by other records

CANT_DELETE_RCRD This record cannot be deleted because it has {1}child records{2}

CANT_DELETE_RCRD This record cannot be deleted because it is referenced by other records or it is
used by one or more transactions.

CANT_DELETE_RCRD This record cannot be deleted, because it is referred to by other records.

CANT_DELETE_RCRDS Selected records could not be deleted because one or more of them are of a
special type of account needed by {1}

CANT_DELETE_RCRDS Selected records could not be deleted because one or more of them are
referenced by other records.

CANT_DELETE_SITE_THEME This site theme cannot be deleted because it is being used

CANT_DELETE_SOLUTN This solution cannot be deleted because it has been applied to support cases.

CANT_DELETE_STATUS_TYPE You cannot delete the only status of type {1}

CANT_DELETE_SUBTAB This subtab cannot be deleted because it is referred to by custom fields

CANT_DELETE_SYSTEM_
NOTE

You cannot alter or delete a system logged note.

CANT_DELETE_TAX_VENDOR This is a special tax vendor and cannot be deleted.

CANT_DELETE_TMPLT_RCRD This template record cannot be deleted.

CANT_DELETE_TRANS This transaction cannot be deleted because it is linked to one or more
commission transactions. The commission authorizations due to this
transaction need to be removed to be able to delete this transaction.

CANT_DELETE_TRANS This transaction cannot be deleted because it is referred to by other
transactions. It may be a bill or an invoice that has been paid or an expense
that has been reimbursed.

CANT_DELETE_TRAN_LINE Failed to delete line {1}. This line is linked to another transaction.

CANT_DELETE_TRAN_LINES Lines with partially recognized rev rec or amortization schedules can not be
deleted.

CANT_DELETE_UPDATE_
ACCT

This account cannot be deleted or changed because it is a special type of
account needed by {1}

SuiteScript Errors 1162

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_DELETE_VENDOR This vendor cannot be deleted because there are dependent items, such as a
pending payment. If you wish to remove the payee, you must first delete all
such dependent items.

CANT_DEL_DEFAULT_SHIP_
METHOD

This Shipping Item cannot be deleted because it is the Default Shipping
Method. Please go to Setup > Accounting > Set Up Shipping and choose a
new Default Shipping Method before deleting this Shipping Item.

CANT_DOWNLOAD_
EXPIRED_FILE

This file has expired and can no longer be downloaded

CANT_EDIT_DPLYMNT_IN_
PROGRESS

You cannot change or delete a deployment that is in progress or in the queue.

CANT_EDIT_DPLYMNT_IN_
PROGRESS

You cannot edit a script deployment when it is being executed.

CANT_EDIT_OLD_CASE This case cannot be edited because it was closed {1} or more days ago.

CANT_EDIT_TAGATA The Receivable Tegata is linked to Invoices and is no longer editable

CANT_ESTABLISH_LINK Unable to establish link with {1}

CANT_FIND_BUG Cannot locate the bug that was entered (1)!

CANT_FIND_MAIL_MERGE_ID Mail Merge Id not found

CANT_FIND_RCRD Could not find record with {1} = {2}

CANT_FIND_SOURCE_
AMORTZN_ACCT

The source account for the amortization schedule could not be determined.

CANT_FIND_UPS_REG_FOR_
LOC

No UPS registration was found for the location selected. Please select a
different shipping item, or go to Setup > Set Up Shipping to register a UPS
account for this location.

CANT_INACTIVATE_
COMMSSN_PLAN

You cannot inactivate a plan that has commission payments that are pending
authorization. Please clear the commission payments at Transactions >
Authorize Commissions before inactivating this plan.

CANT_LOAD_SAVED_
SEARCH_PARAM

Error loading saved search params

CANT_MAKE_CONTACT_
PRIVATE

Employee contacts cannot be made private

CANT_MAKE_CONTACT_
PRIVATE

Individual relationship contacts cannot be made private

CANT_MODIFY_APPRVD_
TIME

Time records can not be modified once they have been approved.

CANT_MODIFY_SUB You cannot change the subsidiary of this entity because one or more
transactions exist for this entity.

CANT_MODIFY_TAGATA The Payable Tegata is no longer in Issued state and cannot be modified.'

CANT_MODIFY_TAGATA The Receivable Tegata is no longer in Holding state and cannot be modified.

CANT_MODIFY_TEGATA The Payable Tegata is linked to bills and cannot be modified.'

CANT_PAY_TAGATA Endorsed Tegata can only be paid on or after its maturity date.

CANT_PAY_TAGATA Payable Tegata can only be paid on or after its maturity date.

SuiteScript Errors 1163

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_RECEIVE_TAGATA Receivable Tegata can only be collected on or after its maturity date.

CANT_REJECT_ORDER You cannot reject this order because it has already been approved.

CANT_REMOVE_ACH_PAY_
METHOD

ACH payment methods cannot be removed

CANT_REMOVE_NEXUS A nexus cannot be removed from a subsidiary if the nexus is associated with a
transaction.

CANT_REMOVE_SCHDUL You have attempted to remove an active schedule from a plan. Removing this
participant is not permitted once commissions against the plan have been
generated.

CANT_REMOVE_SUB You cannot remove subsidiary: {1} because this record is used on a transaction
for subsidiary: {1}.

CANT_REMOVE_SUB You attempted to remove one or more subsidiaries from this item, but the
item appears in at least one transaction in those subsidiaries. In order to
remove a subsidiary from the item, make sure the item does not appear in any
transactions for that subsidiary.

CANT_REMOV_ALL_
FULFILMNT_LINKS

You may not modify this sales order in such a way that it removes all links to
any fulfillment. The modifications you made would leave the fulfillment {2} unlinked.

CANT_REMOV_ITEM_SUB You may not remove a subsidiary from an item that is a member of an
assembly, group, or kit item if the parent item is available in that subsidiary.

CANT_RESUBMIT_FAILED_
DPLYMNT

You cannot submit a deployment for execution whose status is set to Failed or
Scheduled.

CANT_RETURN_USED_GIFT_
CERT

Used gift certificates can not be returned.

CANT_REV_REC_BODY_AND_
LINE

The Revenue Recognition fields must be specified at EITHER the transaction
body or the item line level, and may NOT be specified at both levels.

CANT_SCHDUL_RECUR_
EVENT

Because the number of days in each month differs, recurring monthly events
cannot be scheduled after the 28th.

CANT_SEND_EMAIL Unable to send notification email

CANT_SEND_EMAIL Unable to send notification email to support rep

CANT_SET_CLOSE_DATE Unable to set expected close date of prospect/lead based on current
estimates/opportunities.

CANT_SET_STATUS Unable to set status of prospect/lead based on current estimates.

CANT_SWITCH_ROLES_
FROM_LOGIN

Role switching is not allowed from this login.

CANT_UPDATE_AMT The amount on lines containing partially/fully recognized schedules can not
be changed

CANT_UPDATE_DYNAMIC_
GROUP

You cannot update dynamic groups. Instead you must modify the saved
search associated with the group

CANT_UPDATE_FLDR These predefined folders cannot be updated

CANT_UPDATE_PRODUCT_
FEED

This item has multiple product feeds. Web Services schema version 2_6 or
greater is required to modify product feeds for this item

SuiteScript Errors 1164

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CANT_UPDATE_RECRD_HAS_
CHANGED

Cannot update bug. Record has changed since you last retrieved it.

CANT_UPDATE_RECUR_
EVENT

Event <id {1}> contains recurrence patterns that are not supported in your
client application. You are not allowed to update recurrence pattern on this
event. Contact your software vendor for the latest Web Services upgrade.

CANT_UPDATE_STATUS_TYPE You cannot update the only status of type {1}

CANT_VOID_TRANS You cannot void this transaction because it is linked to by one or more
transactions such as payments. You must delete or void those transactions first

CASE_ALREADY_ASSIGNED This case cannot be grabbed because it is already assigned to another rep. To
view the case, go back and click on the case number.

CASE_DSNT_EXIST Case doesn't exist or no customer is associated with case.

CASE_NOT_GROUP_MEMBER {1} this case record does not belong to your group.

CASH_SALE_EDIT_DISALLWD This cash sale cannot be edited while it has an Automated Clearing
House transmission in process.</TD></TR><TR><TD class=text> </
TD></TR><TR><TD class=text> To view the status of cash sales with ACH
transmissions, go to Transactions > View Electronic Funds Transfer Status.

CC_ACCT_REQD You must have a credit card account to perform this operation.

CC_ACCT_REQD You must have a credit card account to perform this operation. Click <a href='/
app/accounting/account/account.nl'>here to add one.

CC_ALREADY_SAVED That credit card is already saved. Please use the saved credit card.

CC_EMAIL_ADDRESS_REQD Please go back and provide an email address to CC store orders to.

CC_NUM_REQD Please provide a credit card number.

CC_PROCESSOR_ERROR An error occurred while processing the credit card. Please contact the
merchant for assistance.

CC_PROCESSOR_NOT_
FOUND

A suitable credit card processor was not found for this transaction.

CERT_UNAVAILABLE Certificate unavailable (most likely has not been presented by client)

CHANGE_PMT_DATE_AND_
REAPPROVE

The payment is more than 30 days past due and has NOT been sent. Edit the
payment to change the date and reapprove.

CHAR_ERROR Character error on Line# {1} Column# {2} (Byte # {3}). {4}

CITY_REQD City is a required field and it cannot be null or empty.

CLASS_ALREADY_EXISTS A class already exists with that name. Go back, change the name and resubmit.

CLASS_NOT_FOUND Class {1} cannot be found.

CLASS_NOT_FOUND could not find class {1}

CLASS_OR_DEPT_OR_CUST_
REQD

only one of class, cust, and dept can be non-null

CLOSED_TRAN_PRD You cannot move a transaction to or from a closed period.

COGS_ERROR LIFO/FIFO COGS count does not equal the number of items requested COGS
ERROR 9765 itemsLinked={1}, itemsTotal={2} kdoc={3}, nid={4}

SuiteScript Errors 1165

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

COMMSSN_ALREADY_
CALCLTD

You have attempted to remove an active sales participant from a plan.
Removing this participant is not permitted once commissions against the plan
have been generated.

COMMSSN_FEATURE_
DISABLED

You have not enabled the Commissions feature.

COMMSSN_FEATURE_
DISABLED

You have not enabled the Partner Commissions/Royalties feature.

COMMSSN_PAYROLL_ITEM_
REQD

A commission payroll item must be added for each employee to be processed
through payroll

COMPANION_PROP_REQD Error - Items do not have companion property (column) {1}

COMPANY_DISABLED Please contact Accounts Receivable at {1} or 650.627.1316 to re-enable this
company.

COMP_DELETED_OR_
MERGED

The company you try to attach the context to has been deleted or merged.

CONCUR_BILLPAY_JOB_
DISALLWD

Your account currently has a bill pay approval job in progress. Only one
bill pay approval job per account is allowed at a time. Please wait until this
process completes before submitting another group of payments for approval.

Visit the <a href='/app/external/xml/upload/uploadlog.nl?displayTy
pe=BILLPAY'>status page to track the progress of the current job.

CONCUR_BULK_JOB_
DISALLWD

This Account is already running a bulk processing job. Please visit the sta
tus page to track the progress of the current job.

CONCUR_MASS_UPDATE_
DISALLWD

A mass update is currently running in this account. Please try again in a few
minutes.

CONCUR_SEARCH_DISALLWD Search aborted by concurrent {1} search. Only one search may run at a time.

CONSLD_PRNT_AND_CHILD_
DISALLWD

A company can be a consolidated child or a consolidated parent but not both

CONTACT_ALREADY_EXISTS A contact record with this name already exists. Every contact record must have
a unique name.

CONTACT_ALREADY_EXISTS A contact with the name [{1}] already exists

CONTACT_NOT_GROUP_
MEMBR

{1} this contact does not belong to your group.

COOKIES_DISABLED You have disabled cookies from being stored on your computer or turned off
per-session cookies. Please enable this feature and try again

COUNTRY_STATE_MISMATCH The country and state/province are mismatched, the country is {1} and the
state/province is {2}. Please enter a state/province short name that matches
the country (see the "state" record for legal short names).

CREATEDFROM_REQD Please enter a value for createdFrom.

CRNCY_MISMATCH_BASE_
CRNCY

The currency you are registered to use is different from the base currency of
this company.

CRNCY_NOT_UPDATED The following currencies were not updated: {1}

SuiteScript Errors 1166

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CRNCY_RCRD_DELETED This currency record has been deleted. You can create a new currency record
at Lists > Currencies.

CRNCY_REQD currency expected for pricing element

CSTM_FIELD_KEY_REQD The specified custom field key is missing.

CSTM_FIELD_VALUE_REQD The specified custom field value is missing.

CUST_ARLEADY_HAS_ACCT Attempting to provision a new account to a customer with an existing account

CUST_CNTR_USER_ACCESS_
ONLY

This form is only accesible to customer center users.

CUST_LEAD_NOT_GROUP_
MEMBR

{1} this customer or lead does not belong to your group.

CUSTOM_RECORD_
COLLISION

Unable to save record. Record was changed by a different user. Please reload
and try again.

CYBERSOURCE_ERROR The credit card transaction was denied by the issuing bank. Please try another
card or contact the card issuer for more information.

CYBERSOURCE_ERROR The credit card has expired or the expiration date does not match the date on
file with the card issuer. Please correct the expiration date or try another card.

CYBERSOURCE_ERROR The credit card transaction was denied due to insufficient funds. Please try
another card or contact the card issuer for more information.

CYBERSOURCE_ERROR The credit card transaction could not be completed because the issuing bank
was not available. Please try another card or wait a few minutes and try again.

CYBERSOURCE_ERROR Inactive card or card not authorized for card-not-present transactions. Please
try another card or contact the card issuer for more information.

CYBERSOURCE_ERROR The card has reached the credit limit. Please try another card or contact the
card issuer for more information.

CYBERSOURCE_ERROR Invalid card verification number. Please check to make sure you have provided
the correct card verification number.

CYBERSOURCE_ERROR Invalid credit card account number. Please check to make sure you have
provided the correct credit card account number.

CYBERSOURCE_ERROR The type of credit card provided is not accepted by this merchant. Please try
another card or contact the merchant for more information.

CYBERSOURCE_ERROR The type of credit card provided is not accepted by this merchant. Please try
another card or contact the merchant for more information.

CYBERSOURCE_ERROR Successful transaction.

CYBERSOURCE_ERROR The request is missing one or more required fields. Possible action: See the
reply fields missingField_0...N for which fields are missing. Resend the request
with the complete information.

CYBERSOURCE_ERROR One or more fields in the request contains invalid data. Possible action: See the
reply fields invalidField_0...N for which fields are invalid. Resend the request
with the correct information.

CYBERSOURCE_ERROR The merchantReferenceCode sent with this authorization request matches
the merchantReferenceCode of another authorization request that you sent

SuiteScript Errors 1167

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

in the last 15 minutes. Possible action: Resend the request with a unique
merchantReferenceCode value.

CYBERSOURCE_ERROR Error: General system failure. See the documentation for your CyberSource
client (SDK) for information about how to handle retries in the case of system
errors.

CYBERSOURCE_ERROR Error: The request was received but there was a server timeout. This error
does not include timeouts between the client and the server. Possible action:
To avoid duplicating the order, do not resend the request until you have
reviewed the order status in the Business Center. See the documentation for
your CyberSource client (SDK) for information about how to handle retries in
the case of system errors.

CYBERSOURCE_ERROR Error: The request was received, but a service did not finish running in time.
Possible action: To avoid duplicating the order, do not resend the request
until you have reviewed the order status in the Business Center. See the
documentation for your CyberSource client (SDK) for information about how
to handle retries in the case of system errors.

CYBERSOURCE_ERROR The issuing bank has questions about the request. You do not receive an
authorization code programmatically, but you might receive one verbally by
calling the processor. Possible action: Call your processor or the issuing bank
to possibly receive a verbal authorization. For contact phone numbers, refer to
your merchant bank information.

CYBERSOURCE_ERROR Expired card. You might also receive this if the expiration date you provided
does not match the date the issuing bank has on file. Possible action: Request
a different card or other form of payment.

CYBERSOURCE_ERROR General decline of the card. No other information provided by the issuing
bank. Possible action: Request a different card or other form of payment.

CYBERSOURCE_ERROR Insufficient funds in the account. Possible action: Request a different card or
other form of payment.

CYBERSOURCE_ERROR Stolen or lost card. Possible action: Review the customers information and
determine if you want to request a different card from the customer.

CYBERSOURCE_ERROR Issuing bank unavailable. Possible action: Wait a few minutes and resend the
request.

CYBERSOURCE_ERROR Inactive card or card not authorized for card-not-present transactions. Possible
action: Request a different card or other form of payment.

CYBERSOURCE_ERROR The card has reached the credit limit. Possible action: Request a different card
or other form of payment.

CYBERSOURCE_ERROR Invalid card verification number. Possible action: Request a different card or
other form of payment.

CYBERSOURCE_ERROR The customer matched an entry on the processors negative file. Possible
action: Review the order and contact the payment processor.

CYBERSOURCE_ERROR Invalid account number. Possible action: Request a different card or other form
of payment.

CYBERSOURCE_ERROR The card type is not accepted by the payment processor. Possible action:
Request a different card or other form of payment. Also, check with

SuiteScript Errors 1168

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

CyberSource Customer Support to make sure your account is configured
correctly.

CYBERSOURCE_ERROR General decline by the processor. Possible action: Request a different card or
other form of payment.

CYBERSOURCE_ERROR There is a problem with your CyberSource merchant configuration. Possible
action: Do not resend the request. Contact Customer Support to correct the
configuration problem.

CYBERSOURCE_ERROR The requested amount exceeds the originally authorized amount. Occurs, for
example, if you try to capture an amount larger than the original authorization
amount. This reason code only applies if you are processing a capture through
the API. See Using the API for Captures and Credits. Possible action: Issue a
new authorization and capture request for the new amount.

CYBERSOURCE_ERROR Processor failure. Possible action: Tell the customer the payment processing
system is unavailable temporarily, and to try their order again in a few minutes.

CYBERSOURCE_ERROR The authorization has already been captured. This reason code only applies if
you are processing a capture through the API. See Using the API for Captures
and Credits. Possible action: No action required.

CYBERSOURCE_ERROR The requested transaction amount must match the previous transaction
amount. This reason code only applies if you are processing a capture or credit
through the API. See Using the API for Captures and Credits. Possible action:
Correct the amount and resend the request.

CYBERSOURCE_ERROR The card type sent is invalid or does not correlate with the credit card number.
Possible action: Ask your customer to verify that the card is really the type that
they indicated in your Web store, then resend the request.

CYBERSOURCE_ERROR The request ID is invalid. This reason code only applies when you are
processing a capture or credit through the API. See Using the API for Captures
and Credits. Possible action: Request a new authorization, and if successful,
proceed with the capture.

CYBERSOURCE_ERROR You requested a capture through the API, but there is no corresponding,
unused authorization record. Occurs if there was not a previously successful
authorization request or if the previously successful authorization has already
been used by another capture request. This reason code only applies when
you are processing a capture through the API. See Using the API for Captures
and Credits. Possible action: Request a new authorization, and if successful,
proceed with the capture.

CYBERSOURCE_ERROR The capture or credit is not voidable because the capture or credit information
has already been submitted to your processor. Or, you requested a void for
a type of transaction that cannot be voided. This reason code applies only
if you are processing a void through the API. See Using the API for Voids for
information about voids. Possible action: No action required.

CYBERSOURCE_ERROR You requested a credit for a capture that was previously voided. This reason
code applies only if you are processing a void through the API. See Using the
API for Voids for information about voids. Possible action: No action required.

CYBERSOURCE_ERROR Error: The request was received, but there was a timeout at the payment
processor. Possible action: To avoid duplicating the transaction, do not resend

SuiteScript Errors 1169

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

the request until you have reviewed the transaction status in the Business
Center.

CYBERSOURCE_ERROR The authorization request was approved by the issuing bank but
declined by CyberSource based on your Smart Authorization settings.
Possible action: Do not capture the authorization without further
review. Review the ccAuthReply_avsCode, ccAuthReply_cvCode, and
ccAuthReply_authFactorCode fields to determine why CyberSource rejected
the request.

CYBERSOURCE_ERROR Unable to process credit card transaction. The code returned from
CyberSource {1} is not a recognized reason code. Please contact NetSuite
support.

CYCLE_IN_PROJECT_PLAN The changes made to this entity have cause a cycle in the project plan. Select a
different parent and/or predecessors to avoid the cycle.

DASHBOARD_LOCKED Your dashboard has been set up and locked by an administrator. Please
contact them for details.

DATA_MUST_BE_UNIQUE The update failed because every entry in this column must be unique.

DATA_REQD You need to provide a proper value for the required field: {1}.

DATA_REQD You are missing the following required field(s):{1}

DATE_EXPECTED You entered '{1}' into a field where a calendar date was expected.\nPlease go
back and change this value to the correct date.

DATE_PARAM_REQD missing date parameter

DEFAULT_CUR_REQD Default currency cannot be null

DEFAULT_EXPENSE_ACCT_
REQD

A default expense account must be specified to activate items on the list.nGo
to Setup > Set Up Payroll and click the Default Accounts subtab.nIn the Payroll
Expenses Account field, choose a default general ledger account for your
payroll expenses. Then, click Save.

DEFAULT_ISSUE_OWNER_
REQD

There is no default owner for the issue role {1}. This operation cannot be
completed until this is corrected.

DEFAULT_LIAB_ACCT_REQD A default liability account must be specified to activate items on the list.nGo
to Setup > Set Up Payroll and click the Default Accounts subtab.nIn the Payroll
Liabilities Account field, choose a default general ledger account for your
payroll liabilities. Then, click Save.

DEFAULT_ROLE_REQD Login Failed because you do not have a default role for the company and
email entered. Please Try Again.

DEFAULT_TYPE_DELETE_
DISALLWD

You cannot delete default types

DEFERRAL_ACCT_REQD Lines with amortization templates must have a deferral account.

DEFERRAL_ACCT_REQD Lines with revenue recognition templates must have a deferral account.

DEFERRED_REV_REC_ACCT_
REQD

The {1} item does not have a Deferred Revenue Account specified. Please
assign the item a Deferred Revenue Account using the standard User Interface,
and then re-import the transaction.

SuiteScript Errors 1170

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

DEPT_IN_USE Your classes cannot be converted to departments because your existing
department records are referred to by transactions or other records. These
department records cannot be overwritten.

DFRNT_SWAP_PRICE_
LEVELS_REQD

Please select different price levels to swap prices.

DISALLWD_IP_ADDRESS The specified IP address rules must allow the login of your current IP Address.
Your current IP address is {1}. For information on entering IP address rules, click
Help at the top of the page.

DISCOUNT_ACCT_SETUP_
REQD

Please Set Up Discount Accounts first.

DISCOUNT_DISALLWD You have attempted to save this transaction with one or more discounts and
where all items have Permit Discount = Never. You must change one of the
items to permit a discount, add a new item without the restriction or remove
the discount from the transaction.

DISCOUNT_EXCEED_TOTAL Discount can not exceed item total.

DISTRIB_REQD_ONE_DAY_
BFORE

All items must be distributed at least one day before they may be transferred.

DROP_SHIP_OR_SPECIAL_
ORD_ALLWD

Items can be Drop Ship or Special Order but not both

DUE_DATE_BFORE_START_
DATE

Due date occurs before start date

DUE_DATE_REQD Please enter a value for {1} Due Date

DUPLICATE_INVENTORY_
NUM

Duplicate inventory number found in entry: {1}

DUPLICATE_INVENTORY_
NUM

Duplicate inventory number found on different lines of transaction

DUPLICATE_KEYS This record contains duplicated key or keys. Please correct it before next
update.

DUPLICATE_NAME_FOR_PRD Please choose a different period name. "{1}" is already taken.

DUPLICATE_NAME_FOR_
ROLE

Please choose a different role name. "{1}" is already taken.

DUPLICATE_USER_NAME A user with this name already exists.

DUP_ACCT_NAME The account name you have chosen is already used.
Go back, change the name and resubmit.

DUP_ACCT_NUM The account number you have chosen is already used.

DUP_ACCT_NUM The account number you have chosen is already used.
Go back, change the number and resubmit.

DUP_ACCT_ON_TRANS This transaction has duplicate accounts. The main line of the transaction and
the line labeled '{1}' both use the account named '{2}'.

DUP_BIN There is already another bin with that number. Please choose a bin number
that is not used by another bin.

DUP_CATEGORY This category already exists

SuiteScript Errors 1171

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

DUP_CATEGORY_NAME A category already exists with that name. Go back, change the name and resubmit.

DUP_COLOR_THEME This color theme already exists

DUP_CSTM_FIELD This custom field already exists

DUP_CSTM_LAYOUT This custom layout already exists

DUP_CSTM_LIST There is already a Custom List or Custom List element with that name

DUP_CSTM_RCRD There is already a Custom Record with that name

DUP_CSTM_RCRD_ENTRY There is already a Custom Record Entry with that name

DUP_CSTM_TAB This custom tab already exists

DUP_EMPL_EMAIL There is already an employee with external access to this account using that
email address. All employees with external access must have a unique email
address for login purposes. Go back,
change the email address and resubmit.

DUP_EMPL_ENTITY_NAME There is already an employee with external access to this account using that
entity name. All employees with external access must have a unique entity
name for login purposes. Go back,
change the entity name and resubmit.

DUP_EMPL_TMPLT There is already an employee template with that name. Go back, change the template name and
resubmit.

DUP_ENTITY This entity already exists.

DUP_ENTITY_EMAIL There is already an external entity (eg. customer, vendor, or employee) with
access to this account using that email address. All external entities with
access must have a unique email address for login purposes.

DUP_ENTITY_NAME There is already an external entity (eg. customer, vendor, or employee) with
access to this account using that entity name. All external entities with access
must have a unique entity name for login purposes.

DUP_FEDEX_ACCT_NUM There is an existing NetSuite registration for FedEx account number {1}.

DUP_FINANCL_STATMNT_
LAYOUT

This financial statement layout already exists.

DUP_INFO_ITEM This information item already exists

DUP_ISSUE_NAME_OR_NUM You cannot set {1:issue record name} {2:issue number} to be a duplicate of
itself or one of its duplicates.

DUP_ITEM Uniqueness error - there is already an item with that name or name/parent
combination.

DUP_ITEM_LAYOUT This item/category layout already exists

DUP_ITEM_NAME There is already an item with that name.
. Go back, change the name and resubmit.

DUP_ITEM_OPTION A child item child with that combination of options already exists

DUP_ITEM_TMPLT This item/category template already exists

DUP_MATRIX_OPTN_ABBRV Matrix option '{1}' already uses that abbreviation. Please choose another.

SuiteScript Errors 1172

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

DUP_MEMRZD_TRANS There is already a Memorized Transaction with that name.
Go back, change the name and resubmit.

DUP_NAME That name is already in use.
Go back, change the name and resubmit.

DUP_PAYROLL_ITEM There is already a payroll item named {1}

DUP_PRESNTN_CAT This presentation category already exists

DUP_RCRD A {1} already exists with that name. Go back, change the name and resubmit.

DUP_RCRD This record already exists

DUP_RCRD_LINK Link to that record already exists

DUP_SALES_TAX_ITEM You have entered a duplicate Sales Tax Item.
Go back, change the name, city, state or zip
code and resubmit.

DUP_SHIPPING_ITEM You have entered a duplicate Shipping Item.
Go back, change the name and resubmit.

DUP_SHORT_NAME Duplicate short name

DUP_SITE_THEME This site theme already exists

DUP_TAX_CODE You have entered a duplicate Tax Code.
Go back, change the name and resubmit.

DUP_TAX_CODE You have entered a duplicate Tax Code.
Go <a href=
\"javascript:history.go(-1);\";>back, change the name, city, state or zip
code and resubmit.

DUP_TRACKING_NUM You entered the following tracking number twice: {1}. Note that a single
tracking number may not contain spaces or commas. A space or comma
will be interpreted as the separator between different tracking numbers. For
example, '1029 3847 465' will be interpreted as 3 different tracking numbers. It
should be entered without spaces: '10293847465'.

DUP_UPS_ACCT_NUM There is an existing NetSuite registration for UPS account number {1}.

DUP_VENDOR_EMAIL There is already a vendor with external access to this account using that email
address. All vendors with external access must have a unique email address for
login purposes. Go back, change the
email address and resubmit.

DUP_VENDOR_NAME There is already a vendor using that entity name. All vendors must have a
unique entity name. Go back, change
the entity name and resubmit.

EDITION_DSNT_SUPRT_
WORLDPAY

WorldPay is not supported in this edition.

EMAIL_ADDRS_REQD Please enter your email address

EMAIL_ADDRS_REQD_TO_
NOTIFY

Please enter an email address for this company. A notification email will be
sent when this case record is saved.

EMAIL_ADDRS_REQD_TO_
NOTIFY

The recipient you are sending this email to does not have an email address.
Please enter one and try again

SuiteScript Errors 1173

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

EMAIL_REQD You must enter a valid email address to email the transaction.

EMAIL_REQD_ACCT_
PROVISION

Cannot provision an account without an Email address for this customer: Was
external access granted?

EMPL_IN_USE You can't delete this employee, as commissions have been calculated for this
employee.

EMPL_IN_USE You can't delete this employee, as it is or has been referenced by other
employees as a supervisor.

ERROR_IN_TERRITORY_
ASSGNMNT

Error Performing Initial Round_Robin Assignment for Territory: {1}

ERROR_IN_TERRITORY_
ASSGNMNT

Error Performing Round_Robin Assignment for Territory: {1}

ERROR_PRCSSNG_TRANS There were errors processing the selected transactions. Please process them
individually for more information.

ERROR_SENDING_TRAN_
EMAIL

The transaction was entered successfully, but an unexpected error occurred
while sending the transaction email {1}

EVENT_ID_NOT_FOUND Event ID not found

EXCEEDED_MAX_ALLWD_
LOC

You have reached the maximum allowance of {1} location records. If you need
to create additional location records, please contact our NetSuite Customer
Support team for assistance

EXCEEDED_MAX_CONCUR_
RQST

The maximum number of concurrent requests has been exceeded. Please try
your request again when an existing session has completed.

EXCEEDED_MAX_EMAILS The merge exceeds the number of bulk merge emails allotted to your account
this year. This account has {1} more bulk emails that can be sent this year.
Please contact your NetSuite account manager to purchase additional block of
emails.

EXCEEDED_MAX_EMAILS This campaign email event exceeds the number of emails ({1}) that can be sent
per event without setting up a default campaign domain or specifying one on
the campaign email template.

EXCEEDED_MAX_EMAILS This merge operation exceeds the number of emails ({1}) that can be sent per
execution without setting up a bulk merge domain or specifying one on the
email template.

EXCEEDED_MAX_FIELD_
LENGTH

Address line 1 cannot exceed 35 characters. Please check the shipper
and recipient address to ensure the "Address 1" field is a maximum of 35
characters.

EXCEEDED_MAX_FIELD_
LENGTH

Address line 2 cannot exceed 35 characters. Please check the shipper
and recipient address to ensure the "Address 2" field is a maximum of 35
characters.

EXCEEDED_MAX_FIELD_
LENGTH

The field {1} contained more than the maximum number ({2}) of characters
allowed.

EXCEEDED_MAX_FIELD_
LENGTH

The string "{1}" contained more than the maximum number of characters
allowed.

EXCEEDED_MAX_FIELD_
LENGTH

Too many characters for a field

SuiteScript Errors 1174

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

EXCEEDED_MAX_MATRIX_
OPTNS

The total combination of subitems you have selected exceeds the maximum
allowed of 2000. Please choose fewer options on the matrix tab.

EXCEEDED_MAX_MATRIX_
OPTNS

The total combination of subitems you have selected exceeds the maximum
allowed of 2000. Please choose fewer options on the matrix tab.

EXCEEDED_MAX_SHIP_
PACKAGE

The maximum number of custom shipping packages has been exceeded:
{1}. Please reduce item quantities to generate fewer packages, or enter the
packages manually.

EXCEEDED_MAX_TIME The operation has exceeded maximum allowed time for completion.
Operation aborted.

EXCEEDED_MAX_TRANS_
LINES

Transactions may not contain more than {1} lines.

EXCEEDED_PER_TRANS_MAX Exceeded per transaction maximum on account {1}

EXCEEDED_RQST_SIZE_LIMIT You have exceeded the permitted request size limit ({1})

EXCEEDS_ALLWD_LICENSES Adding access for this user exceeds the number of licenses you have
purchased. To add another user, you must first remove access from an existing
user or contact NetSuite to purchase additional licenses.

EXCEEDS_ALLWD_LICENSES Adding a {1} would exceed the number of licenses you have purchased. Please
contact NetSuite for additional licenses.

EXPIRED_SEARCH_CRITERIA Your search criteria expired. The criteria for a given search generally expire
after 15 minutes of inactivity. Please return to the search definition page and
re-submit your search.

EXT_CAT_LINK_SETUP_REQD Error - you have not properly set up links from your External Catalog Site back
into {1}!

FAILED_FEDEX_LABEL_VOID Failed FedEx Label Void

FAILED_FORM_VALIDATION Form validation failed. You cannot submit this record.

FAILED_UPS_LABEL_VOID Failed UPS Label Void

FAX_NUM_REQD You must enter a fax number.

FAX_NUM_REQD You must enter a fax number for this recipient before performing a fax merge
operation.

FAX_NUM_REQD You must enter a valid fax number to fax the transaction.

FAX_SETUP_REQD Before you can send faxes, you need to go to the <a href='/app/setup/
printing.nl'>Set Up Printing, Fax & Email page and set up the fax service.

FEATURE_DISABLED The feature '{1}' required to access this page is not enabled in this account.

FEATURE_UNAVAILABLE {1} Trial does not allow access to this feature. If you would like more
information about this feature, please contact your account manager.

FEATURE_UNAVAILABLE Error - This business does not have the External Catalog Site feature enabled.

FEATURE_UNAVAILABLE Test Drive does not allow access to this feature. If you would like more
information about this feature, please contact your account manager.

FEATURE_UNAVAILABLE That feature is only available to Plus users

FEATURE_UNAVAILABLE The {1} feature is not available to your company.

SuiteScript Errors 1175

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

FEATURE_UNAVAILABLE This feature is not available to your company.

FEDEX_ACCT_REQD The FedEx Account Number has not been set.

FEDEX_CANT_INTEGRATE_
FULFILL

The fulfillment cannot be integrated with {1} because the Shipping Integration
Carrier is set to UPS.

FEDEX_DROPOFF_TYP_REQD The FedEx Dropoff Type has not been set.

FEDEX_INVALID_ACCT_NUM This account number was not recognized by FedEx. Please re-enter your
account number, or contact FedEx to open a new account.

FEDEX_ITEM_CONTENTS_
REQD

For international shipments, {1} requires specific information about the item
contents.

FEDEX_METER_NOT_
RETRIEVED

A FedEx Meter Number was not retrieved for account number {1}. Please try
your request again in a few minutes.

FEDEX_METER_REQD The FedEx Meter Number has not been set.

FEDEX_ONE_PACKG_ALLWD The selected FedEx service allows only one package per fulfillment. If more
than one package is required, please break up the shipment into multiple
fulfillments of one package each.

FEDEX_ORIGIN_COUNTRY_
US_REQD

The origin country must be United States (US) for all Item Fulfillments when
using a FedEx shipping method.

FEDEX_RATING_SRVC_
UNAVAILBL

The FedEx rating services application is currently unavailable. Please try your
request again in a few minutes.

FEDEX_REG_NOT_FOUND A valid FedEx Registration was not found for the specified location:

FEDEX_SHIP_SRVC_REQD The FedEx Shipping Service has not been set.

FEDEX_SHIP_SRVC_
UNAVAILBL

The FedEx shipping services application is currently unavailable. Please try
your request again in a few minutes.

FEDEX_UNSUPRTD_ORIGIN_
COUNTRY

The origin country {1} is currently not supported for Item Fulfillments when
using a FedEx shipping method.

FEDEX_USD_EXCHANGE_
RATE_REQD

Cannot retrieve FedEx realtime rates: USD Exchange Rate is required when
requesting FedEx realtime rates.

FEDEX_VOID_ERROR The FedEx Void failed due to a system error.

FED_WITHHOLDING_REQD Your employee record does not have current Federal Withholding
information.<p>Please contact your supervisor to set up your record with the
appropriate information.</p>

FIELD_CALL_DATE_REQD Missing Required Field: Call Date

FIELD_DEFN_REQD Field definition not found

FIELD_NOT_SETTABLE_ON_
ADD

You are not allowed to set the nsKey for a record

FIELD_PARAM_REQD Please enter a value for {1}

FIELD_PARAM_REQD Please enter values for {1}.

FIELD_REQD Mandatory Field Missing

FIELD_REQD You must first select a field

FILE_ALREADY_EXISTS A file with the same name already exists in the selected folder.

SuiteScript Errors 1176

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

FILE_ALREADY_EXISTS Note: You are attempting to upload a file with a name matching an existing file
in the selected folder. Please rename this file or select another folder, and then
upload your file.

FILE_DISALLWD_IN_ROOT_
FLDR

You attempted to copy a file to the root directory. Only folders can exist in the
root directory.

FILE_DISALLWD_IN_ROOT_
FLDR

You attempted to move a file to the root directory. Only folders can exist in the
root directory.

FILE_MISSING File Missing

FILE_NOT_DOWNLOADABLE Illegal request for a file that isn't downloadable

FILE_NOT_FOUND File/Media Item {1} not found.

FILE_NOT_FOUND File not found. Please try your download again.

FILE_REQD You must upload a file before creating this media item

FILE_UPLOAD_IN_PROGRESS Files are currently being uploaded to this account.

FILTER_BY_AMT_REQD Please enter an amount to filter by.

FINANCE_CHARGE_SETUP_
REQD

Please set Finance Charge
Preferences first.

FIRST_LAST_NAMES_REQD Please enter both your first and last name.

FIRST_QTY_BUCKET_MUST_
BE_ZERO

Quantity defined for first quantity bucket must be zero

FLD_VALUE_TOO_LARGE Value for field {1} is too large to be processed.

FOLDER_ALREADY_EXISTS A folder with the same name already exists in the selected folder.

FORMULA_ERROR Your formula has an error in it. It could resolve to the wrong datatype, use an
unknown function, or have a syntax error. Please go back, correct the formula,
and re-submit.

FORM_RESUBMISSION_REQD You have logged in to a different user since you navigated to this form. You
must re-submit this form as the new user.

FORM_UNAVAILBL_ONLINE This form is not available online

FRIENDLY_NAME_REQD Missing Friendly Name. Friendly Name is a required field and it cannot be null
or empty.

FULFILL_REQD_FIELDS_
MISSING

For the listed items, please edit the item record and provide values for the
specified fields, and retry the fulfillment.

FULFILL_REQD_FIELDS_
MISSING

The {1} field is required to complete this fulfillment. Please return to the
International tab on the item fulfillment and provide a value for the specified
field and retry the fulfillment.

FULFILL_REQD_PARAMS_
MISSING

Could not perform operation '{1}' since {2} parameter was not set.

FULL_DISTRIB_REQD You must fully distribute all {1} numbers for {1} numbered items.

FULL_USERS_REQD_TO_
INTEGRATE

Only full {1} users can integrate with partners.

FX_MALFORMED_RESPONSE Received malformed response from Foreign Exchange source.

SuiteScript Errors 1177

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

FX_RATE_REQD_FEDEX_RATE Cannot retrieve {1} realtime rates: {2} Exchange Rate is required when
requesting {3} realtime rates.

GETALL_RCRD_TYPE_REQD The getAll record type is required.

GIFT_CERT_AMT_EXCEED_
AVAILBL

Gift certificate redemption amount exceeds available amount on the gift
certificate

GIFT_CERT_AUTH_ALREADY_
EXISTS

Gift certificate authorization code {1} already exists

GIFT_CERT_CAN_BE_USED_
ONCE

A gift certificate may only be used once on a transaction

GIFT_CERT_CODE_REQD Gift certificate codes are missing

GIFT_CERT_CODE_REQD Missing gift certificate authorization code(s). Please go back and enter
authorization codes on the {1}.

GIFT_CERT_CODE_REQD You must specify a gift certificate code.

GIFT_CERT_IN_USE Another user is using gift certificate {1}

GIFT_CERT_IN_USE Gift certificate code {1} is already in use

GROUP_DSNT_EXIST That group does not exist

GROUP_REQD You cannot perform a bulk merge operation with an empty group

GROUP_TYPE_REQD The group type is required.

GRTR_QTY_PRICE_LEVEL_
REQD

Each quantity pricing level must be greater than the previous quantity pricing
level.

ILLEGAL_ID Illegal ID. Please enter a name.

ILLEGAL_PERIOD_STRUCTURE Illegal period structure. Date {1} is in multiple periods.

INACTIVE_RCRD_FOR_ROLE The record for this role has been made inactive.

INAVLID_FILE_TYP A change has been made to this file's format. You cannot upload this type of
file.

INAVLID_FILE_TYP You attempted to upload a restricted file type. Please try again with a selection
from the list below:

INAVLID_ITEM_TYP Invalid item type [{1}] for item [{2}].

INAVLID_PRICING_MTRX Invalid Quantity Pricing Matrix for quantity level {1} : Quantity {2}, Base Price {3}

INCOMPATIBLE_ACCT_
CHANGE

The account change you have made is incompatible with old transactions. If
you need to swap two accounts, you need to do it in 3 steps. For example, to
change the income and asset accounts for an item:(1) Change the
income account to a temporary account and save(2) Change asset
account to the old income account and save(3) Change the income
to the old asset account and savePlease contact customer support if
you need assistance with this.

INCOMPATIBLE_ACCT_
CHANGE

The account change you have made is incompatible with old transactions.
Please either change the account selection appropriately or do not request to
update past transactions.

INCOMPLETE_BILLING_ADDR Billing address is incomplete.

SuiteScript Errors 1178

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INCOMPLETE_FILE_UPLOAD The upload did not complete correctly. Please try uploading the file again.
If you have repeatedly received this error message, please send mail to {2} Technical Support.

INCRCT_ORD_INFO The order contains incorrect information and was not placed.

INITIALIZE_ARG_REQD The initialize reference id is required.

INITIALIZE_ARG_REQD The initialize reference type is required.

INITIALIZE_ARG_REQD The initialize type is required.

INITIALIZE_AUXREF_REQD The initialize auxReference type is required.

INSUFCNT_NUM_PRDS_FOR_
REV_REC

Not enough accounting periods in range specified for revenue recognition.

INSUFCNT_OPEN_PRDS_
FOR_REV_REC

Not enough open accounting periods available for revenue recognition.

INSUFFICIENT_CHARS_IN_
SEARCH

Global searches must contain at least three characters to prevent excessive
matches.

INSUFFICIENT_FLD_
PERMISSION

You are attempting to read an unauthorized field: {1}

INSUFFICIENT_FLD_
PERMISSION

You cannot access this search because it includes restricted fields. Please
contact your administrator.

INSUFFICIENT_PERMISSION For security reasons, only an administrator is allowed to edit an administrator
record.

INSUFFICIENT_PERMISSION Global search is not permitted from this role.

INSUFFICIENT_PERMISSION Insufficient privileges

INSUFFICIENT_PERMISSION Your issue DB access has been inactivated. Please contact your issue DB
administrator.

INSUFFICIENT_PERMISSION Your current login role does not have an associated Issue Role. Please change
to a different role or contact your Issue administrator.

INSUFFICIENT_PERMISSION Only the owner can make a contact private

INSUFFICIENT_PERMISSION Only the super user can update or delete bug entries

INSUFFICIENT_PERMISSION Permission error: you may not edit this role.

INSUFFICIENT_PERMISSION Permission Violation: partners do not have access to this report.

INSUFFICIENT_PERMISSION Permission Violation: partners may not delete saved reports.

INSUFFICIENT_PERMISSION Permission Violation: You cannot delete saved reports not created by yourself.

INSUFFICIENT_PERMISSION Test Drive does not allow access to this feature. If you would like
more information about this feature, please contact your account manager.

INSUFFICIENT_PERMISSION The restriction settings on your role deny you access to this item.

INSUFFICIENT_PERMISSION This folder does not exist or you do not have permission to access this folder.

INSUFFICIENT_PERMISSION This folder does not permit the direct addition of files

INSUFFICIENT_PERMISSION This order has been partially or fully processed and may not be edited by a
user without permission to approve sales orders.

SuiteScript Errors 1179

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INSUFFICIENT_PERMISSION User permission level could not be established

INSUFFICIENT_PERMISSION You do not have permissions to set a value for element {1} due to one of the
following reasons: 1) The field is read-only; 2) An associated feature is disabled;
3) The field is available either when a record is created or updated, but not in
both cases.

INSUFFICIENT_PERMISSION Your role does not have permission to provision accounts.

INSUFFICIENT_PERMISSION You are not allowed to approve your own transactions.

INSUFFICIENT_PERMISSION You are not authorized to change this event's organizer. Public events may
only have their organizer changed by administrators, the event's organizer, or
delegates with edit permission to the event's calendar. Private or busy events
may only have their organizer changed by the owner.

INSUFFICIENT_PERMISSION You cannot update a system defined template.

INSUFFICIENT_PERMISSION You cannot update cases using this form.

INSUFFICIENT_PERMISSION You can not access this page unless you are logged in as the consolidated
parent company.

INSUFFICIENT_PERMISSION You can only delete notes that you created.

INSUFFICIENT_PERMISSION You do not have access to the activity history for that record

INSUFFICIENT_PERMISSION You do not have access to the media item you selected.

INSUFFICIENT_PERMISSION You do not have access to this page

INSUFFICIENT_PERMISSION You do not have access to this template

INSUFFICIENT_PERMISSION You do not have permission to access this list.

INSUFFICIENT_PERMISSION You do not have permission to access this register.

INSUFFICIENT_PERMISSION You do not have permission to access this type of transaction.

INSUFFICIENT_PERMISSION You do not have permission to create this type of record. Please choose a
different record type.

INSUFFICIENT_PERMISSION You do not have permission to email transactions.

INSUFFICIENT_PERMISSION You do not have permission to perform this operation.

INSUFFICIENT_PERMISSION You do not have permission to print {1}

INSUFFICIENT_PERMISSION You do not have permission to view this page.

INSUFFICIENT_PERMISSION You do not have privileges to approve commissions.

INSUFFICIENT_PERMISSION You do not have privileges to create commissions.

INSUFFICIENT_PERMISSION You do not have privileges to create this transaction.

INSUFFICIENT_PERMISSION You do not have privileges to perform that operation.

INSUFFICIENT_PERMISSION You do not have privileges to perform this action.

INSUFFICIENT_PERMISSION You do not have privileges to perform this operation

INSUFFICIENT_PERMISSION You do not have privileges to use this page.

INSUFFICIENT_PERMISSION You do not have privileges to view this account

INSUFFICIENT_PERMISSION You do not have privileges to view this page

SuiteScript Errors 1180

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INSUFFICIENT_PERMISSION You may not create a new Liability Adjustment or edit existing Liability
Adjustments.

INSUFFICIENT_PERMISSION You may not delete built-in audiences.

INSUFFICIENT_PERMISSION You may not delete built-in categories.

INSUFFICIENT_PERMISSION You may not delete built-in items.

INSUFFICIENT_PERMISSION You may not delete built-in tabs.

INSUFFICIENT_PERMISSION You must have either 'Transactions -> Invoice' or 'Transactions -> Cash Sale'
permission to bill sales orders.

INSUFFICIENT_PERMISSION You must have either 'Transactions -> Invoice' or 'Transactions -> Cash Sale'
permission to fulfill sales orders.

INSUFFICIENT_PERMISSION You must have 'Transactions -> {1}'permission to build work orders.

INSUFFICIENT_PERMISSION You must have 'Transactions -> Fulfill Sales Orders' view permission to view
sales order fulfillments.

INSUFFICIENT_PERMISSION You must have 'Transactions -> Fulfill Sales Orders' edit permission to fulfill
sales orders.

INSUFFICIENT_PERMISSION You need employee access to delete this record.

INSUFFICIENT_PERMISSION {1} The {2} restrictions on your role deny you access to this record.

INSUFFICIENT_PERMISSION {1} The {2} restrictions on your role prevent you from seeing this record.

INSUFFICIENT_PERMISSION {1} The customer restrictions on your partner role prevent you from seeing this
record.

INSUFFICIENT_PERMISSION {1} The restrictions on your role deny you access to this record.

INSUFFICIENT_PERMISSION {1} The restrictions on your role do not allow you to modify this record.

INSUFFICIENT_PERMISSION {1} You need {2} the '{3}' permission to access this page. Please contact your
account administrator.

INSUFFICIENT_PERMISSION {1} You need a higher level of the '{2}' permission to access this page. Please
contact your account administrator.

INSUFFICIENT_PERMISSION {1} You need a higher permission for custom record type {2} to access this
page. Please contact your account administrator.

INTEGER_REQD_FOR_QTY Quantity must be an integer for numbered items.

INTL_FEDEX_ONE_PACKG_
ALLWD

International FedEx fulfillments allow only one package. If more than one
package is required, please break up the shipment into multiple fulfillments of
one package each.

INTL_SHIP_EXCEED_MAX_
ITEM

The maximum number of items for FedEx International shipping has been
exceeded: {1}

INVALID_ABN Invalid ABN registration number {1}.

INVALID_ACCT Invalid login. No such account.

INVALID_ACCT Invalid account number.

INVALID_ACCT_NUM_CSTM_
FIELD

The account number custom field does not exist!! Consult billing cell.

SuiteScript Errors 1181

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_ACCT_PRD You can not create an accounting period that is not a year or does not belong
to a year.

INVALID_ACCT_TYP Invalid account type [{1}].

INVALID_ACCT_TYP There is no account of type: {1}

INVALID_ACCT_TYP The account and its parent have different account type.

INVALID_ACCT_TYP You cannot change an account to or from A/R or A/P

INVALID_ACTION You have attempted an unsupported action.

INVALID_ADDRESS_OR_
SHIPPER_NO

An error has occurred. Please ensure that the address information and shipper
number are correct, then resubmit the form.

INVALID_ADJUSTMENT_ACCT The account you selected in Adjustment Account is the same as the asset
account for one of the items you are adjusting. Please go back and change the
account. Normally, the adjustment account would be an expense account.

INVALID_AES_FTSR_
EXEMPTN_NUM

The AES/FTSR Exemption Number is invalid.

INVALID_ALLOCTN_METHOD You have attempted to allocate landed costs to a transaction using an
allocation method that results in no allocation for any lines in the transaction.
The allocation method you chose is {1}. To correct this problem, go back to the
transaction and choose a different allocation method, or modify the items/
lines on the transaction so that there will be some cost allocated to the lines.

INVALID_AMT Amount applied greater than total payments and credits

INVALID_APP_ID Invalid application id: {1}

INVALID_ASSIGN_STATUS_
COMBO

Invalid assignee/status combination({1}/{2})

INVALID_ASSIGN_STATUS_
COMBO

Invalid assignee/status combination (assignee {1}, status {2}, issue #{3}). No
default owner for issue role?

INVALID_ASSIGN_STATUS_
COMBO

Invalid assignee/status combination ({1},{2})

INVALID_AUTH_CODE You have entered an invalid authorization code for this campaign email
address. Please check the authorization code in the email message, and enter
it again.

INVALID_AUTOAPPLY_VALUE Ambiguous data: <autoApply> has been selected and lines have been
selected in the <applyList> element.

INVALID_BALANCE_RANGE Your balance is not within the allowed range.

INVALID_BILLING_SCHDUL The billing schedule definition is incompatible with this transaction. Please
modify the current billing schedule or select a different one.

INVALID_BILLING_SCHDUL_
ENTRY

You cannot create a billing schedule with two entries on the same date. Please
go back and edit the billing schedule or start date.

INVALID_BIN_NUM Bin numbers may not contain the '{1}' character

INVALID_BOM_QTY Inventory/Assembly quantities cannot be negative

INVALID_BOOLEAN_VALUE Checkbox / boolean data must be either 'T' or 'F'

INVALID_BUG_NUM Bug number specified was incorrect. ("{1}" isn't a number.)

SuiteScript Errors 1182

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_CAMPAIGN_
CHANNEL

You cannot use this channel to setup this event

INVALID_CAMPAIGN_GROUP_
SIZE

While in {1}, you can only send {2} emails per campaign event. Please
modify one or more of your target groups to contain {2} members or less. All
campaign emails will be sent to your {1} login email address.

INVALID_CAMPAIGN_STATUS You cannot set the status of this campaign event back to 'In Progress' because
it already has some activity.

INVALID_CASE_FORM You cannot create cases using this form.

INVALID_CATGRY_TAX_
AGENCY_REQ

A Vendor must be created in a cateogry with the Tax Agency check box
checked.

INVALID_CC_EMAIL_
ADDRESS

The email address to CC store orders to is invalid. Please go back and correct it.

INVALID_CC_NUM Credit card numbers must contain between 13 and 20 digits.

INVALID_CC_NUM Credit card number is not valid. Please check that all digits were entered
correctly.

INVALID_CC_NUM Credit card number must contain only digits.

INVALID_CHARS_IN_EMAIL Email address contains invalid characters.

INVALID_CHARS_IN_NAME The From Name field cannot contain apostrophes, quotation marks, commas,
or greater than or less than signs.

INVALID_CHARS_IN_NAME You cannot use the colon ':' character in the topic name - please remove it .

INVALID_CHARS_IN_PARAM_
FIELD

The Additional Parameters field can not contain any of the following
characters: "?\<>|/!@#$%^*()+,.:;'"". Please remove them and try again

INVALID_CHARS_IN_URL Spaces are not allowed in the {1}url.<p>Examples of a valid {1}url
are:
http://www.mydomain.com/image.gif or https://
one.two.org/user-name/test.jpg

INVALID_CHARS_IN_URL The URL component you have chosen contains a space or one of the following
prohibited character: &?\<>|/!@#$%^&*()+=,.:;'". Please remove them and try
again

INVALID_COLUMN_NAME Invalid column name in get_invtitem_col_sum_all_locs: {1} [{2}]

INVALID_COSTING_METHOD SERIAL and LOT are the only costing methods that may be passed as
parameters to this page.

INVALID_CSTM_FIELD_DATA_
TYP

The customfield [{1}] reference object does not match its data type.

INVALID_CSTM_FIELD_RCRD_
TYP

Invalid custom field record type

INVALID_CSTM_FIELD_REF The specified custom field reference {1} is invalid.

INVALID_CSTM_FORM {1} is an invalid custom form

INVALID_CSTM_RCRD_KEY Invalid custom record key [{1}].

INVALID_CSTM_RCRD_QUERY Invalid custom record object in query.

INVALID_CSTM_RCRD_TYPE_
KEY

Invalid custom record type

SuiteScript Errors 1183

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_CSTM_RCRD_TYPE_
KEY

Invalid custom record type key.

INVALID_CSTM_RCRD_TYPE_
KEY

{1} refers to a custom list. To get the contents of this list, use the 'get' or 'getAll'
operation with a RecordRef of type 'customList'

INVALID_CSTM_RCRD_TYP_
KEY

Invalid custom record type key in query.

INVALID_CUSTOMER_RCRD This customer record {1} is not valid. Please create the customer first.

INVALID_DATA Invalid data combination, can not set {1} to {2} and {3} to {4}

INVALID_DATE The date < {1} > is invalid. You must specify a date after < {2} >.

INVALID_DATE_FORMAT Date field not in your preferred date format

INVALID_DATE_RANGE Invalid time range. The {1} "{2}" start time ({3}) must be earlier than its end time
({4}).

INVALID_DATE_RANGE Invalid Date Range - the To Date value must be on or after the From Date value

INVALID_DATE_RANGE The date range you specified does not fall inside that of the parent period.

INVALID_DEAL_RANGE Invalid Deal Range - low must be less than projected and high must be greater
than projected.

INVALID_DEAL_RANGE Invalid Deal Range - low must be less than projected and high must be greater
than projected.

INVALID_DELETE_REF Either RecordRef or CustomRecordRef should be used for 'delete' operation.

INVALID_DESTINATION_FLDR The destination folder is the same as the current folder.

INVALID_DESTNTN_COUNTRY The destination Country is invalid or has not been set.

INVALID_DESTNTN_POST_
CODE

The destination Postal Code is invalid or has not been set.

INVALID_DESTNTN_STATE The destination State is invalid or has not been set.

INVALID_DETACH_RECORD_
TYP

Missing or Invalid RecordType for DetachFrom.

INVALID_DETACH_RECORD_
TYP

Detaching of record type {1} from {2} is not supported.

INVALID_DOMAIN_KEY The private domain key is invalid, please enter a valid private domain key.

INVALID_DOMAIN_NAME Invalid domain name {1}, please enter a valid domain name.

INVALID_DUP_ISSUE_REF Cannot set this issue to be a duplicate of itself or of an issue that is a duplicate
of this issue.

INVALID_EMAIL Email address is not valid.

INVALID_EMAIL Your email or code is invalid. Please try again

INVALID_EMAIL You have entered an invalid email address. Please try again.

INVALID_EMAIL_ADDR Some of the email addresses you have entered are invalid: {1:list of invalid
email addresses}

INVALID_EMAIL_ADDR The email address for the web store is invalid. Please go back and correct it.

INVALID_END_DATE You entered an end date ({1}) that is before the start date ({2})

SuiteScript Errors 1184

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_END_DATE {1} [{2}] recurrence end date is invalid

INVALID_END_TIME invalid 'end' time

INVALID_ENTITY_INTERNALID Attempt to insert entity with nkey -1 or 0

INVALID_ENTITY_STATUS You entered an invalid entity status.

INVALID_EVENT_TIME You cannot make the time that close to the start or end of the day, because it
shifts the event across a day boundary.

INVALID_EXPRESSION ERROR: Invalid Expression

INVALID_FAX_NUM The Fax Number is invalid.

INVALID_FAX_PHONE_
FORMAT

Invalid FaxPhoneNumber. The format of FaxPhoneNumber must contain area
code plus seven digit number.

INVALID_FIELD_FOR_RCRD_
TYP

Record type {1} does not support field {2}

INVALID_FIELD_NAME_FOR_
NULL

The specified name [{1}] must exactly match an existing field name.

INVALID_FILE Verify that you have a valid file to upload.

INVALID_FILE_TYP Invalid file type. File is not a compressed/zip file.

INVALID_FILE_TYP Invalid file type. File is not a compressed zip file.

INVALID_FILE_TYP The media file type you uploaded was not recognized. Please try again.

INVALID_FLDR_SIZE Error in update_folder_size

INVALID_FLD_RANGE Value outside of valid min/max range for this field

INVALID_FLD_VALUE You have entered an Invalid Field Value {1} for the following field: {2}

INVALID_FORMAT_IN_
PARAM_FIELD

The Additional Parameters field is not formatted correctly. Please reformat and
try again

INVALID_FORMULA Your formula contains a reference to an encrypted field. This is not allowed.

INVALID_FORMULA Your formula could result in a divide by zero error. Please go back, correct the
formula and resumbit.

INVALID_FORMULA_FIELD Your formula has an unrecognized field in it. Please go back and correct the
formula and resubmit.

INVALID_FROM_DATE invalid 'from' date

INVALID_FROM_TIME invalid 'from' time

INVALID_FULFILMNT_ITEM You have an invalid item {1} in the fulfillment request.

INVALID_FX_RATE Exchange Rate must be 1 for vendors in your currency.

INVALID_GET_REF Either RecordRef or CustomRecordRef should be used for 'get' operation.

INVALID_GIFT_CERT Invalid gift certificate

INVALID_GIFT_CERT_AMT The remaining amount on a gift certificate can not be negative

INVALID_GIFT_CERT_CODE Gift certificate code must contain only letters and digits.

INVALID_GROUP_TYP This type of group cannot be defined based on another group of the same
type.

SuiteScript Errors 1185

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_GROUP_TYP You cannot define this group type using this search.

INVALID_GROUP_TYPE The group type {1} is invalid.

INVALID_GST_PST_AGENCIES The GST or PST agencies are not valid. Please review your company
preferences

INVALID_ID Identifiers can contain only digits, alphabetic characters, or "_" with no spaces

INVALID_ID You have provided an invalid script id or internal id: {1}

INVALID_ID The externalId attribute is not supported for {1}

INVALID_INITIALIZE_ARG The reference type {1} and initialize type {2} are not matched.

INVALID_INITIALIZE_ARG InitializeRef should be used for 'initialize' operation.

INVALID_INITIALIZE_AUXREF Invalid initialize operation argument 'auxReference'.

INVALID_INITIALIZE_REF You can not initialize {1}: invalid reference {2}.

INVALID_INITIALIZE_REF Can not initialize customerPayment: invalid customer reference {1}.

INVALID_INITIALIZE_REF Can not initialize customerPayment: invalid invoice reference {1}.

INVALID_INITIALIZE_REF You have an invalid sales order {1} or the order is already billed

INVALID_INITIALIZE_REF You have an invalid sales order {1} or the order is already closed.

INVALID_INSURED_VALUE The Insured Value cannot exceed the total sum of the items being shipped.

INVALID_INVENTORY_NUM Invalid set of inventory numbers: values must be separated by commas,
spaces, tabs, or line feeds.

INVALID_INV_DATE Invoice date on billing schedule may not be after {1}

INVALID_IP_ADDRESS_RULE The following IP Address rule is not valid: {1}

INVALID_ISSUE_PRIORITY Severity 1 issues must have priority 1.

INVALID_ITEM_OPTION Invalid item option {1} for item {2}

INVALID_ITEM_OPTIONS The options for item '{1}' are no longer available. Please change your order and
try again.

INVALID_ITEM_SUBTYP Invalid item subtype [{1}] for item [{2}].

INVALID_ITEM_TYP The item [{1}] does not have a valid item type.

INVALID_ITEM_WEIGHT The total item weight must be > 0.0

INVALID_JOB_ID You have specified an invalid Job Id

INVALID_KEY_OR_REF The specified key is invalid.

INVALID_KEY_OR_REF Invalid {1} reference key {2}.

INVALID_KEY_OR_REF Invalid {1} reference key {2} for {3} {4}.

INVALID_LINK_SUM Links sum to more than applied transaction amount

INVALID_LINK_SUM Links sum to more than original transaction amount

INVALID_LIST_ID You must specify a valid line ID. Please set {1}.

INVALID_LIST_KEY Could not perform operation ''{1}'' on an invalid line [{2}].

INVALID_LIST_KEY Could not perform operation 'add' on an existing line [{1}].

SuiteScript Errors 1186

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_LOGIN Invalid login. Online Form access is disabled.

INVALID_LOGIN Invalid login. Supplier access is disabled.

INVALID_LOGIN_ATTEMPT Invalid login attempt.

INVALID_LOGIN_
CREDENTIALS

A problem occured verifying the presented email address, password,
roleName or account number, please verify these pieces of information and try
again

INVALID_LOGIN_
CREDENTIALS

You have entered an invalid email address or account number. Please try
again.

INVALID_LOGIN_
CREDENTIALS

You have entered an invalid email address or password. Please try again.

INVALID_LOGIN_
CREDENTIALS

You have entered an invalid login password. Please try again.

INVALID_LOGIN_
CREDENTIALS

You have entered an invalid password. Please try again.

INVALID_LOGIN_IP Invalid login. IP Address does not match any of the IP Address rules specified
for this entity.

INVALID_LOT_NUM_FORMAT Lot numbers must be entered using this format: LOT#(Quantity).nFor example,
to enter a quantity of 100 items as Lot number ABC1234, enter "ABC1234(100)"
in the Lot Numbers field.

INVALID_MARKUP_DISCOUNT Markup/Discount % must be between -999% and 999%

INVALID_MEMRZD_TRANS A memorized transaction may not contain any serial or lot numbers. Go
back, remove the numbers, and try to re-Memorize the transaction. Posting
transactions such as Bills or Cash Sales may not use serial or lot numbered
items. Non-Posting transactions such as Purchase Orders or Sales Orders may
use serial or lot numbered items but may not contain serial or lot numbers.

INVALID_NUMBER Invalid Decimal Number

INVALID_NUMBER Invalid Integer

INVALID_NUMBER Invalid integer {1}

INVALID_NUMBER Invalid number {1}

INVALID_NUMBER You entered "{1}" into a field where a numeric value was expected. Please go
back and change this value to a number.

INVALID_NUMBER You entered an invalid number:
Go back, change this value and resubmit.

INVALID_OBJ There are no objects of this type

INVALID_ONLINE_FORM This online form is inactive or not available online.

INVALID_OPERATION That operation is not supported for this record type: {1}

INVALID_ORD_STATUS This order has been partially or fully processed and may not be reset to
'Pending Approval'.

INVALID_ORIGIN_COUNTRY The origin Country is invalid or has not been set.

INVALID_ORIGIN_POSTCODE The origin Postal Code is invalid or has not been set.

SuiteScript Errors 1187

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_ORIGIN_STATE The origin State is invalid or has not been set.

INVALID_PAGER_NUM The Pager Number is invalid.

INVALID_PAGE_INDEX Job {1} does not have a page {2}

INVALID_PARENT An account cannot be its own parent

INVALID_PARTNER_ID Invalid partner id: {1}

INVALID_PHONE_FAX_
PAGER_NUM

The Phone, Fax, or Pager Number is invalid.

INVALID_PHONE_NUM The Phone Number is invalid.

INVALID_PICKUP_POSTAL_
CODE

An error has occurred. Pickup Postal Code {1} is not the postal code associated
with Shipper Number {2}.

INVALID_POST Invalid Post

INVALID_PROBABILITY_
RANGE

Probability must be between 0 and 100.

INVALID_PST_TAX_VALUE PST tax value is not a valid number: {1}

INVALID_PSWD Email address "{1}" has been previously registered under a different password
from the new password you provided. For security reasons, you will first
need to go back and supply the correct new password for "{1}" to merge the
accounts.

INVALID_PSWD Invalid Password. The password must be between 6 and 10 character with at
least one numeric and one alphabetic character.

INVALID_PSWD Password must be at least 6 characters long.

INVALID_PSWD Password must be at least 6 characters long and contain at least one number
or special character.

INVALID_PSWD Password must contain at least one letter (A-Z).

INVALID_PSWD Password must contain at least one number or special character.

INVALID_PSWD The current password you supplied is incorrect.

INVALID_PSWD Your new password must be at least {1} characters, contain at least one non-
letter, and be substantially different from the current password.

INVALID_PSWD Your new password must be at least 6 characters, contain at least one non-
letter, and be substantially different from the current password.

INVALID_PSWD Your password cannot be the same as your login. Please choose a new
password.

INVALID_PSWD Your password must be at least 6 characters

INVALID_PSWD You've used that password before. Please choose a new password.

INVALID_PSWD_HINT Your hint is too similar to your password. Please choose something less
obvious.

INVALID_PSWD_ILLEGAL_
CHAR

Password contains an illegal character.

INVALID_PURCHASE_TAX_
CODE

Purchase tax code not defined properly for item

SuiteScript Errors 1188

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_QUANTITY Serial and lot number quantities must be integers

INVALID_QUANTITY Serial and lot number quantities must be positive.

INVALID_RCRD_ID Invalid id {1} to create a record.

INVALID_RCRD_OBJ You do not have a valid record object.

INVALID_RCRD_REF Invalid RecordRef internalId {1} for field {2}

INVALID_RCRD_REF Invalid record reference.

INVALID_RCRD_REF Invalid record reference

INVALID_RCRD_TRANSFRM You have entered an invalid default value for this record transformation
operation.

INVALID_RCRD_TRANSFRM That type of record transformation is not allowed. Please see the
documentation for a list of supported transformation types

INVALID_RCRD_TRANSFRM That is not a valid record transformation.

INVALID_RCRD_TYPE Invalid Record Type

INVALID_RCRD_TYPE {1}: type argument {2} is not a valid record or is not available in your account.
Please see the documentation for a list of supported record types.

INVALID_RCRD_TYPE The record type [{1}] is invalid.

INVALID_RCRD_TYPE The record type is invalid.

INVALID_RECIPIENT Recipient internal id does not match an existing entity.

INVALID_RECR_REF Could not update {1} to {2} because referenced record does not exist

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its duration is either negative or
longer than one day. {1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its end-by date is before its start date.
{1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its end time and duration do not
match. {1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its end time is more than one day after
its start time. {1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its end time is not after its start time.
{1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its start time or end time/duration is
empty. {1}

INVALID_RECUR_DATE_
RANGE

This event recurrence is invalid because its times are not in order. {1}

INVALID_RECUR_DESC_REQD This event recurrence is invalid because it has no description. {1}

INVALID_RECUR_DOW This event recurrence has an invalid day-of-week field. {1}

INVALID_RECUR_DOWIM This event recurrence has an invalid day-of-week-in-month value. {1}

INVALID_RECUR_DOWMASK This event recurrence is invalid because its day-of-week mask is not 7
characters long. {1}

INVALID_RECUR_FREQUENCY This event recurrence has an invalid frequency. {1}

SuiteScript Errors 1189

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_RECUR_PATTERN This event does not have a valid recurrence pattern.

INVALID_RECUR_PATTERN This event recurrence is invalid because it is not a monthly or yearly event and
it has day-of-week and day-of-week-in-month field values. {1}

INVALID_RECUR_PATTERN This event recurrence is invalid because it only has one recurrence time and it
must have either none or at least two. {1}

INVALID_RECUR_PATTERN This event recurrence is invalid because one of its times is out of the range 0 to
86399. {1}

INVALID_RECUR_PATTERN This event recurrence is invalid because only one of the day-of-week and day-
of-week-in-month fields is set. Both must be set or both must be unset. {1}

INVALID_RECUR_PATTERN This event recurrence is invalid either because it is not weekly and it has a day-
of-week mask, or it is weekly and it has no day-of-week mask. {1}

INVALID_RECUR_PATTERN This single day event is invalid since it contains a recurrence pattern.

INVALID_RECUR_PERIOD This event recurrence has an invalid period. {1}

INVALID_RECUR_TIME_
ZONE_REQD

This event recurrence in invalid because it has no time zone. {1}

INVALID_REFFERER_EMAIL The refferer email address you have entered is not valid. Please try again.

INVALID_REF_CANT_
INITIALIZE

Cannot initialize customerRefund: invalid creditMemo reference {1}.

INVALID_REF_CANT_
INITIALIZE

Cannot initialize customerRefund: invalid customer reference {1}.

INVALID_REF_CANT_
INITIALIZE

You can not initialize {1} by referencing {2}.

INVALID_REF_KEY Invalid externalId {1}.

INVALID_REF_KEY Invalid reference key [{1}].

INVALID_RESULT_SUMMARY_
FUNC

The result field {1} cannot be grouped. Please edit the search and omit this
field or use a different summary function.

INVALID_REV_REC_DATE_
RANGE

Rev rec end date can not be before rev rec start date.

INVALID_REQUEST Server cannot understand request due to malformed syntax.

INVALID_ROLE The specified role is invalid.

INVALID_ROLE Your role does not give you permission to view this page.

INVALID_ROLE_FOR_EVENT You seem to have been invited to this {1} in a different role. Please change your
role to view the {1}.

INVALID_RQST_CONTACTS_
EXIST

it has associated primary contacts.

INVALID_RQST_PARENT_
REQD

it has associated contact records that would be left with no parent company.

INVALID_RQST_SBCUST_
JOBS_EXIST

it has associated sub-customers or jobs.

INVALID_SAVEDSEARCH A saved search with the internal ID {1} does not exist.

SuiteScript Errors 1190

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_SAVEDSEARCH We cannot return search columns for summary saved search {1}.

INVALID_SCHDUL_FORMAT To create a valid schedule, please enter the bracket values in ascending orders
without gaps.

INVALID_SCRIPT_ID A saved search with the script ID {1} does not exist.

INVALID_SEARCH That search or mass update does not exist.

INVALID_SEARCH You may search by {1} or {2} but not both

INVALID_SEARCH_CRITERIA Can't search transactions: invalid cross reference key

INVALID_SEARCH_CRITERIA Global Search supports at most three keywords and requires at least one.
Keywords are composed of only letters, digits, and dashes.

INVALID_SEARCH_FIELD_KEY search field keys are not consistent({1}/{2})

INVALID_SEARCH_FIELD_
NAME

search field names are not consistent({1}/{2})

INVALID_SEARCH_FIELD_OBJ {1} is not a valid search custom field

INVALID_SEARCH_FIELD_OBJ {1} must be used to search custom field {2}

INVALID_SEARCH_FIELD_OBJ Server application error: invalid search customfield object.

INVALID_SEARCH_FIELD_OBJ Invalid search field object: {1}

INVALID_SEARCH_JOIN_ID Invalid Search Join ID

INVALID_SEARCH_MORE Invalid searchMore operation. Please make sure that you have had a successful
search operation before you can perform any searchMore operation.

INVALID_SEARCH_OPERATOR You need to provide a valid search field operator.

INVALID_SEARCH_OPERATOR You can not use this operator '{1}' for internalId search.

INVALID_SEARCH_PAGE_
INDEX

Invalid search page index.

INVALID_SEARCH_PAGE_SIZE Invalid search page size.

INVALID_SEARCH_PREF You cannot set returnSearchColumns to false while you specify search
columns.

INVALID_SEARCH_PREF You cannot set returnSearchColumns to true without specifying search
columns or referencing a saved search.

INVALID_SEARCH_SELECT_
OBJ

Invalid search select field object: {1}

INVALID_SEARCH_VALUE You need to provide a search value.

INVALID_SEARCH_VALUE You need to provide search values.

INVALID_SECONDARY_EMAIL Invalid secondary email address. The email address must be in a valid format.

INVALID_SECPAY_
CREDENTIALS

The username or password used to process the transaction with SECPay was
not valid. Please make sure you have entered the correct username, password,
and remote password in your SECPay account setup.

INVALID_SERIAL_NUM No items match the entered serial number

INVALID_SERIAL_OR_LOT_
NUMBER

Serial and lot numbers may not contain the '{1}' character.

SuiteScript Errors 1191

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_SHIPPER_STATE The Shipper State/Province Code is missing or invalid. Please enter the 2 to 5
character abbreviation for the state or province of the address that contains it.

INVALID_SHIP_FROM_STATE The Ship From State/Province Code is missing or invalid. Please enter the 2 to 5
character abbreviation for the state or province of the address that contains it.

INVALID_SHIP_TO_SATE The Ship To State/Province Code is missing or invalid. Please enter the 2 to 5
character abbreviation for the state or province of the address that contains it.

INVALID_STATE Signup prospect state '{1}' is invalid.

INVALID_STATUS You may not change this issue''s status from ''{1}'' to ''{2}''.

INVALID_SUB The subsidiary restrictions on this record are incompatible with those defined
for account: {1}. Subsidiary access on this record must be a subset of those
permitted by the account.

INVALID_SUB The subsidiary restrictions on this record are incompatible with those defined
for account: {1}. Subsidiary access on this record must be a superset of those
permitted by the account.

INVALID_SUB The subsidiary restrictions on this record are incompatible with those defined
for department: {1}. Subsidiary access on this record must be a subset of those
permitted by the department.

INVALID_SUB The subsidiary restrictions on this record are incompatible with those defined
for item: {1}. Subsidiary access on this record must be a superset of those
permitted by the item.

INVALID_SUB The subsidiary restrictions on this record are incompatible with those defined
for location: {1}. Subsidiary access on this record must be a subset of those
permitted by the location.

INVALID_SUB The Subsidiary selected doesnt match the bank account selected.

INVALID_SUB This record does not support multiple subsidary restrictions. You must choose
a single subsidiary.

INVALID_SUB Transaction references multiple subsidiaries

INVALID_SUB You may not add members to a group/kit/assembly unless the subsidiaries for
those members completely contain the subsidiaries of the group/kit/assembly.

INVALID_SUB {1} can not be used with the selected subsidiary

INVALID_SUBSCRIPTION_
STATUS

You cannot change the global subscription status from its current value of
{1:status name}.

INVALID_SUBSCRIPTION_
STATUS

You cannot set the global subscription status to the value {1:status name}.

INVALID_SUPERVISOR Employees can not be their own supervisor.

INVALID_SUPERVISOR You can't insert this employee record as it would create a loop in the
supervisor hierarchy.

INVALID_TASK_ID The task ID: {1} is not valid. Please refer to the documentation for a list of
supported task IDs.

INVALID_TASK_ID You have specified an invalid task Id

INVALID_TAX_CODE Invalid Canadian Tax Code: {1}

SuiteScript Errors 1192

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_TAX_CODES Invalid Tax Code(s): {1}

INVALID_TAX_CODE_FOR_
SUB

The selected tax code is not available in subsidiary.

INVALID_TAX_VALUE GST and PST amount cannot be negative!

INVALID_TAX_VALUE GST tax value is not a valid number: {1}

INVALID_TIME_FORMAT {1} is not a valid time and it should use the following format h:mm a.

INVALID_TO_DATE invalid 'to' date

INVALID_TRACKING_NUM The tracking number is not valid.

INVALID_TRACKING_NUM You have entered a tracking number that exceeds the maximum size of {1}
characters: {2}. Multiple tracking numbers must be separated by spaces, tabs,
or commas. Slash (/), semicolon (;), colon (:), or any other character that is not a
space or a comma will be interpreted as a part of the tracking number.

INVALID_TRANS This transaction is not valid.

INVALID_TRANSACTION_
DATE

Transaction date {1} is not valid. Transaction dates may be at most {2} years in
the past and {3} years in the future.

INVALID_TRANSACTIO_DATE There are no Accounting Periods that cover this transaction date.

INVALID_TRANS_COMPNT You have entered an invalid component for this transaction.

INVALID_TRANS_SUB_ACCT Transaction subsidiary {1} is not valid for account {2}. Please choose a different
account.

INVALID_TRANS_SUB_CLASS Transaction subsidiary {1} is not valid for class {2}. Please choose a different
class.

INVALID_TRANS_SUB_DEPT Transaction subsidiary {1} is not valid for department {2}. Please choose a
different department.

INVALID_TRANS_SUB_ENTITY Transaction subsidiary {1} is not valid for entity {2}. Please choose a different
entity.

INVALID_TRANS_SUB_ITEM Transaction subsidiary {1} is not valid for item {2}. Please choose a different
item.

INVALID_TRANS_SUB_LOC Transaction subsidiary {1} is not valid for location {2}. Please choose a different
location.

INVALID_TRANS_TYP Transaction type specified is incorrect.

INVALID_UNSUPRTD_RCRD_
TYP

Invalid or unsupported record type: {1}

INVALID_UPS_ACCT An invalid UPS Account Number was entered. Please verify you have entered
the correct Shipper Number and re-submit the form.

INVALID_UPS_PACKG_
WEIGHT

UPS requires a minimum package weight of .1 LBS and a maximum package
weight of 150 LBS. Please adjust the package weights accordingly and
resubmit the fulfillment.

INVALID_UPS_VALUES UPS did not accept the entered values for the following fields. Please go back
and correct these values:

SuiteScript Errors 1193

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

INVALID_URL Please begin the {1} url with http:// or https://<p>Examples
of a valid {1}url are:
http://www.mydomain.com/image.gif or
https://one.two.org/user-name/test.jpg

INVALID_URL Request for invalid URL: {1}

INVALID_VAT_AMOUNT VAT amount cannot be negative

INVALID_VAT_REGSTRTN_
NUM

Invalid VAT registration number {1}.

INVALID_WO You have an invalid work order {1} or the order is already closed.

INVALID_WORLDPAY_ID Exchange source does not recognize your WorldPay ID. Please check that it is
correct.

INVALID_WO_ITEM Special Work Order Items can not be Drop Ship or Special Order

INVALID_YEAR Invalid year {1}

INVALID_YEAR_FORMAT Illegal year format or value. Examples: 1999, 2000, 2001, etc.

INVALID_ZIP_FILE Invalid archive. Zip file must contain at least one file.

INVALID_ZIP_POST_CODE The submitted Zip/Postal Code is invalid. This field may only contain a
maximum of 16 digits, spaces, and the dash character (-).

INVENTORY_NUM_DISALLWD Inventory numbers are only allowed on items with serial numbered or lot
numbered items.

ISSUE_ASSIGNEE_DISALLWD The specified assignee is disallowed for this issue's status.

ISSUE_PRODUCT_VERSION_
MISMATCH

Cannot set issue {1} to {2} {3} and {4} {5} because that product is not associated
with that version.

ISSUE_VERSION_BUILD_
MISMATCH

Issue version and build do not match.

ITEM_ACCT_REQD One of the items on this transaction has an amount but no account. Please fix
the item and resubmit the transaction.

ITEM_ACCT_REQD One of the items on this transaction has an amount but no account. Please
fix the item and resubmit the transaction. It might be that you have recently
elected to charge for shipping and have not assigned an account to the
shipping item that is included in this transaction.

ITEM_ACCT_REQD You must specify asset and COGS accounts for this inventory item.

ITEM_COUNT_MISMATCH COGS_CORRECTION: 2 means of calculating the item count do not match for
item: {1} vs {2})

ITEM_COUNT_MISMATCH COGS_CORRECTION: 2 means of calculating the item count do not match for
item: {1} vs {2}) There are transactions in the system in which this item is used
but the asset account for that item is not the current Asset Account in the item
record

ITEM_IS_UNAVAILABLE (Item is unavailable)

ITEM_NAME_MUST_BE_
UNIQUE

An item with that name already exists. Please choose another name

ITEM_NOT_UNIQUE The item [{1}] is not unique.

ITEM_PARAM_REQD_IN_URL Error - Item parameter (id=nnn) was not provided on the URL

SuiteScript Errors 1194

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

ITEM_TYP_REQS_UNIT Items of type {1} require {2} unit

ITEM_TYP_REQS_UNIT Items of type {1} subtype {2} require {3} unit

JE_AMOUNTS_MUST_
BALANCE

The amounts in the journal entry must balance.

JE_LINE_MISSING_REQD_
DATA

{1} are mandatory on all lines of the journal entry.

JE_REV_REC_IN_PROGRESS This account is currently processing Revenue Recognition Journal Entries. Only
one such process is allowed at a time.

JE_UNEXPECTED_ERROR Journal Entries failed to be created due to unexpected error.

JOB_NOT_COMPLETE The specified job is not complete yet

JS_EXCEPTION A JavaScript Exception was thrown

KEY_REQD Empty key not allowed for {1}

LABEL_REQD Please enter a value for Label

LANGUAGE_SETUP_REQD Please go to company preference to add language to translate.

LINKED_ACCT_DONT_MATCH You are attempting to link transaction line items, but items on the lines do
not match. This can happen when you create a fulfillment from a sales order,
a receipt from a purchase order, an invoice from a sales order, a vendor bill
from a purchase order, or a reimbursement from a purchase. Please verify that
items in the transaction you are creating match the items in the originating
transaction.

LINKED_ITEMS_DONT_
MATCH

Linked items don't match

LIST_ID_REQD Required field missing in a related list. You must set {1}.

LIST_KEY_REQD There is no list key for field {1} of list {2}. Please assign a key and resubmit your
task.

LOCATIONS_IN_USE Your classes cannot be converted to locations because your existing location
records are referred to by transactions or other records. These location records
cannot be overwritten.

LOCATIONS_SETUP_REQD You must first define locations (Lists->Locations->New) before you can
distribute inventory.

LOCATIONS_SETUP_REQD You must first define locations (Lists->Locations->New) before you can transfer
inventory.

LOCATION_REQD You must specify a location to use {1} numbers when Multi-Location Inventory
is enabled

LOCKED_DASHBOARD Your dashboard has been set up and locked by an administrator. Please
contact them for details.

LOGIN_DISABLED Invalid login. Customer access is disabled.

LOGIN_DISABLED Login access has been disabled for this role.

LOGIN_DISABLED Your access to {1} has been deactivated. Please contact the company's
administrator to re-activate your access.

SuiteScript Errors 1195

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

LOGIN_DISABLED Your access to this account has been removed or disabled. Please contact the
account adminstrator.

LOGIN_DISABLED_PARTNER_
CTR

Disabled login: Advanced Partner Center access has been disabled by the
account administrator.

LOGIN_DISABLED_PARTNER_
CTR

Disabled login: Standard Partner Center access has been disabled by the
account administrator.

LOGIN_EMAIL_REQD Invalid login. You must provide an email address.

LOGIN_NAME_AND_PSWD_
REQD

Please enter both a user name and a password.

LOGIN_REQD You must log in before accessing
this page.

LOST_UPSELL_CRITERIA Your upsell criteria were lost. This is probably due to a transient condition such
as a server reboot. Click here to go
back and try again.

MACHN_LIST_KEY_NAMES_
REQD

Server application error: no list key names are defined for field {1} of record of
type {2}.

MANDATORY_PRD_TYPE_
REQD

Please select the mandatory period type...

MATRIX_INFO_TEMP_LOST Matrix item information was lost. This was probably due to a transient
condition like a server reboot. Please try again.

MATRIX_SUBITEM_NAME_
TOO_LONG

The following matrix sub-item name is too long (80 character max):<p> {1}
<p> Please shorten your parent item name or your option abbreviations.

MAX_16_LINES_ALLWD_PER_
BILLPAY

A maximum of 16 lines per payee can be applied per online bill payment.

MAX_200_LINES_ALLWD_
ON_TRANS

Journal Entries can have a maximum of 200 lines.

MAX_BULK_MERGE_RCRDS_
EXCEEDED

You cannot perform a bulk merge operation with a group larger than {1}
records

MAX_EMAILS_EXCEEDED This campaign email event exceeds the number of emails ({1}) that can be sent
per month without setting up a default campaign domain or specifying one
on the campaign email template.

MAX_EMAILS_EXCEEDED This merge operation exceeds the number of emails ({1}) that can be sent per
month without setting up a bulk merge domain or specifying one on the email
template.

MAX_MERGE_LIMIT_
EXCEEDED

You can merge a maximum of 25 records at a time

MAX_MERGE_RCRDS_
EXCEEDED

You can merge a maximum of {1} records at a time.

MAX_RCRDS_EXCEEDED The maximum number ({1}) of records allowed for a {2} operation has been
exceeded.

MEDIA_FILE_INVALID_
JSCRIPT

Media file was of type javascript and would not compile. Error on line:

SuiteScript Errors 1196

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

MEDIA_NOT_FOUND Media item not found {1}

MEDIA_NOT_INITIALIZED Media Item cannot be initialized

MERGE_OPERATION_
DISALLWD

You cannot perform merge operations on records that belong to your group.

MERGE_RCRD_REQD You must specify a record to merge into

METAVANTE_SECRET_
ANSWER_REQD

Missing Secret Answer. A secret answer is required by the Metavante CSP
service. It cannot be null or empty.

METAVANTE_SECRET_
QESTION_REQD

Missing or invalid Secret Question ID. A valid Secret Question is required by
the Metavante CSP service. Please refer to Table 2, above, for a list of valid
Secret Question IDs.

METAVANTE_SETUP_REQD Your NetSuite account is not currently integrated with a Metavante Online
Bill Pay account.
To set up an active account, you need to reapply
to Metavante.
Go to Setup > Set Up Online Bill Pay and follow the
instructions on that page to apply for a Metavante account.

METAVANTE_TEMP_
UNAVAILBL

Metavante is temporarily unavailable. Please try again later.

If
you would like to print the payment to mail yourself, click Back, and then click
the date of the payment on the Approve Online Bill Payments page. When the
payment's detail record appears, clear the Bill Pay box and either check the To
Be Printed box and click Submit or click the Print button.

MISMATCHED_CURRENCY The transaction currency does not match the names currency

MISMATCHED_QTY_PRICING Quantities do not match accross pricings

MISMATCHED_SEARCH_
PARENTHESIS

Search error: Parentheses are unbalanced.

MISMATCH_EVENT_ISSUE_
STATUS

Event status ({1}) and issue base status ({2}) do not match

MISMATCH_ISSUE_
PRODUCT_VERSION

Issue product and version do not match.

MISMATCH_SALES_
CONTRIBUTION

Sales team sales rep total does not equal 100%, {1} sales reps, {2} total
contribution.

MISSING_ACCT_PRD You are attempting to create an amortization or revenue recognition schedule
outside the range of available accounting periods. Please adjust the periods
on this transaction or go to Setup>Accounting>Manage Accounting Periods
to set up more periods.

MISSING_ENUM No Enumerated Value {1} for Enumerated Type {2}

MISSING_REQD_FLD Missing required value for mandatory field: {1}

MISSING_REQD_FLD The Company record does not have all required fields set. Please ensure the
State, Zip/Postal Code, and Country fields are set and try your request again.

MISSNG_ACCT_PRD Unable to find an Accounting Period for the allocation date.

MISSNG_REV_REC_RCRD Unable to locate Revenue Recognition records.

MISSNG_SO_REV_REC_
PARAMS

Unable to get Revenue Recognition parameters from originating sales order.

SuiteScript Errors 1197

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

MISSNG_SO_START_END_
DATES

Unable to acquire start and end date from Sales Order.

MLI_REQD Multi-location Inventory Error (MLI_LOCATION_REQUIRED): this transaction or
its items must have locations.

MLTPLE_TAX_LINES_
DISALLWD

Multiple Tax lines for line item in transaction:

MSNG_FIELD_OWRTE_MUST_
BE_TRUE

The missingFieldOverwrite attribute must be true when updating a salesOrder.

MST_UPDATE_ITEMS_THEN_
RATES

You cannot update items and shipping rates at the same time on transactions
that have multiple shipping routes enabled. You must first update the items,
then get the transaction and update the shipping rates separately.

MULTISELECT_TYPE_REQD Server application error: no multiselect type is defined for field {1} of {2} record
type.

MULTI_ACCT_CANT_
CHANGE_PSWD

The password cannot be changed here because the email address is
associated with multiple accounts. The user must change their password via
the link in the settings portal of the home page.

MULTI_SHIP_ROUTES_REQD {1} {2} has multiple shipping routes enabled, which is only supported in
version 2008_2 and newer. You are not allowed to update any shipping fields
on this record.

NAME_ALREADY_IN_USE A mass update has already been saved with that name. Please use a different
name.

NAME_ALREADY_IN_USE A search has already been saved with that name. Please use a different name.

NAME_REQD Missing Name. Name is a required field and it cannot be null or empty.

NAME_TYPE_FLDR_FIELDS_
REQD

missing required fields : name, type, and folder

NARROW_KEYWORD_
SEARCH

Please provide more detailed keywords so your search does not return too
many results.

NEGATIVE_PAYMENT_
DISALLWD

Negative payments not allowed

NEGATIVE_TAX_RATE_
DISALLWD

A Tax rate cannot be negative

NEW_CONNECTION_
DISALLWD

Not allowed to create new connections.

NONMATCHING_EMAILS Email addresses don't match

NONZERO_AMT_REQD You did not enter non-zero amounts for any accounts.

NON_ADMIN_CANNOT_
INITIATE_LINK

This user cannot integrate with a partner.

NOT_IN_INVT You may not distribute {1} numbers that are not currently in inventory. You
attempted to distribute the following {1} numbers that were not in inventory:
{2}

NO_DATA_FOUND No data was found

SuiteScript Errors 1198

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

NO_EXPENSES_FOR_PRD The Allocation sources or destinations did not have any expenses associated
with them for the selected period.

NO_ITEMS_TO_PRINT There are no items to print

NO_MASS_UPDATES_
RUNNING

There are currently no mass updates running.

NO_MTRX_ITEMS_TO_
UPDATE

There are no matrix subitems to update.

NO_ORD_SHPMNT There is no shipment on that order.

NO_RCRDS_MATCH No Records matched your request.

NO_RCRD_FOR_USER There is no record for this user in the company's entity table.
(emaillogin.semail='{1}', kentity={2})

NO_SCHDUL_APPLIED There were no schedules that need to applied to the given period.

NO_SCHDUL_APPLIED There were no schedules that need to be applied to the input accounting
period.

NULL_CHECK_NUMBER Null Check Number

NUMERIC_CHECK_NUM_
REQD

Invalid Check Number. Check number must be a numeric value and can be at
most 7 digits long.

NUM_ITEMS_GRTR_THAN_
QTY

The number of {1} entered ({2}) is greater than the item quantity ({3})

NUM_ITEMS_NOT_EQUAL_
TO_QTY

The number of {1} entered ({2}) is not equal to the item quantity ({3})

NUM_REQD_FOR_FIRST_
LABEL

No number was specified for the first label.

OI_FEATURE_REQD You have not enabled Outlook Integration feature for your account.

OI_PERMISSION_REQD You do not have permission to access Outlook Integration feature.

ONE_ADMIN_REQD_PER_
ACCT

This operation would leave your account without an active Administrator. In
order to successfully perform the mass update, please deselect at least one
entity with an Administrator role.

ONE_ADMIN_REQD_PER_
ACCT

You can't delete this employee. No administrators for this account would
remain.

ONE_ADMIN_REQD_PER_
ACCT

You can't inactivate {1}. The account would be left with no active
administrators.

ONE_ADMIN_REQD_PER_
ACCT

You can't remove the administrator role from this user. No administrators for
this account would remain.

ONE_EMPL_REQD At least one employee is required to process payroll

ONE_POSITIVE_VALUE_REQD You must enter at least one positive value for at least one item.

ONE_RCRD_REQD_FOR_
MASS_UPDATE

Please create at least one {1} before using this mass update.

ONE_ROLE_REQD You can't inactivate all roles. You would not be able to log in.

ONLINE_BILL_PAY_SETUP_
REQD

{1} is not set up for Online Bill Pay. To set up this payee, click Go Back.
When the Approve Online Bill Payments page appears, click Enable Payee

SuiteScript Errors 1199

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

in the Enabled for Billpay column.
When the payee's record appears,
check Enable Online Bill Pay and submit these required fields:Legal
NamePrint on Check AsPhoneBilling Address</
ul>
Then, go to Transactions > Approve Online Bill Payments to approve
the payment.

ONLINE_FORM_DSNT_EXIST This online form does not exist.

ONLINE_FORM_ID_REQD Missing required online form ID

ONLINE_FORM_USER_
ACCESS_ONLY

This form is only accesible to online form users.

ONLINE_ORD_FEATURE_
DISABLED

Can't open store for {1}. This company does not have the Use Sales
Orders feature enabled. The feature is required for customers to make
online purchases.

ONLY_ONE_CONTRIB_ITEM_
REQD

Only one instance of a company contribution item is allowed on an employee
record.

ONLY_ONE_DEDCT_ITEM_
REQD

Only one instance of a deduction item is allowed on an employee record.

ONLY_ONE_DISTRIB_ALLWD You may not distribute {1} numbers more than once. You attempted to
distribute the following {1} numbers more than once: {2}

ONLY_ONE_EARNING_ITEM_
REQD

Only one instance of an earning item is allowed on an employee record.

ONLY_ONE_LOT_NUM_
ALLWD

You may not enter more than a single serial/lot number before an item is
selected.

ONLY_ONE_PREF_BIN_
ALLWD

There may be at most one preferred bin per location for an item. The following
location has more than one preferred bin for this item: {1}

ONLY_ONE_PREF_BIN_
ALLWD

You may not have more than one preferred bin per item.

ONLY_ONE_UNIT_AS_BASE_
UNIT

Only one unit may be designated as the base unit.

ONLY_ONE_UPLOAD_ALLWD You cannot upload more than one file at a time

ONLY_ONE_WITHLD_ITEM_
REQD

Only one instance of a withholding item is allowed on an employee record.

ORDER_DSNT_EXIST That order does not exist.

ORD_ALREADY_APPRVD You cannot cancel this order because it has already been approved.

OVERAGE_DISALLWD Overage is not allowed.

OVERLAPPING_PRDS_
DISALLWD

Illegal period structure. Overlapping periods.

OVERLAPPING_PRDS_
DISALLWD

There is an overlapping period. Please check your Active or Inactive Periods to
ensure that there is not an existing period.

OVER_FULFILL_DISALLWD You can not over-fulfill an item unless you have selected the 'Allow Overage on
Item Fulfillments' preference.

OWNER_REQD You cannot make a contact private without an owner

PACKAGE_WEIGHT_REQD Attempted to create a package without specifying a nonzero package weight.

SuiteScript Errors 1200

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

PACKG_LEVEL_REF_
DISALLWD

Package level reference numbers are not allowed for shipments whose origin/
destination pair is not US/US or Puerto Rico/Puerto Rico.

PACKG_VALUE_TOO_LARGE Package declared value cannot be greater than $999.00 USD

PARENT_CANT_ITSELF_BE_
MEMBER

Parent item can not be a member of itself

PARENT_MUST_BE_MATRIX_
ITEM

A Child matrix item's parent must be a matrix item

PARENT_REQD A Child matrix item must have its parent specified

PARTNER_ACCESS_DENIED Partners do not have access to this item.

PARTNER_CODE_ALREADY_
USED

A partner with that partner code ({1}) already exists.

PAYCHECK_IN_USE You cannot clear this paycheck because it is linked to by one or more liability
payments. You must delete or void those transactions first

PAYEE_REQD_FOR_PMT Your payment has been recorded, but an online bill pay payment will not
be made because no payee was specified.You should return to the payment
screen if you wish to print the check.

PAYPAL_FUND_SOURCE_
REQD

Please return to PayPal to select a different funding source.

PAYPAL_INVALID_PMT_
METHOD

Paypal is unable to process this payment. Please select an alternate payment
method.

PAYPAL_INVALID_PMT_
METHOD

Your PayPal account is not configured to use Express Checkout. Please follow
directions on the PayPal payment method record.

PAYPAL_PMT_NOTIFICATION PayPal Payment Notification

PAYPAL_SETUP_REQD The account referenced by this paypal id is not setup to use express checkout.
Please return to the paypal setup page and follow directions for setting up
paypal express checkout.

PAYROLL_EXPENSE_ACCT_
REQD

Please select an expense account for payroll item <a href='/app/common/
item/payrollitem.nl?id={1}&e=T'>{2}

PAYROLL_EXPENSE_ACCT_
REQD

Please select a expense account for payroll item <a href='/app/common/item/
payrollitem.nl?id={1}&e=T'>{2}

PAYROLL_FEATURE_
DISABLED

You have not enabled the Payroll feature.

PAYROLL_FEATURE_
UNAVAILABLE

You are trying to edit a Pay Cheque - Payroll is not available in NetSuite
Canada.

PAYROLL_ITEM_DELETE_
DISALLWD

Unable to remove payroll item: {1} - There are existing transactions for this
payroll item. You may mark it inactive instead.

PAYROLL_LIABILITY_ACCT_
REQD

Please select a liability account for payroll item <a href='/app/common/item/
payrollitem.nl?id={1}&e=T'>{2}

PERMISSION_VIOLATION Permission Violation: you may not access this record.

PERMISSION_VIOLATION Permission Violation: you may no longer edit this record.

PHONE_NUM_REQD Please provide a phone number.

SuiteScript Errors 1201

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

PLAN_IN_USE This plan has already been used to generate commission calculations and
can't be deleted.

PLAN_OVERLAP_DISALLWD Plan overlap is not permitted. You have attempted to assign someone to this
plan for a time period that overlaps with another plan.

PMT_ALREADY_APPRVD The payment has already been approved and sent to the bill pay carrier for
processing.

PMT_ALREADY_EXISTS A payment with the same amount and date already exists for this payee.

PMT_ALREADY_SBMTD This payment has already been submitted for online bill pay.

PMT_EDIT_DISALLWD Access to this Bill Pay transaction is restricted, and it cannot be modified.
Transactions can only be modified until 3PM CST on the payment date.

PMT_EDIT_DISALLWD This liability payment cannot be edited while it has an Automated Clearing
House transmission in process.</TD></TR><TR><TD class=text> </
TD></TR><TR><TD class=text> To view the status of payments with ACH
transmissions, go to Transactions > View ACH Vendor Payments Status.

POSITIVE_QTY_REQD Assembly member items must have positive quantities

POSTING_PRD_SETUP_REQD Creation of Journal Entries require a single Accounting Period value across all
Revenue Recognition events. Please setup a 'Posting Period' filter.

PRDS_DISALLWD_NAMES_
NOT_UNIQUE

After adding new periods, not all names would be unique.

PRD_SETUP_REQD You must change your period definitions to contain fiscal years. Please visit
'Setup->Manage Accounting Periods' and click 'Set Up Year'.

PRD_SETUP_REQD You must define the periods of the prior fiscal year. Please visit 'Setup-
>Manage Accounting Periods' and click 'Set Up Year'.

PREFERRED_TAX_AGENCY_
REQD

A preferred Tax Agency has been deleted - Please choose a new one in Set Up Accounting

PREFERRED_TAX_AGENCY_
REQD

Error: No preferred Tax Agencies have been set up (go to <a href='/app/setup/
acctsetup.nl';>Set Up Accounting)

PREF_VENDOR_COST_REQD Drop ship/Special Order items must have a preferred vendor and a purchase
price.

PREF_VENDOR_REQD Drop ship/Special Order items must have a preferred vendor for each of the {1}
the item is accessible to.

PRIVATE_RCRD_ACCESS_
DISALLWD

You cannot view or edit this record because it is marked private

PRIVATE_STATUS_CHNG_
DISALLWD

You cannot make this contact private.

PSWD_EXPIRED Password has expired. Please change your Netsuite password before
continuing.

PSWD_REQD A password must be entered when granting login access privileges to this
record.

PSWD_REQD Password is empty.

PSWD_REQD Please type your password into both fields.

SuiteScript Errors 1202

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

PSWD_REQD You must provide a password to give this person access to your account.

PWSDS_DONT_MATCH New passwords don't match.

PWSDS_DONT_MATCH The passwords you entered do not match. Please reenter your passwords.

PWSDS_DONT_MATCH The Passwords you entered do not match. Please reenter your passwords.

PWSDS_DONT_MATCH The passwords you have entered do not match.

QTY_EXCEEDED_QTY_
BUCKETS

More quantities defined than there are quantity buckets

QTY_REQD Quantities must be defined

RATE_REQUEST_SHPMNT_
REQD

The rate request shipment value has not been set.

RATE_SRVC_UNAVAILBL The rate for this service is not available for the specified source and destination
addresses.

RCRD_DSNT_EXIST Group Record Not Found

RCRD_DSNT_EXIST That record does not exist.{1}

RCRD_DSNT_EXIST There are no records of this type.

RCRD_HAS_BEEN_CHANGED Record has been changed

RCRD_ID_NOT_INT Record id is not integer: {1}

RCRD_NOT_FOUND Could not find any records by this name.

RCRD_PREVSLY_DELETED This record has already been deleted.

RCRD_PREVSLY_DELETED This record has been deleted since the list was generated.

RCRD_REF_RCRD_TYP_
MISMATCH

The record type and its object reference are not matched.

RCRD_SUB_MISMATCH_
WITH_CLASS

The subsidiary restrictions on this record are incompatible with those defined
for class: {1}. Subsidiary access on this record must be a subset of those
permitted by the class.

RCRD_TYPE_REQD The record type is required.

RCRD_UNEDITABLE That record is not editable.

RECALCING_PLAN_SCHDUL Cannot inactivate a plan when schedules in the plan are recalculating. Try
again when recalculation is complete.

RECURSV_REF_DISALLWD ERROR: Recursive Reference

RECUR_EVENT_DISALLWD A yearly event cannot be on the 29th of February

REQD_LOC_FIELDS_MISSING Location {1} does not have all required fields set. Please ensure the State, Zip/
Postal Code, and Country fields are set and try your request again.

REQD_SUB_FIELDS_MISSING The Subsidiary {1} does not have all required fields set. Please ensure the State,
Zip/Postal Code, and Country fields are set and try your request again.

REQUEST_PARAM_REQD This request is missing a required parameter.

REVERSAL_DATE_WARNING Reversal Date is in a closed accounting period. Please go to Manage
Accounting Periods and re-open the accounting period.

REV_REC_DATE_REQD No Revenue Recognition Start Date Specified

SuiteScript Errors 1203

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

REV_REC_TMPLT_DATA_
MISSING

One or more line items on this transaction have Variable Revenue Recognition
Templates, but do not have the required {1} also populated. Please either
change the Template for these items or indicate which {1} will be used to
schedule the recognition of revenue.

REV_REC_UPDATE_DISALLWD Modification of revenue recognition related information on this item is not
allowed because revenue has been recognized for this or related lines.

ROLE_REQD Please specify a role to which access should be granted

ROLE_REQUIRED In order to login, a role is required unless a default has been previously set.

ROUNDING_DIFF_TOO_BIG rounding difference too big -> tax1: {1} /tax2: {2}

ROUNDING_ERROR Rounding Error: {1}

ROUTING_NUM_REQD Missing Routing Number. Bank routing number is a required field and it
cannot be null or empty.

SAME_ACCT_TYP_REQD_
FOR_PARENT

Parent acccount must be of same account type.

SCHDUL_EDIT_DISALLWD This schedule cannot be edited as it has already been used for commission
calculations. Please go back and select 'save as new' instead.

SEARCH_DATE_FILTER_REQD The search must have a date column as an available filter

SEARCH_INTEGER_REQD Please enter an integer number to search on.

SEARCH_TIMED_OUT Your search has timed out. If your search includes the '{1}' operator, try using
'{2}' instead. If your search includes broad search criteria, try narrowing the
criteria.

SEARCH_TIMED_OUT Your search has timed out. This might be avoided by using a smaller page size.

SECURE_TRANS_REQD_ON_
CHECKOUT

Store Server Error: As configured, this server does not permit secure
transactions, required by store checkout.

SERIAL_NUM_MATCH_
MULTI_ITEMS

{1} different items match this serial number. Select an item from the item
dropdown.

SESSION_TERMD_2ND_
LOGIN_DECTD

You can have a maximum of {1} active users at a time in {2}. If you would like
to add active users, please contact your account manager to discuss your
upgrade options. Or, you may choose to inactivate an existing user before
adding a new one. Note that Employee Center users are not included in this
total

SESSION_TERMD_2ND_
LOGIN_DECTD

You can have a maximum of {1} active users at a time that are enabled for
Offline Sales Client. If you would like to add active users, please contact your
account manager to discuss your upgrade options. Or, you may choose to
disable Offline Sales Client on an existing user before enabling a new one.

SESSION_TIMED_OUT Your connection has timed out. Please log in again.

SESSION_TIMED_OUT Your connection has timed out. Please <a href='/pages/login.jsp'
target='_self'>log in again.

SESSION_TIMED_OUT Your session has timed out. Please re-enter your information and try again.

SETUP_METER_REQD Please set up this meter

SET_SHIPPING_PICKUP_TYP Please verify that you have selected a pickup type under setup shipping.

SuiteScript Errors 1204

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

SHIPMNT_INSURANCE_NOT_
AVAILABLE

Insurance is not available when shipping to the destination country: {1}

SHIP_ADDR_REQD Shipping address is incomplete.

SHIP_MANIFEST_ALREADY_
PRCSSD

A Shipping Manifest has already been processed for the requested date/time
{1}.

SHIP_MANIFEST_ERROR No Shipments found to generate a Shipping Manifest for close date {1} for
meter {2}.

SHIP_MANIFEST_ERROR No Shipping Manifest files found in FedEx Directory for report only request for
meter {1}.

SHIP_SETUP_REQD No {1} registration was found for the location selected. Please select a different
shipping item, or go to Setup > Set Up Shipping to register a {2} account for
this location.

SHIP_TALBE_UNBALNCD The Shipping Table is not balanced. Please review the table and ensure there is
a Charge for every Range Value, and that there are no duplicates

SITE_DOMAIN_NAME_REQD Notice: URL Components cannot be used until you have established a domain
name for your site

SO_HAS_CHILD_TRANS This salesOrder has a one or more child transactions associated with it, and
cannot be updated.

SO_LINE_HAS_PO Error: A Drop Ship/Special Order already exists for sales order {1}, line {2}.

SRVC_UNAVAILBL_FOR_LOC The requested service is unavailable between the selected locations.

START_DATE_AFTER_END_
DATE

The start date must preceed the end date.

START_DATE_REQD Please enter a value for {1} Start Date

STATE_REQD State is a required field and it cannot be null or empty.

STATUS_ASSIGNEE_REQD The issue status {1} does not define an assignee issue role. That status may not
be used until this is corrected.

STORAGE_LIMIT_EXCEEDED You entered a value that will exceed the internal storage limit of {1}. Please
reduce the number.

STORE_ALIAS_UNAVAILABLE The Store alias you chose "{1}" is already taken. Please go back and choose
another.

STORE_DOMAIN_
UNAVAILABLE

The store domain name you chose '{1}' is already taken. Please go back and
choose another.

SUBITEM_REQD You must first select the new subitems on the matrix tab you want to add.

SUBITEM_REQD You must first select the subitems on the matrix tab you want to create.

SUBSIDIARY_MISMATCH The employee and billable customer must be in the same subsidiary.

SUB_TAX_AGENCY_REQD No tax agency defined for subsidiary

SUCCESS_TRANS The transaction was entered {1} successfully, {2}

SUPRT_CNTR_LOGIN_ERROR {1} Support Center login error: we are unable to find the customer record for
account={2}

TAX_ACCT_SETUP_REQD Tax Accounts Not Defined.

SuiteScript Errors 1205

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

TAX_CODES_SETUP_
PROBLEM

The tax codes haven't been set properly

TAX_CODES_SETUP_REQD Can't open store for {1}. This company does not have its tax codes fully set up.
This is required to properly calculate taxes on international, other-province
and same-province orders.

TAX_CODES_SETUP_REQD The company is not usable. Administrator hasn't set up the tax codes.

TAX_CODE_REQD No default tax code is defined for country {1}

TAX_GROUP_SETUP_REQD You have not created tax groups in your NetSuite account. To ensure that your
customers are charged the correct amount of sales tax, you must create tax
groups by entering them manually at Lists > Accounting > Tax Groups > New.

TAX_PRD_REQD No Current Tax Period is defined. <a href='/app/setup/period/
taxperiods.nl'>Click here to create a tax period.

TAX_SETUP_REQD The tax period range {1} has not been defined. Please visit 'Setup
> Accounting > Manage Tax Periods' to define this period or set up your
year.

TEMPLATE_NOT_FOUND Template not found

TEMPLATE_NOT_FOUND Template Record not found

THIRD_PARTY_BILLING_
ACCT_REQD

A 3rd Party Billing Account Number must be provided when selecting a 3rd
Party Billing Type.

THIS_TRANSACTION_HAS_
ALREADY_BEEN_VOIDED

This transaction has already been voided.

TICKET_NOT_LOCATED The ticket {1} cannot be located in the error database. If this is from a customer
logged case, the error may not yet be inserted into the system.

TOPIC_REQD You must select and add a topic to this solution.

TRANSACTION_DELETED The transaction you are attempting to access has been deleted.

TRANS_AMTS_UNBALNCD Transaction is not in balance! amounts+taxes+shipping: {1}, total amount: {2}

TRANS_APPLIED_AMTS_
UNBALNCD

Transaction is not in balance! Total to apply of ${1} does not equal sum of
applied ${2} and unapplied ${3}

TRANS_APPLIED_AMTS_
UNBALNCD

Transaction is not in balance! Total to apply of ${1} does not equal sum of
payment ${2} and credits ${3} and deposits ${4}

TRANS_CLASS_UNBALNCD Transaction out of balance for class {1} total = {2}.

TRANS_DEPT_UNBALNCD Transaction out of balance for department {1} total = {2}.

TRANS_DOES_NOT_EXIST No transaction exists for that entity.

TRANS_DSNT_EXIST The transaction you are attempting to access does not exist.

TRANS_EDIT_DISALLWD This transaction is in a period that has been closed. You may not edit it.

TRANS_EDIT_DISALLWD You cannot edit this transaction. {1} does not support the imported
transaction.

TRANS_FORGN_CRNCY_
MISMATCH

Transaction and foreign currency account use different currencies.

SuiteScript Errors 1206

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

TRANS_FORGN_CUR_
UNBALNCD

Transaction was not in balance (Foreign currency). Posting total = {1}

TRANS_FORGN_CUR_
UNBALNCD

Transaction was not in balance (Foreign currency). Total = {1}

TRANS_IN_USE This transaction cannot be deleted because it is linked to by one or more
transactions. Click <a href='/app/accounting/transactions/payments.nl?
id={1}&label={2}&type={3}&alllinks=T'>here>/a> to see the list of linked
transactions.

TRANS_LINES_UNBALNCD Transaction is not in balance! Line item sum of ${1} does not equal amount of
${2}

TRANS_LINES_UNBALNCD Transaction is not in balance! Line item sum of ${1} does not equal applied
amount of ${2}

TRANS_LINE_AND_PMT_
UNBALNCD

Transaction is not in balance! Line item sum of ${1} not equal to payment
amount ${2}

TRANS_LOC_UNBALNCD Transaction out of balance for location {1} total = {2}.

TRANS_NOT_CLEANED Transaction not cleaned up.

TRANS_NOT_COMPLETED Transaction was not complete.

TRANS_UNBALNCD Transaction is not in balance! {1}

TRANS_UNBALNCD Transaction is not in balance! {1},{2} othercount = {3}

TRANS_UNBALNCD Transaction was not in balance. Posting total = {1}

TRANS_UNBALNCD Transaction was not in balance. Total = {1}

TRAN_DATE_REQD Missing transaction date.

TRAN_LINE_FX_AMT_REQD Missing foreign currency amount on non-variance transaction line

TRAN_LINK_FX_AMT_REQD Missing foreign currency amount on non-variance transaction link

TRAN_PRD_CLOSED This action cannot be completed because it requires modification of the
transaction in a closed period due to foreign exchange variance. You may
either open the period for this transaction or use the same rate ({1})between
the transactions that will be linked.

TWO_FA_REQD Two-Factor Authentication required

UNABLE_TO_PRINT_CHECKS Unable to print checks.

UNABLE_TO_PRINT_
DEPOSITS

Unable to print deposits.

UNAUTH_CAMPAIGN_RSPNS_
RQST

Unauthorized campaign response request

UNAUTH_UNSUBSCRIBE_
RQST

Unauthorized unsubscribe request

UNDEFINED_ACCTNG_PRD The accounting period range {1} has not been defined. Please visit '<A href='/
app/setup/period/fiscalperiods.nl'>Setup > Accounting > Manage Accounting
Periods' to define this period or set up your year.

SuiteScript Errors 1207

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

UNDEFINED_ACCTNG_PRD The comparison accounting period range {1} has not been defined. Please visit
'Setup > Accounting > Manage
Accounting Periods' to define this period or set up your year.

UNDEFINED_ACCTNG_PRD The default accounting period for this report has not been defined. Please visit
'Setup > Accounting > Manage
Accounting Periods' to define this period or set up your year.

UNDEFINED_CSTM_FIELD Undefined customfield.

UNDEFINED_TAX_PRD The default tax period for this report has not been defined. Please visit 'Setup > Accounting > Manage Tax
Periods' to define this period or set up your year.

UNEXPECTED_ERROR An error occurred while processing item options.

UNEXPECTED_ERROR An unexpected error has occurred.

UNEXPECTED_ERROR An unexpected error has occurred. A FedEx Shipping Label was not generated.

UNEXPECTED_ERROR An unexpected error has occurred while generating this content.<p>Our
Customer Support staff have been notified and are looking into the problem.

UNEXPECTED_ERROR An unexpected error has occurred while synching a record. Click [OK] to skip
the record and continue.

UNEXPECTED_ERROR An unexpected error has occurred. Technical Support has been alerted to this
problem.

UNEXPECTED_ERROR An unexpected error occurred while extracting email from SMTP server

UNEXPECTED_ERROR An unexpected error occurred while logging email request completion

UNEXPECTED_ERROR An unexpected error occurred while logging email request failure

UNEXPECTED_ERROR An unexpected error occurred while logging email request start

UNEXPECTED_ERROR An unexpected error occurred while processing the payment.

UNEXPECTED_ERROR An unexpected error occurred with the group SQL

UNEXPECTED_ERROR An Unexpected JavaScript Error has occurred

UNEXPECTED_ERROR Error

UNEXPECTED_ERROR Error: {1}

UNEXPECTED_ERROR Please specify an scompid

UNEXPECTED_ERROR Problem during commission calculation

UNEXPECTED_ERROR An unexpected error occurred.

UNEXPECTED_ERROR Dto java class is not defined for {1}.

UNEXPECTED_ERROR Server error: no dto class is defined for record of type {1}

UNEXPECTED_ERROR Server error: missing database entries in WSRecordElement and
WSNameSpace table for object of {1}

UNEXPECTED_ERROR Application error: no form request class is defined for record of type {1}

UNIQUE_CONTACT_NAME_
REQD

. Contact names must be unique

SuiteScript Errors 1208

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

UNIQUE_CUST_EMAIL_REQD A customer record with this email address already exists. You must enter a
unique customer email address for each record you create.

UNIQUE_CUST_EMAIL_REQD A customer record with this email address already exists. You must enter a
unique customer email address for each record you create. To correct this
record, click back and enter a new
customer email address in the Customer field. Then, click Submit.

UNIQUE_CUST_ID_REQD A customer record with this ID already exists. You must enter a unique
customer ID for each record you create.

UNIQUE_CUST_ID_REQD A customer record with this ID already exists. You must enter a unique
customer ID for each record you create. To correct this record, click back and enter a new customer ID in the
Customer field. Then, click Submit.

UNIQUE_ENTITY_NAME_
REQD

multiple sub-customers or jobs have name '{1}' which would create a naming
conflict upon merge. All names must be unique. Before merging, you must
change one of the subs named '{2}' to something else.

UNIQUE_GROUPID_REQD You must specify exactly one numeric groupId

UNIQUE_PARTNER_CODE_
REQD

{1:name of partner record} Code "{2:partner code}" already exists. Please select
a unique code for each record.

UNIQUE_QTY_REQD Quantities must be unique

UNIQUE_RCRD_ID_REQD A record with this ID already exists. You must enter a unique ID to create or
update this record.

UNIQUE_SOLUTION_CODE_
REQD

A solution with this particular solution code already exists. Please assign a
different code.

UNITS_TYP_IN_USE This units type is used by {1} {2}. You must delete the {2} and all associated
transactions to delete this units type.

UNKNOWN_CARRIER Package Tracking is not available for id {1}. Unknown carrier.

UNKNOWN_RCRD_TYPE Unknown record type

UNKNOWN_SCRIPT_TYP Unknown Script Type

UNKNWN_ALLOCTN_
SCHDUL_FREQ_TYP

Unable to determine allocation schedule frequency type.

UNKNWN_EMAIL_AUTHOR The author of this email cannot be found.

UNRECOGNIZED_METHOD unrecognized method '{1}'

UNSUBSCRIBE_REQD Unsubscribe is mandatory, please enter a value for this field.

UNSUPRTD_DOC_TYP You attempted to upload an unsupported document type. Please try again
with a selection from the list below:

UPDATE_DISALLWD Update is not allowed

UPDATE_PRICE_AMT_REQD Please specify an amount to update prices.

UPGRADE_WS_VERSION Could not set '{1}' to field '{2}' of record number {3} due to schema
enumeration restriction.

UPGRADE_WS_VERSION Please consider upgrading to endpoint {1}

SuiteScript Errors 1209

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

UPGRADE_WS_VERSION Sales order <id {1}> contains item serial/lot numbers that are not supported
in your client application. You are not allowed to update serial/lot numbers
on this sales order. Contact your software vendor for the latest Web Services
upgrade.

UPGRADE_WS_VERSION Sales order <id {1}> has items with more than one serial/lot numbers that is
not supported in your client application. The serial/lot numbers have been
removed to successfully return the sales order. Contact your software vendor
for the latest Web Services upgrade.

UPGRADE_WS_VERSION This {1} has multiple {2}s. Web Services schema version {3} or greater is
required to modify {2} for this {1}

UPGRADE_WS_VERSION {1} {2} has multiple shipping routes enabled, which is only supported in
version 2008_2 and newer. The shipping information has been omitted to
successfully return this record.

UPS_CANT_INTEGRATE_
FULFILL

The fulfillment cannot be integrated with UPS because the Shipping
Integration Carrier is not set to UPS.

UPS_CONFIG_ERROR A UPS configuration error occured. Please contact tech support.

UPS_LICENSE_AGREEMNT_
REQD

You must agree to the UPS license agreement

UPS_ONLINE_RATE_
UNAVAILBL

The UPS Online Realtime Rates System is temporarily unavailable. Please
resubmit your rate request in a few minutes.

UPS_ONLINE_RATE_
UNAVAILBL

UPS did not return any rates for the specified origin and destination addresses.

UPS_ONLINE_SHIP_
UNAVAILBL

The UPS Online Shipping System is temporarily unavailable. Please resubmit
your fulfillment in a few minutes.

UPS_REG_NUM_IN_USE The submitted UPS Registration Number, {1}, is already in use. Please resubmit
the registration with a different UPS registration Number.

UPS_SETUP_REQD No UPS registration was found. Please register your UPS account with NetSuite
before attempting to send a fulfillment request to UPS.

UPS_VOID_ERROR The UPS Void failed due to a system failure.

UPS_XML_ERROR XML Sent to UPS. UPS returned error code/text:

URL_ID_PARAM_REQD URL is missing the id parameter. The file could not be retrieved.

URL_REQD You must enter a URL for this media item.

USER_DISABLED user disabled

USER_ERROR An error occurred during your last update.

USER_ERROR A User Error Has Occurred

USER_ERROR Detach requires an AttachBasicReference

USER_ERROR Either internalId or externalId is required.

USER_ERROR Folder cannot be made a subfolder of itself.

USER_ERROR Gift Certificate From, Recipient Name, and Recipient Email are required.

USER_ERROR Invalid Attachment record combination

SuiteScript Errors 1210

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

USER_ERROR Missing Item Weight or Weight Unit.

USER_ERROR Missing or Invalid RecordType for AttachTo

USER_ERROR Must submit a non-abstract instance of baseRef (eg RecordRef,
CustomRecordRef) NOT a baseRef

USER_ERROR Must submit a non-abstract instance of record or searchRecord (eg customer
or customerSearchBasic).

USER_ERROR {1}

USPS_ACCT_NUM_ALREADY_
EXISTS

There is an existing NetSuite registration for Endicia account number {1}.

USPS_INVALID_INSURED_
VALUE

Insured value exceeds the {1} maximum allowed by Endicia.

USPS_INVALID_PACKAGING The Carrier Packaging that you have selected is not valid for this item
fulfillment.
Usually this indicates the selected packaging cannot be used
with the selected USPS shipping method, or the package weight is invalid.

Please check the documentation for more details.

USPS_INVALID_PSWD The Endicia Web Password does not match the Web Password for this USPS
Registration account number.

USPS_LABEL_VOIDED This error required 1 or more labels created for this transaction to be voided at
Endicia.

USPS_LABEL_VOIDED This error required 1 or more labels created for this transaction to be voided at
Endicia.

USPS_MAX_ITEM_EXCEEDED International USPS fulfillments allow a maximum of 5 unique items per
package, due to customs documentation. If more than one package is
required, please break up the shipment into multiple fulfillments.

USPS_ONE_PACKAGE_ALLWD International USPS fulfillments allow only one package. If more than one
package is required, please break up the shipment into multiple fulfillments of
one package each.

USPS_PASS_PHRASE_NOT_
UPDATED

The Endica Pass Phrase was not updated: {1}

USPS_REFUND_FAILED Failed Endicia Refund Request

USPS_REFUND_FAILED The Endicia Refund Request failed due to a system error.

USPS_RETRY A response was not received for the USPS funding request. Please try again in
a few minutes.

USPS_VALIDATE_ADDR The address you entered could not be validated. Please verify the city, state,
and/or zip code.

You can validate an address by visiting the U.S. Postal
Service web site, or the <a href="http://www.endicia.com/Developers/
ZipLookup/" target="_blank">Endicia web site.

USPS_VERIFY_TRACKING_
NUM

Please verify that the following tracking numbers were created and voided in
your Endicia account before proceeding.

USPS_VOID_ERROR An error was detected during the Endicia Void operation:

USPS_VOID_ERROR An error was detected during the Endicia Void operation:

SuiteScript Errors 1211

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

VALID_EMAIL_REQD Missing or invalid email address. Email address is a required field and it cannot
be null or empty. The email address must be in a valid format.

VALID_EMAIL_REQD_FOR_
LOGIN

Please enter a valid email address when granting login access privileges to this
record.

VALID_FIRST_NAME_REQD Missing or invalid First Name. Users first name is a required field and cannot be
null or empty.

VALID_LAST_NAME_REQD Missing or invalid Last Name. Users last name is a required field and cannot be
null or empty.

VALID_PHONE_NUM_REQD Missing or invalid Home phone number. The Home phone number is a
required field and it cannot be null or empty. The format of the Home phone
number must contain area code plus seven digit number.

VALID_PRD_REQD Insert Transaction Failure: No valid, open, posting period for date - {1}. Please
visit Setup > Manage Accounting Periods to set up a new accounting period.

VALID_PRD_REQD Insert Transaction Failure: No valid, open, tax period for date - {1}. Please visit
Setup > Manage Tax Periods to set up a new tax period.

VALID_PRD_REQD Update Transaction Failure: No valid, open, {1} period for date - {2}

VALID_VERSION_REQD_IN_
URL

If the version parameter is passed through the URL, it MUST contain a valid
version in a phased release environment. Valid: {1}

VALID_WORK_PHONE_REQD Missing or invalid Work phone number. The Work phone number is a required
field and it cannot be null or empty. The format of the Work phone number
must contain area code plus seven digit number.

VALID_ZIPCODE_REQD Missing or invalid ZIP code field. ZIP code is a required field and it cannot
be null or empty. ZIP code and state values are checked against an internal
database to make sure that ZIP code specified exists in state specified.

VENDOR_TYPE_REQD No Vendor Type was specified. If creating a Tax Agency, please ensure that the
vendor type is active and marked as a tax agency.

VERIFY_DESTNTN_ZIP_CODE Please verify that the destination zipcode is correctly specified.

VERIFY_ZIP_CODE_SETUP Please verify that you have correctly set your zip code under setup company. If
you have multi-location enabled, verify that you have set a correct zipcode for
each location.

VOIDING_REVERSAL_
DISALLWD

You may not create a voiding reversal for transactions with inventory impact.
To reverse the inventory impact of the transaction, you will need to create an
inventory adjustment.

VSOE_CANT_ADD_ITEM_
GROUP

When the Is VSOE bundle box is checked, Items for Purchase cannot
be added to item groups.

VSOE_REV_REC_TMPLT_REQD All Lines in a VSOE Bundle with a VSOE Allocation must have a revenue
recognition template.

VSOE_TOTAL_ALLOCATION_
ERROR

The total vsoe allocation in a bundle must equal the total bundle sales
amount.

VSOE_TRAN_VSOE_BUNDLE_
ERROR

You have indicated that you would like this transaction to be treated as
a Bundle (multi-element arrangement) for VSOE purposes. Please either
uncheck the 'Transaction Is VSOE Bundle' check box or remove the Item
Groups that have the 'Is VSOE Bundle' option specified.

SuiteScript Errors 1212

SuiteScript Developer & Reference Guide

Error Code Returned Long Description or Message

WRITE_OFF_ACCT_REQD In order to receive items without restocking, you must first set a value for the
write-off account. To set the value of the write-off account, go to Accounting >
Accounting Preferences > Order Management > Write-Off Account for Returns.

WS_CONCUR_SESSION_
DISALLWD

Someone has logged in as this user from a different web services session. Only
one person may login as a given user at a time. As a consequence, this session
has been terminated.

WS_CONCUR_SESSION_
DISALLWD

Only one request may be made against a session at a time

WS_EXCEEDED_CONCUR_
USERS_ALLWD

You can have a maximum of {1} active concurrent WS users at a time in {2}

WS_EXCEEDED_MAX_
CONCUR_RQST

The maximum number of eBay Order Imports has exceeded the provisioned
quantity. Please contact Customer Support for further assistance.

WS_FEATURE_REQD You have not enabled web services feature for your account.

WS_INVALID_SEARCH_
OPERATN

When using request-level credentials, you must use the {1} operation instead
of {2}

WS_LOG_IN_REQD You must log in before performing a web service operation.

WS_PERMISSION_REQD You do not have permission to access web services feature.

ZIP_FILE_CONTAINS_VIRUS The zip file contains a virus {1}. Upload abort.

SuiteScript Governance
API Governance

1213

SuiteScript Developer & Reference Guide

Chapter 84 SuiteScript Governance
Important: SuiteScript thresholds are based on the volume of activity that a company's

users can manually generate, as we as on a provision for automated
functions. However, automated functions that generate excessive levels
of activity may trigger metering of script execution as referenced in the
NetSuite Main Terms of Service (TOS).

In order to optimize application performance, NetSuite has implemented a SuiteScript
governance model based on usage units. If the number of allowable units is exceeded, the script
is terminated.

Usage units are tracked on two levels: the API level and the script type level. Each SuiteScript
API consumes a system-defined number of processing units, and each script type can execute a
system-defined number of units.

See these topics to learn about unit governance as it applies to individual APIs and specific
script types :

• API Governance

• Script Usage Unit Limits

Note that NetSuite also governs the amount of logging that can be done by a company in any
given 60 minute time period. For complete details, see Governance on Script Logging.

Note: NetSuite has put internal mechanisms in place to detect “runaway scripts” that
include infinite loops. Once caught, these scripts will be terminated and an
SSS_INSTRUCTION_COUNT_EXCEEDED error message is thrown. Should you receive
this error, NetSuite recommends that you examine the for loops in your script to
ensure that they contain either a terminating condition or a condition that can be
met.

API Governance
The following table lists each API and the units each consumes. Notice the APIs marked with
an asterisk consume a different number of units based on the type of record they are running
on. This kind of governance model takes into account the NetSuite processing requirements for
three categories of records: custom records, standard transaction records, and standard non-
transaction records.

Custom records, for example, require less processing than standard records. Therefore, the unit
cost for custom records is lower to be commensurate with the processing required for standard

http://www.netsuite.com/portal/resource/terms_of_service.shtml

SuiteScript Governance
API Governance

1214

SuiteScript Developer & Reference Guide

records. Similarly, standard non-transaction records require less processing than standard
transaction records. Therefore, the unit cost for standard non-transaction records is lower to be
commensurate with the processing required for standard transaction records.

Note: Standard transaction records include records such as Cash Refund, Customer
Deposit, and Item Fulfillment. Standard non-transaction records include records
such as Activity, Inventory Item, and Customer. In the section on SuiteScript
Supported Records in the NetSuite Help Center, see the “Record Category” column.
All record types not categorized as Transaction are considered to be standard non-
transaction records. Custom List and Custom Record are considered to be custom
records.

API Unit Usage per API Example

nlapiDeleteFile
nlapiInitiateWorkflow
nlapiTriggerWorkflow
nlapiScheduleScript
nlapiSubmitConfiguration
nlapiSubmitFile
nlobjEmailMerger.merge()

20 A user event script on a standard
transaction record type (such as Invoice)
that includes one call to nlapiDeleteRecord
and one call to nlapiSubmitRecord - -
consumes 40 units (assuming no other
nlapi calls were made).

In this case, the user event script consumes
40 units out of a possible 1,000 units
available to user event scripts. (See Script
Usage Unit Limits for the total units
allowed for a user event script.)

nlapiDeleteRecord
nlapiSubmitRecord

When used on standard
transactions: 20

When used on standard
non-transactions: 10

When used on custom
records: 4

nlapiAttachRecord
nlapiDetachRecord
nlapiExchangeRate
nlapiGetLogin
nlapiLoadConfiguration
nlapiLoadFile
nlapiMergeRecord
nlapiRequestURL
nlapiRequestURLWithCredentials
nlapiSearchGlobal
nlapiSearchRecord
nlapiSendCampaignEmail
nlapiSendEmail
nlapiVoidTransaction
nlapiXMLToPDF

nlobjSearchResultSet.getResults
nlobjSearchResultSet.forEachResult

10 A scheduled script on a standard non-
transaction record type (such as Customer)
that includes one call to nlapiLoadRecord,
one call to nlapiTransformRecord, one
call to nlapiMergeRecord, and one call to
nlapiSendEmail consumes 30 units.

In this case, the scheduled script consumes
30 units out of a possible 10,000 units
available to scheduled scripts. (See Script
Usage Unit Limits for the total units
allowed for a scheduled script.)

SuiteScript Governance
Script Usage Unit Limits

1215

SuiteScript Developer & Reference Guide

API Unit Usage per API Example

nlapiCreateRecord
nlapiCopyRecord
nlapiLookupField
nlapiLoadRecord
nlapiSubmitField
nlapiTransformRecord

When used on standard
transactions: 10

When used on standard
non-transactions: 5

When used on custom
records: 2

Note: To conserve units, only use
nlapiSubmitField on fields that
are available through inline
edit. For more information, see
Updating a field that is available
through inline edit and Updating
a field that is not available
through inline edit.

nlapiLoadSearch
nlobjJobManager.getFuture
nlobjSearch.saveSearch

5

nlapiLogExecution See Governance on
Script Logging.

nlapiSetRecoveryPoint
nlapiSubmitCSVImport

nlobjJobManager.submit

100

All other SuiteScript APIs 0

Script Usage Unit Limits

The following table lists the maximum units allowed for a particular script type. You can
use nlobjGetContext.getRemainingUsage() to see how many units you have remaining for a
particular scheduled, user event, portlet, client, or Suitelet script.

Script Type Total Units
Allowed per
Script

Notes

Scheduled Scripts 10,000 A scheduled script that includes two calls to nlapiTransformRecord,
one call to nlapiMergeRecord, and one call to nlapiSendEmail
consumes 40 units out of a possible 10,000 available.

Note: Scheduled scripts with potentially long execution times
should include an nlapiYieldScript() call to avoid exceeding
their allowed governance.

User Event Scripts 1,000 Regardless of the 1,000 unit limit for user event scripts, developers
should design their scripts so that they are responsive to users,
otherwise user experience may be impacted.

Client Scripts 1,000 Be aware that client scripts are metered on a per-script basis.

If an account has one form-level client script attached to a form, and
one record-level client script deployed to the record (which contains
the form), each client script can total 1000 units. Usage units are not
shared by all the client scripts associated with a form or record.

SuiteScript Governance
Monitoring Script Usage

1216

SuiteScript Developer & Reference Guide

Script Type Total Units
Allowed per
Script

Notes

Note: For information on form- and record-level client scripts, see
Form-level and Record-level Client Scripts.

Suitelets 1,000 For example, a Suitelet that calls nlapiCreateRecord and
nlapiRequestURL consumes 20 units out of a possible 1,000 units
available.

Note: Regardless of the 1,000 unit limit for Suitelets, developers
should design their Suitelets to be responsive to users,
otherwise user experience may be impacted.

RESTlets 5,000

Portlet Scripts 1,000

Mass Update Scripts You can have 1000 units per record/invocation of the script.

Bundle Installation
Scripts

10,000 Bundle installation scripts are governed by a maximum of 10,000
units per execution.

Workflow Action
Scripts

(also referred to as
Custom Action in
SuiteFlow)

1,000 Use workflow action scripts to create custom actions in your
workflow.

Note that within one workflow state, all actions combined cannot
not exceed 1000 units. Therefore, if you have developed a custom
action (using a workflow action script) that consumes 990 units, be
aware of the unit consumption of the other actions within that state.

See the help topic Workflow Action Usage Units for a list of all
workflow actions and the units they consume when executed within
a state.

Note: NetSuite also enforces a usage limit of 1000 units for SSP application scripts. For
more information, see the help topic SSP Application Governance.

Monitoring Script Usage
You can monitor SuiteScript unit usage through the nlobjContext.getRemainingUsage()
method.

Note: To access the getRemainingUsage() method, call nlapiGetContext() to instantiate
the nlobjContext object.

You can also monitor script units by running the script in the SuiteScript Debugger. After a
script completes execution, unit governance details appear on the Execution Log tab in the
SuiteScript Debugger console. Note that emailed error messages also include a line item for
Script Usage. Script Usage shows the number of units that were executed in the script before
the error was hit.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2779037.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2779037.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2752089.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=bridgehead_N2795299.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2538501.html

SuiteScript Governance
Governance on Script Logging

1217

SuiteScript Developer & Reference Guide

Example 1

This sample shows how to instantiate the nlobjContext object, and then call
getRemainingUsage() so that the script's remaining usage units appear in the execution log.

var context = nlapiGetContext();
nlapiLogExecution('DEBUG', 'remaining usage', context.getRemainingUsage());

Example 2

This sample shows how to instantiate the nlobjContext object, and then check for remaining
units. If the units remaining are greater than 50, the script will execute a certain set of
instructions.

var context = nlapiGetContext();
 if (parseInt(context.getRemainingUsage()) > 50)
 {
 //execute code here
 }

Governance on Script Logging
NetSuite governs the use of nlapiLogExecution(type, title, details). The governance model
is meant to safeguard against unreasonably excessive logging, which can negatively affect
performance for other NetSuite customers sharing the same database. The governance model is
not meant to impact companies (or scripts) that are using nlapiLogExecution() appropriately.

The governance model is as follows:

Within a 60 minute time period, a company is allowed to make up to 100,000 calls to
nlapiLogExecution() across all of their scripts.

If within a 60 minute time period NetSuite detects a given script is excessively logging (and
pushing a company close to the 100,000 nlapiLogExecution() call limit), NetSuite will change
the offending script's log level to the next level higher. The offending script will continue its
execution, however, its log level will go from Debug to Audit, or Audit to Error, or Error to
Emergency, depending on the script.

Note: For information on script log levels, see Setting Script Execution Log Levels.

Changing log levels ensures that the offending script continues to execute and helps prevent an
inordinate amount of logging from only one company.

The capacity for script execution logs is shared by customers on the same database. For further
protection against excessive logging, script execution logs are governed by a total storage limit
on each instance of the NetSuite database. On each NetSuite server, if the database table that

SuiteScript Governance
Search Result Limits

1218

SuiteScript Developer & Reference Guide

stores logs reaches this limit, all logs (across all customers on that server) are purged. For this
reason, NetSuite recommends that you store information using custom records.

Example

Company ABC has 10 scripts running during a 60 minute period. If one out of the 10 scripts
calls nlapiLogExecution('DEBUG', 'My log', x.getID()) 70,000 times within only a 20
minute time period, NetSuite will raise the script's log level.

The change to the log level will appear in the Log Level field on the script's Script Deployment
page (see figure). In the figure below, if the offending script's Log Level was originally set to
Debug, NetSuite will increase the log level to Audit. This means the line of code that reads
nlapiLogExecution('DEBUG', 'My log', x.getID()) will continue to execute, however
nothing will be logged, as the log level for the script has been raised to Audit.

Script Owners Are Notified

If NetSuite detects that one script is logging excessively, the owner of the script is notified. The
script owner is alerted that the script is the primary contributor to his or her company possibly
exceeding the 100,000 logging threshold (for a given 60 minute time period).

NetSuite sends notifications through email and adds a log entry to the script's Execution Log.
Both the email and the NetSuite-generated log alerts script owners that a script's Log Level has
been increased.

Search Result Limits
Search results are limited to 1000 records when you execute SuiteScript searches using
nlapiSearchRecord(...). For information on working with SuiteScript searches in NetSuite, see
Searching Overview and Search APIs.

Note that if you load an existing saved search using nlapiLoadSearch(...), and then call
nlobjSearch.runSearch() to return a result set of nlobjSearchResultSet objects, you can get up to
4000 results returned. See nlobjSearchResultSet.forEachResult(callback) for details.

Multiple Shipping Routes and SuiteScript 1219

SuiteScript Developer & Reference Guide

Chapter 85 Multiple Shipping Routes and
SuiteScript

The following topics are covered in this section. If you are unfamiliar with the Multiple
Shipping Routes feature, it is recommended that you read each topic sequentially.

• What is the Multiple Shipping Routes feature?

• How does MSR work in SuiteScript?

• Which fields are associated with MSR?

• Does MSR work on existing custom forms?

• Multiple Shipping Routes Sample Code for SuiteScript

• Do I need to make code changes to existing SuiteScript code?

What is the Multiple Shipping Routes feature?

The Multiple Shipping Routes (MSR) feature allows you to associate several items with one
transaction, and then set different shipping addresses and shipping methods for each item.
Transaction types such as sales order, cash sale, invoice, estimate, and item fulfillment all
support MSR.

Note: For additional information on this feature, as well as steps for enabling MSR in your
account, see the help topic Multiple Shipping Routes in the NetSuite Help Center.

The following figure shows a sales order with three items. When MSR is enabled in your
account, and the Enable Item Line Shipping check box is selected on the transaction, each item
can have its own ship-to address and shipping method. The ship-to address is specified in
the Ship To column; the shipping method is specified in the Ship Via column. The SuiteScript
internal IDs for each field are shown the figure below.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N1263041.html

Multiple Shipping Routes and SuiteScript 1220

SuiteScript Developer & Reference Guide

In the UI, after all items have been added to the transaction (a sales order in this example), you
must then create individual shipping groups by clicking the Calculate Shipping button on the
Shipping tab. A shipping group includes all details related to where the item is being shipped
from, where it is being shipped to, the item's shipping method, and its shipping rate (see figure).

Although there is no UI label called “Shipping Group,” SuiteScript developers can verify that
shipping groups have been created by either looking in the UI after the record has first been
submitted or by searching on the record and specifying shipgroup as one of the search return

Multiple Shipping Routes and SuiteScript 1221

SuiteScript Developer & Reference Guide

columns. See the code sample called Get the shipping groups created for the sales order for
details.

The previous figure shows the UI equivalent of two separate shipping groups on a sales order.
These groups are ship group 1 and ship group 2.

Note that although the sales order included three items, only two shipping groups were
generated. This is because the shipping information for two of the items is the same (123 Main
Street for ship-to, and DHL for shipping method). The third item contains shipping details that
are not like the previous two items. Therefore, this order contains three items, but only two
different shipping groups.

How does MSR work in SuiteScript?

When working with MSR-enabled transactions in SuiteScript, developers should be aware of
the following:

• In SuiteScript, at the time of creating a sales order, you cannot override the default
shipping rate that has been set for an item. SuiteScript developers should be aware of this
when creating user event and scheduled scripts.

• There is no SuiteScript equivalent of the Calculate Shipping button that appears on the
Shipping tab. In SuiteScript, shipping calculations are handled by the NetSuite backend
when the transaction is submitted.

• The nlapiTransformRecord(...) API includes an optional shipgroup setting. For example:

var itemFulfillment = nlapiTransformRecord('salesorder', id, 'itemfulfillment', { ' shipgroup '
 : 50 });
var fulfillmentId = nlapiSubmitRecord(itemFulfillment, true);

When working with MSR-enabled transactions, you must specify a value for shipgroup
during your transforms. If you do not specify a value, the value 1 (for the first shipping
group) is defaulted. This means that only the items belonging to the first shipping group
will be fulfilled when the sales order is transformed.

For a code sample that shows how to transform a sales order to an item fulfillment, see
Transform the sales order to create an item fulfillment.

• In both the UI and in SuiteScript, if you make any update to any item on MSR-enabled
transactions, this action may result in changes to the shipping cost. Every time an item
is updated and the record is submitted, NetSuite re-calculates the shipping rate. NetSuite
calculates all orders based on “real-time” shipping rates.

• In both the UI and in SuiteScript, the only transformation workflow that is impacted by
MSR is the sales order to fulfillment workflow. Invoicing and other transaction workflows
are not impacted.

Multiple Shipping Routes and SuiteScript 1222

SuiteScript Developer & Reference Guide

Which fields are associated with MSR?

The following table lists UI field labels and their corresponding SuiteScript internal IDs for all
MSR-related fields.

UI Label Element Name Note

Enable Item
Line Shipping

ismultishipto Set to ' T ' to allow for multiple items with separate shipping address/
methods

Ship To shipaddress References the internal ID of the customer's shipping address. You can get
the internal ID by clicking the Address tab on the customer's record. The
address ID appears in the ID column.

Note: The Show Internal ID preference must be enabled for address
IDs to show.

Ship Via shipmethod References the internal ID of the item. Go to the Items list to see all item
IDs.

Note: The Show Internal ID preference must be enabled for address
IDs to show.

Shipping
sublist

shipgroup Each item that has a separate shipping address/shipping method will
have a unique shipgroup number.

When you transform a sales order to create a fulfullment, and the sales
order has MSR enabled, you will need to specify a shipgroup value (1, 2, 3,
etc) for each shipgroup you want fulfilled. See figure below.

Important: If no shipgroup value is specified, only the items
associated with the first shipgroup (1) will be fulfilled.

This figure shows two different shipping groups: ship group 1 and ship group 2. When
transforming the transaction using nlapiTransformRecord(...), you must specify each item you
want fulfilled based on its shipgroup value.

Multiple Shipping Routes and SuiteScript 1223

SuiteScript Developer & Reference Guide

Does MSR work on existing custom forms?

Yes. However, after you enable Multiple Shipping Routes in your account, you must also enable
MSR on your custom form by adding the Enable Line Item Shipping check box to the Items
sublist. For steps on adding this check box to a custom form, see Multiple Shipping Routes in the
NetSuite Help Center.

Note: Once MSR is enabled in your account, the Enable Line Item Shipping check box is
automatically added to the Items sublist on standard forms.

Multiple Shipping Routes Sample Code for SuiteScript

The following samples show a typical workflow for MSR-enabled transactions. Note that these
samples reference the sales order as the transaction type.

1. Create a sales order and set your items

2. Get the shipping groups created for the sales order

3. Transform the sales order to create an item fulfillment

4. Search for MSR-enabled sales orders that have not been fulfilled

Create a sales order and set your items

// Create Sales order with two items and two different shipping addresses
var record = nlapiCreateRecord('salesorder');
record.setFieldValue('entity', 87); //set customer ID

// Set values for the first item
record.setLineItemValue('item', 'item', 1, 380);
record.setLineItemValue('item', 'quantity', 1, 1);
record.setLineItemValue('item', 'shipaddress', 1, 84);
record.setLineItemValue('item', 'shipmethod', 1, 37);

// Set values for the second item
record.setLineItemValue('item', 'item', 2, 440);
record.setLineItemValue('item', 'quantity', 2, 1);
record.setLineItemValue('item', 'shipaddress', 2, 275);
record.setLineItemValue('item','shipmethod', 2, 37);

var id = nlapiSubmitRecord(record, true);

Get the shipping groups created for the sales order

var columns = new Array();
var filters = new Array();
filters[0] = new nlobjSearchFilter('internalid', null, 'is', id);

Multiple Shipping Routes and SuiteScript 1224

SuiteScript Developer & Reference Guide

filters[1] = new nlobjSearchFilter('shipgroup', null, 'greaterthan', 0);
columns[0] = new nlobjSearchColumn('shipgroup');
var searchresults = nlapiSearchRecord('salesorder', null, filters, columns);
var shipgroups = new Array();
for(i=0; i< searchresults.length ; i++)
{
 shipgroups[i] = searchresults[i].getValue('shipgroup');
}

Transform the sales order to create an item fulfillment

// Transform the sales order and pass each of the shipping groups
for(i=0; i< shipgroups.length ; i ++)
{
var itemFulfillment = nlapiTransformRecord('salesorder', id, 'itemfulfillment', { 'shipgroup' :
 shipgroups[i]})
var fulfillmentId = nlapiSubmitRecord(itemFulfillment, true)
}

Important: If you do not pass a value for shipgroup, only the first item on the sales order
is fulfilled.

Search for MSR-enabled sales orders that have not been fulfilled

1. Create a saved search to obtain shipping group IDs. The following figures show the criteria
and results column values to set.

Multiple Shipping Routes and SuiteScript 1225

SuiteScript Developer & Reference Guide

2. Next, run your saved search in SuiteScript to verify the same results are returned as in
the saved searched performed in the UI. Then transform all unfulfilled orders based on
shipgroup ID. For example,

var results = nlapiSearchRecord('salesorder', 17); // where 17 is the internal ID of the previo
us saved search
for (var i = 0; results != null && i < results .length; i++)
{
 var id = results[i].getValue('internalid');
 var shipgroup= results[i].getValue('shipgroup');

// Transform
 var itemFulfillment = nlapiTransformRecord('salesorder', id, 'itemfulfillment', { 'shipgroup
' : shipgroup })
 var fulfillmentId = nlapiSubmitRecord(itemFulfillment)
}

Do I need to make code changes to existing SuiteScript code?

Simply enabling the MSR feature in your NetSuite account does not require any code changes.
However, once you enable MSR on individual transactions (by selecting the Enable Item Line
Shipping check box on a transaction's Items sublist), you may need to make the following
updates to your code:

1. When you first enable the MSR feature, you will be prompted to enable the Per-line taxes
feature. Therefore, when you add items to a transaction that has MSR enabled, AND you
want set a tax for your items, you will need to set a taxcode value for each line item. For
example,

Multiple Shipping Routes and SuiteScript 1226

SuiteScript Developer & Reference Guide

nlapiSetLineItemValue('item', 'taxcode', 1, '230') // where 230 is the tax code internal ID

Note that if you do not wish to add taxes to an item, you are not required to set a value
for taxcode. In other words, if you want to add taxes, you must add them on a per-line
basis.

If you have never set taxcode values on any of your transactions, and you do not wish to
add taxcode values, no code changes are required.

2. If MSR is enabled on the transaction, you can search for the transaction, get the ID, and
then fulfill the order. With MSR enabled, your existing search will now have to include a
shipgroup column in your search.

3. Any sales order to item fulfillment transformation code will now have to include
shipgroup as a transaction value. For example:

var itemFulfillment = nlapiTransformRecord('salesorder', id, 'itemfulfillment', { 'shipgroup' :
 5 })/
var fulfillmentId = nlapiSubmitRecord(itemFulfillment, true);

A transformation default for salesorder->itemfulfillment was added to the SuiteScript
API so that the shipping route (shipgroup) can be defaulted in during transformations.

Referencing the currencyname Field in SuiteScript 1227

SuiteScript Developer & Reference Guide

Chapter 86 Referencing the currencyname
Field in SuiteScript

The currencyname field in SuiteScript is intended to be read-only and not a submittable field
(in other words, this field should not be accessible from user event scripts). For example, using
the nlapiGetFieldValue(...) or nlapiLookupField(...) functions on currencyname will either
return no value or will return an error.

To return currency information, you should instead reference the currency field.

If you must return currency name information, you will need to load the transaction and call
getFieldValue(). For example,

nlapiLoadRecord().getFieldValue('currencyname');

SuiteScript Developer Resources
SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

1228

SuiteScript Developer & Reference Guide

Chapter 87 SuiteScript Developer Resources
See these links for SuiteScript developer resources:

• SuiteScript Samples

• SuiteScript Tutorials

• SuiteScript FAQ

• NetSuite User Group

• NetSuite Developer Portal

SuiteScript and SuiteFlow Impact of Version 2014
Release 2 Address Customization Changes

The address customization feature to be implemented in Version 2014 Release 2 supports
custom address fields and custom address forms, and moves address fields into a new
address subrecord. This feature impacts all record types that contain address fields, including
transactions, entities, subsidiary, company information, location, and workplace. The address
form to use for each record is based on its country, so whenever a new country is selected in the
address subrecord, a new address form is loaded, resetting values for all address fields.

The address customization feature is largely backwards compatible. However, this feature
includes changes to SuiteScript and SuiteFlow address support that may impact a small number
of existing scripts and workflows, causing unexpected results. The following sections describe
these changes and suggest revisions that you can make to ensure continued correct functioning:

• Validate Field, Field Changed, and Post Sourcing Events May Not Fire When Addresses
Set

• All Address Fields Reset When Country Field Set in Dynamic Mode

• Getting and Setting Text through Parent Records Not Supported for Address Fields

• Changes Required for Code that Gets Address Field Metadata

• nlapiGetLineItemValue and nlapiSetLineItemValue Functions Not Supported for Address
Fields in Dynamic Mode

• Some Set Field Workflow Actions Not Supported on Address Fields

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N3917964.html
https://usergroup.netsuite.com/users/showthread.php?t=17123
http://www.netsuite.com/portal/developers/dev-resources.shtml

SuiteScript Developer Resources
SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

1229

SuiteScript Developer & Reference Guide

Important: The approach to some of these issues is to use subrecord APIs for scripting
with addresses. For information about scripting with address subrecords, see
Using SuiteScript with Address Subrecords.

Validate Field, Field Changed, and Post Sourcing Events May Not Fire
When Addresses Set

With the new address architecture, Validate Field, Field Changed, and Post Sourcing events in
client scripts deployed to some parent record types, and in custom code on these parent record
type forms, are no longer triggered by address field changes. This problem impacts scripts and
custom form code for entities and for the item fulfillment transaction type. Note that scripts
and custom form code for other transaction types are not impacted by this problem and should
continue to work as expected. Client side scripting is not supported for subsidiary, company
information, location, or workplace, so these record types are not impacted.

Solution:

Generally to address this problem, you can move the code, from the client event script deployed
to the parent record or the custom code on the parent record type form, to the Custom Code
subtab of the address form for the record type.

However, you need a different solution for code that sets values of fields that are in the parent
record, because code on the address form does not have access to the parent record. You can
modify this type of code within the client event script that is deployed to the parent record type,
setting it to fire on a Field Changed event on the address text field that is available to the parent
record. Field Changed events on address text fields fire when changes to the address subrecord
are committed. The Field Changed code can load the address subrecord, check which address
fields have changed, and set parent field values accordingly.

All Address Fields Reset When Country Field Set in Dynamic Mode

Every time the country field is set in an address subrecord, the address form associated with
that country is loaded. When the address form is loaded, all address field values are reset. If a
script sets the country field value after other address field values are set, these other address
fields may incorrectly end up with null values.

Solution:

All scripts running in dynamic mode, that set address field values, always need to set the
country field value FIRST. If you have any scripts that set other address field values before the
country field value, modify the code to set the country first.

SuiteScript Developer Resources
SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

1230

SuiteScript Developer & Reference Guide

Getting and Setting Text through Parent Records Not Supported for
Address Fields

With the new address architecture, the nlobjRecord.getFieldText(name) method, the
nlobjRecord.setFieldText(name, text) method, the nlapiGetFieldText(fldnam) function, and the
nlapiSetFieldText(fldnam, txt, firefieldchanged, synchronous) function are no longer supported
for address fields that have become part of the address subrecord.

Note: These methods and functions continue to work for address fields that are part of the
parent record.

Solution:

If you have any scripts that use these methods or functions on address fields that
are part of the address subrecord rather than the parent record, modify the code
to use nlobjRecord.getFieldValue(name), nlobjRecord.setFieldValue(name, value),
nlapiGetFieldValue(fldnam), or nlapiSetFieldValue(fldnam, value, firefieldchanged,
synchronous) instead.

Changes Required for Code that Gets Address Field Metadata

The nlobjRecord.getLineItemField(group, fldnam, linenum) method,
nlobjRecord.getField(fldnam) method, and nlapiGetField(fldnam) function are no longer
supported to get address field metadata. Address fields are now part of the address subrecord,
so you will need to get metadata from the subrecord rather than the parent record.

For example, the following code will return null for the country field on the address sublist:

var customer_record = nlapiCreateRecord('customer');
var country_field = customer_record.getLineItemField('addressbook', 'country', 1);

Solution:

If you have any scripts that get address field metadata from a parent record, you need to modify
the code to get metadata from the subrecord.

You can use nlapiCreateCurrentLineItemSubrecord(sublist, fldnam) to return the
nlobjSubrecord object, as shown in the following example:

var_customer_record = nlapiCreateRecord('customer');
customer_record.selectLineItem('addressbook', 1);
var addrSubrecord = customer_record.createCurrentLineItemSubrecord('addressbook', 'addressbooka
ddress');
var country_field = addrSubrecord.getField('country');

SuiteScript Developer Resources
SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

1231

SuiteScript Developer & Reference Guide

nlapiGetLineItemValue and nlapiSetLineItemValue Functions Not
Supported for Address Fields in Dynamic Mode

The nlapiGetLineItemValue(type, fldnam, linenum) and nlapiSetLineItemValue(type, fldnam,
linenum, value) functions are no longer supported for address fields in scripts running in
dynamic mode.

For example, if the following code is run in dynamic mode, it will return the
SSS_INVALID_FIELD_ON_SUBRECORD_OPERATION error.

nlapiGetLineItemValue('addressbook', 'country', 1);

Solution:

Modify the code to use nlapiGetCurrentLineItemValue(type, fldnam) or
nlapiSetCurrentLineItemValue(type, fldnam, value, firefieldchanged, synchronous).

For example, instead of the above code, use code like the following:

nlapiSelectLineItem('addressbook', '1');
nlapiGetCurrentLineItemValue('addressbook', 'country');

Address Fields on the Company Information Page are Still Accessed with
nlapiLoadConfiguration

In most server-side scripts, addresses are accessed with the subrecord APIs (see Scripting
the Address Subrecord for more information). Scripts that access addresses on the Company
Information page are an exception to this rule. You cannot use the subrecord APIs to
access these fields. You must access address fields on the Company Information page with
nlapiLoadConfiguration(type) (in the same way you access other fields on this page).

The following example loads the Company Information page and then accesses the shipping
address.

//load Netsuite configuration page
var companyInfo = nlapiLoadConfiguration('companyinformation');

//get field values
var ShipAddr1 = companyInfo.getFieldValue('shippingaddress1');
var shipCity = companyInfo.getFieldValue('shippingcity');
var shipState = companyInfo.getFieldValue('shippingstate');
var shipZip = companyInfo.getFieldValue('shippingzip');
var shipCountry = companyInfo.getFieldValue('shippingcountry');

SuiteScript Developer Resources
SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

1232

SuiteScript Developer & Reference Guide

Some Set Field Workflow Actions Not Supported on Address Fields

As a result of the changes implemented by the address customization feature, the following
workflow actions are no longer supported on address fields:

• Set Field Display Label

• Set Field Display Type

• Set Field Mandatory

Note the Set Field Value workflow action continues to be supported for address fields.

Solution:

If any of your workflows currently include the unsupported actions on address fields, you need
to delete these actions from the workflow and implement the behavior through address form
customization. You can set the label of a field, set its display type, and/or make it mandatory on
a custom address form.

SuiteScript Samples 1233

SuiteScript Developer & Reference Guide

Chapter 88 SuiteScript Samples
SuiteScript code samples are organized into the following categories:

• Client SuiteScript Samples

• User Event Script Samples

• Scheduled Script Samples

• Suitelets Samples

• Portlet Scripts Samples

SuiteScript Tutorials
Getting Started with Your SuiteScript Development Environment Tutorial

1234

SuiteScript Developer & Reference Guide

Chapter 89 SuiteScript Tutorials
The following tutorials are provided in this section:

• Getting Started with Your SuiteScript Development Environment Tutorial (If you are new
to NetSuite, it is recommended that you start with this tutorial.)

• Client SuiteScript Tutorials

• User Event SuiteScript Tutorial

Getting Started with Your SuiteScript Development
Environment Tutorial

This tutorial shows you how to write a “Hello World!” Suitelet by programmatically creating a
NetSuite form, adding an alert, adding a button, and configuring the Suitelet so that it can be
launched from a NetSuite menu. After launching the Suitelet, you can click the button on the
form to receive the “Hello World!” popup message.

Note: If you are new to NetSuite and would like to learn more general information about
Suitelets, see Suitelets.

Note: You can use any text editor to write SuiteScript. However, NetSuite strongly
recommends you use the SuiteCloud IDE, which offers code completion, script
validation, and access to Help on each API. Therefore, for the purpose of the
“Getting Started with Your SuiteScript Development Environment” tutorial, basic
steps are provided to help you install and configure the SuiteCloud IDE. For more
information about working with SuiteCloud IDE, see the help topic Uploading
SuiteScript into NetSuite.

To write a Hello World! Suitelet using the SuiteCloud IDE:

Install and Configure the SuiteCloud IDE

1. Download the SuiteCloud IDE.

Note: For more information about the download location and available versions for
SuiteCloud IDE, see the help topic Installing and Setting Up the SuiteCloud IDE.

2. Launch the executable file.

3. Select a workspace.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2915877.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2915877.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2908702.html

SuiteScript Tutorials
Getting Started with Your SuiteScript Development Environment Tutorial

1235

SuiteScript Developer & Reference Guide

Important: NetSuite recommends that you create a new workspace for SuiteCloud
IDE instead of reusing an existing workspace. This is to avoid the
possibility of carrying over incompatible settings from an old workspace.

4. Accept the terms of the license agreement.

5. In SuiteCloud IDE, set your master password by going to NetSuite > Master Password >
Set Master Password.

6. Add your NetSuite accounts by going to NetSuite > Accounts and clicking Add.

7. In SuiteCloud IDE, go to File > New > NetSuite Project. The New NetSuite Project window
opens.

8. In the Project name field, enter GettingStarted.

9. Select SuiteScript Project.

10. Select Use default location.

Note: If you do not want to use the default location, deselect Use default location
and navigate to your desired location.

11. Click Finish.

Write a “Hello World!” Suitelet

12. In SuiteCloud IDE, go to File > New > SuiteScript File. The New SuiteScript File window
opens.

13. In the Script Type field, select Suitelet Script.

14. For the parent folder, select GettingStarted.

15. In the Script Filenamefield, enter GettingStarted_SS_HelloWorld.js.

16. Click Finish. A Suitelet script is automatically created.

17. Change the function name to processHelloWorld.

18. Edit the function to create a form, use an alert statement, and add a button to display a
“Hello World!” popup message when the button is clicked.

function processHelloWorld(request, response)
{
 var form = nlapiCreateForm('Getting Started with Your SuiteScript Development Environment');
 var script = ' alert(\'Hello World!\')';

 form.addButton('custombutton', 'Click Me', script);
 response.writePage(form); //The content of the parameter becomes the http response sent to the
 browser.
}

SuiteScript Tutorials
Getting Started with Your SuiteScript Development Environment Tutorial

1236

SuiteScript Developer & Reference Guide

19. Click Save.

Upload Your Script into NetSuite

20. Next, right-click in the SuiteCloud IDE editor area and then go to NetSuite > Upload File
in Editor. The Upload File in Editor window opens.

Note: You can also use the shortcut, Ctrl + U, to upload file in editor.

21. Wait for the progress bar to complete. The Upload File in Editor window closes upon
completion.

Verify Your Script Upload

22. Right-click in the editor area and then go to NetSuite > Log in to Project Account. A
browser loads with your NetSuite account logged in.

Note: You can also use the shortcut, Ctrl + B, to log in to project account.

23. In NetSuite, go to Documents > Files > File Cabinet. The File Cabinet Folders page of your
NetSuite account loads.

24. Navigate to the SuiteScripts directory and check your file in the GettingStarted
subdirectory.

Configure Suitelet Script Record and Deployment

25. In NetSuite, go to Customization > Scripting > Scripts > New.

26. Upload your SuiteScript 1.0 script. The Select Type page loads.

27. In the Type list, click Suitelet.

28. In the Name field, enter GettingStarted_SS_HelloWorld.

29. In the ID field, enter _gs_ss_helloworld.

30. In the Scripts subtab, select GettingStarted_SS_HelloWorld.js in the Script File
dropdown list.

31. In the Function field, enter processHelloWorld.

Important: Make sure that you enter the function name without the parentheses
and with the correct case. Also, the function name you enter MUST
match the name of the executable function in your script.

32. Hover over the dropdown arrow on the Save button, and then click Save and Deploy. The
New Script Deployment page loads.

33. In the Title field, enter GettingStarted_SS_HelloWorld.

34. In the ID field, enter _gs_ss_helloworld.

SuiteScript Tutorials
Client SuiteScript Tutorials

1237

SuiteScript Developer & Reference Guide

35. In the Status dropdown list, select Testing.

36. Click the Links subtab.

37. In the Center dropdown list, select Classic Center.

38. In the Section dropdown list, select Setup.

39. In the Category dropdown list, select Custom.

40. In the Label field, enter Getting Started.

41. Click Add.

42. Click Save.

Test Your Script

43. In NetSuite, go to Setup > Custom > Getting Started. The Getting Started with Your
SuiteScript Development Environment page loads.

44. Click Click Me. The Hello World! popup message appears.

45. Click OK on the popup message.

Client SuiteScript Tutorials
These tutorials provide detailed examples for how to use client SuiteScript to control the
behavior of item discounts in a custom Cash Sale Transaction Form.

The tutorials starts by describing the code to be used when the page first loads, then covers
field changes, and then validation and page save code. These tutorials are broken out into the
following sections:

• Customizing the Page Load

• Validating Field Values

SuiteScript Tutorials
Client SuiteScript Tutorials

1238

SuiteScript Developer & Reference Guide

• Retrieving the Customer Discount

• Triggering Events When a Field is Changed

• Validating a Line Item on a Sublist

• Recalculating Field Totals

• Prompting Before Save

• Client Tutorial (Complete Code)

For each section, you may need to create custom elements described in the Setup sections. If
you are familiar with creating custom items, lists and fields, refer to the table provided for the
required parameters for each element. Otherwise, refer to the SuiteBuilderGuide in the NetSuite
Help Center for detailed instructions. This guide is available in both Help and PDF formats.

The fields in these samples must exist in your NetSuite account prior to using these examples. If
the items and fields do not exist, you will receive an error when attempting to use your custom
cash sale.

Customizing the Page Load

In the Page Init example, we will cause a 5% transaction discount to be automatically applied to
the cash sale price of an item whenever our custom Cash Sale Transaction form is loaded.

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Setup

Before creating a script that applies a discount, we must first create a discount item in NetSuite
and then use this discount item in our custom code.

Element Parameters Purpose

Discount Item Item Name/Number: In-store Discount
Income Account: 4000 Sales
Rate: 5%
Apply Before Sales Tax: No

Defines the discount item that you will refer
to in your custom code.

To create, go to Lists > Accounting > Items >
New > Discount.

Create the Code

Next we will create a javascript file called customCashSales.js and enter the following code.
This code sets the discount item field to the value created in Setup.

function samplePageInit()

SuiteScript Tutorials
Client SuiteScript Tutorials

1239

SuiteScript Developer & Reference Guide

{
 nlapiSetFieldValue('discountitem', 144);
}

144 refers to the internal ID value of In-Store Discount item created in the preceeding section.
You can determine the discount item ID by navigating to the item, and inspecting the id=
parameter of the URL or, if you have enabled the display of Internal IDs, the value is displayed
in the internal ID column.

Test the Code

Next we will upload the javascript file to NetSuite and apply the code to our custom Cash Sale
Transaction form.

To upload the javascript file to NetSuite:

1. Go to Documents > Files > File Cabinet.

2. Select the folder you want to add your file to.

3. At the bottom of the page, select Computer in the Attach From field.

4. Click Browse next to the File field and select the customCashSale.js file you created.

5. Click Add This File.

To apply the custom code to a transaction form:

1. Go to Customization > Forms > Transaction Forms.

2. Click Customize next to Standard Cash Sale.

3. In the Name field, enter Custom Code Sample.

Leave all standard settings the same.

SuiteScript Tutorials
Client SuiteScript Tutorials

1240

SuiteScript Developer & Reference Guide

4. Click the Custom Code subtab.

5. In the Script File field, browse to the customCashSale.js file you uploaded to your file
cabinet.

6. In the Page Init Function field, enter samplePageInit.

7. Click Save.

You can now go to Transactions > Sales > Enter Cash Sales to test your custom code. Select the
Custom Code Sample form in the Custom Form field on the Cash Sale page.

Notice that the Discount is automatically set to In-Store Discount with the rate at -5%. This
cash sale will have the 5% discount applied to it.

Validating Field Values

Of course, in some cases, there may be customer discounts already assigned for certain
customers, in which case we wouldn't want to automatically assign the lower 5% discount — we
will want to consider the customer discount instead. In this section we will create a validation
script to ensure that this is the behavior.

Setup

Before creating our code, we will need to setup several customers with custom discounts. The
following table lists all of the elements you will need to create to do this.

SuiteScript Tutorials
Client SuiteScript Tutorials

1241

SuiteScript Developer & Reference Guide

Element Parameters Purpose

5 Discount Items Item Name/Number*: 10%
Income Account: 4000 Sales
Rate*: 10%
Apply Before Sales Tax: No
And four additional discount items with the Item
Name/Number and Rate fields to 15%, 20%, 25%
and 30% respectively

Defines the discount items that you
will be able to set for any customers.

To create, go to Lists > Accounting >
Items > New > Discount.

Custom List Name: Customer Discounts
Values: 10%, 15%, 20%, 25%, 30%

Defines the selection list of discount
items.

To create, go to Customization >
Lists, Records, & Fields > Lists > New.

Entity Field Description: Customer Discount
ID: _customer_discount
Type: List/Record
List/Record: Customer Discounts
Applies To: Customer:Project
Subtab: General

Sources the list created.

To create, go to Customization
> Lists, Records, & Fields > Entity
Fields > New.

Transaction Body
Field

Description: Cust. Discount
ID: _cust_discount
Type: List/Record
List/Record: Customer Discounts
Applies To: Sale
Subtab: Main
Display Type: Disabled
Source LIst: Entity
Source From: Customer Discount

To create, go to Customization >
Lists, Records, & Fields > Transaction
Body Fields > New.

Customer Records Set a discount to various customers.

Create the Code

In this section we will add the validation code to the customCashSales.js file created for the
Page Init function.

Note: When applying custom code, you can select up to two javascript files to associate
with a given custom form. One file should contain all of the code specific to the
current form. The other, library file, should contain any code that may be used
across multiple forms. For the purposes of this tutorial, we will include all of the
custom code in a single file — customCashSales.js.

Retrieving the Customer Discount

First, we'll need to create a function that determines whether a customer discount rate has been
set. The following code uses nlapiGetFieldText to retrieve the value of the custom transaction
body field we created — custbody_cust_discount. If it exists, we convert the value to a negative
number to ensure that the total is decreased by the specified amount and the value is then
returned.

SuiteScript Tutorials
Client SuiteScript Tutorials

1242

SuiteScript Developer & Reference Guide

function calcCustomerDiscountRate()
{
 if(!isNaN(parseFloat(nlapiGetFieldText('custbody_cust_discount'))))
 return ((parseFloat(nlapiGetFieldText('custbody_cust_discount'))) * -1);
 else
 return 0;
}

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Determining Which Discount to Use

Next, we'll want to make sure that the Page Init function does not cause the discount to be set to
5% if a customer already has a pre-defined higher discount rate.

1. Create a new function.

 function sampleValidateField(type, name)
 {

2. Set the variables

 var useCustomerDiscount = true;
 var instore_discount = -5;
 var cust_discount = calcCustomerDiscountRate();

3. Determine if In-Store discount is higher than the customer discount and return an alert
that allows you to choose whether to accept the higher value.

 if (instore_discount <= cust_discount)
 {
 useCustomerDiscount = false;
 }
 if(useCustomerDiscount)
 {
 alert("custbody_cust_discount: '" +
 nlapiGetFieldText('custbody_cust_discount') + "'");
 nlapiSetFieldText('discountitem',
 nlapiGetFieldText('custbody_cust_discount'));
 }
 else
 {
 nlapiSetFieldText('discountitem', "In-store Discount");
 }

4. Close the function.

 }

SuiteScript Tutorials
Client SuiteScript Tutorials

1243

SuiteScript Developer & Reference Guide

Test the Code

Now upload the modified customCashSale.js file to the file cabinet and then assign the
sampleValidateField function for the Validate Field function on the Custom Code Sample form.

Now when we enter a cash sale using the Custom Code Sample form, if a customer is selected
that has a pre-defined discount higher than the In-store discount set by the Page Init function,
then the In-store discount is NOT used.

More Validation

This is a very basic case. In reality, we would need to add some further validation to ensure
that the field types are in the correct format and we may want to check for other discount
restrictions, etc. The complete code included in Client Tutorial (Complete Code) includes
javascript validation for the following:

• If the transaction discount is changed to a rate greater than $50 or 30%, a box pops up
asking for confirmation of manager approval for the discount.

The user can choose to keep the current discount or abort the discount. If the discount is
aborted, a message is displayed to notify the user that the discount level is not approved
and it will be reset.

• If more than 20 of any one item is added to the transactions, a box pops up asking if you
are sure you want to add the item. The user can choose to add the items or return to the
item list without adding the items.

Triggering Events When a Field is Changed

In the Field Changed example, we will cause a popup box display that indicates if a customer
has had order problems in the past and reminds the user to verify all items before submitting
the order.

SuiteScript Tutorials
Client SuiteScript Tutorials

1244

SuiteScript Developer & Reference Guide

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Setup

This script requires the creation of custom entity and transaction body fields.

Element Parameters Purpose

Entity Field Description: Past Order Problems
Subtab: General
ID: _had_order_problems
Applies To: Customer:Project

To create, go to Customization
> Lists, Records, & Fields > Entity
Field > New.

Transaction Body
Field

Description: Past Order Problems
Type: Check Box
Source List: Entity
Subtab: Main
Display Type: Locked
ID: _had_order_problems
Applies To: Sale

To create, go to Customization
> Lists, Records, & Fields >
Transaction Body Field > New.

Create the Code

In this section we will add the field changed code to the customCashSales.js file.

1. First, we will set this code to fire on any change to the transaction body field created
during Setup.

 function sampleFieldChanged(type, name)
 {
 if (name == 'custbody_had_order_problems')
 {

Remember, the custbody_had_order_problems is sourced from the entity field selected.
Therefore, this code will be executed each time a new customer is selected in the form.
Since the custbody_had_order_problems field is locked, it can NOT be edited directly.

2. Next, we'll check the value of the check box field and if set to T, display an alert.

 if ((nlapiGetFieldValue('custbody_had_order_problems') == 'T') &&
 (nlapiGetFieldText('entity')))
 {
 alert("This customer has had order problems previously. Be sure to verify
 all items with the customer before submitting the order.");
 return true;
 }

3. Finally, we will close the function without causing any additional change.

 }
 return true;

SuiteScript Tutorials
Client SuiteScript Tutorials

1245

SuiteScript Developer & Reference Guide

 }

Test the Code

Upload the modified customCashSale.js file to the file cabinet and then assign the
sampleFieldChanged function for the Field Change Validation function on the Custom Code
Sample form.

Now when we enter a cash sale using the Custom Code Sample form, if a customer is selected
where Past Order Problems check box is enabled, an alert is displayed.

Validating a Line Item on a Sublist

In the Validate Line example, we will include validation that prevents the addition of a service
line item without a service employee being chosen for that line.

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Setup

This script requires the creation of a custom entity and custom transaction column field.

Element Parameters Purpose

Entity Field Description: Service Rep
Type: Check Box
Subtab: Human Resources
Applies To: Employee

Provides a check box on employee records
where you can define an employee as a
service rep.

To create, go to Customization > Lists,
Records, & Fields > Entity Fields > New.

Transaction
Column Field

Description: Service Rep
Type: List/Record
List/Record: Employee

To create, go to Customization > Lists,
Records, & Fields > Transaction Column Fields
> New.

SuiteScript Tutorials
Client SuiteScript Tutorials

1246

SuiteScript Developer & Reference Guide

Element Parameters Purpose

ID: _service_rep
Applies To: Sale Item
Filter Using: Service Rep
Is Checked: True

Employee Records Assign various employees as service reps.

Create the Code

Again, we will modify the customCashSale.js file to add the following code. The code checks
the value of the custcol_service_rep custom field whenever a custcol_service_item item is
selected. If the value is T, then an alert is displayed and the event is aborted. The user is forced
to first select a service rep before entering any line items.

function sampleValidateLine(type)
{
 if ((nlapiGetCurrentLineItemValue('item', 'custcol_service_item') == true) &&
 (!nlapiGetCurrentLineItemText('item', 'custcol_service_rep')))
 {
 alert("You must choose a Service Rep for this service item.");
 return false;
 }
 return true;
}

Test the Code

Upload the modified customCashSale.js file to the file cabinet and then assign the
sampleValidateLine function for the Validate Line function on the Custom Code Sample form.

Now when we enter a cash sale using the Custom Code Sample form, if a service line item is
selected when a sales rep has not been assigned, the user is forced to return and select a sales
rep for the customer before selecting any service items.

SuiteScript Tutorials
Client SuiteScript Tutorials

1247

SuiteScript Developer & Reference Guide

Recalculating Field Totals

In the Recalc example, we will determine if items added to the cash sale are service items. If the
item is a service, the sales price is added to the service bookings field.

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Setup

This script requires the creation of a custom item field, transaction column field and
transaction body field.

Element Parameters Purpose

Item Field Description: Service Item
Type: Check Box
Subtab: Basic
ID: _service_item
Applies To: Service
Default Checked: True

To create, go to Customization > Lists,
Records, & Fields > Item Fields > New.

Transaction Body
Field

Description: Service Bookings
Type: Currency
Subtab: Main
Display Type: Locked
ID: _service_bookings
Applies To: Sale

To create, go to Customization > Lists,
Records, & Fields > Transaction Body
Fields > New.

Item Records Designate various existing items as service
items.

Any new service items created are
automatically marked as service
items..

Create the Code

Again, we will modify the customCashSale.js file to add the following code.

function sampleRecalc(type)
{
 var total = 0;
 for (i = 1; i <= nlapiGetLineItemCount('item'); i++)
 {
 var item_amount = parseFloat(nlapiGetLineItemValue('item', 'amount', i));
 if (nlapiGetLineItemValue('item', 'custcol_service_item', i) == 'T')
 {
 total += item_amount;
 }
 }
 nlapiSetFieldValue('custbody_service_bookings', nlapiFormatCurrency(total));
}

SuiteScript Tutorials
Client SuiteScript Tutorials

1248

SuiteScript Developer & Reference Guide

Test the Code

Upload the modified customCashSale.js file to the file cabinet and then assign the sampleRecalc
function for the Validate Line function on the Custom Code Sample form.

Now when we save a cash sale using the Custom Code Sample form, any service items amounts
are added to the service bookings field.

Prompting Before Save
In the Save example, we will cause a pop-up box to display when a record is saved that prompts
the user with “Are you sure you want to save this record?” The code will execute the save if the
user clicks OK and abort the save if the user clicks Cancel.

Note: No record customization (setup) is required for this script to work properly.

Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Create the Code

Again, we will modify the customCashSale.js file to add the following code. This script returns
a dialog box prompting the user to confirm the save.

function sampleSaveRecord()
{

return confirm("Are you sure you want to save this record?");
}

Test the Code

Upload the modified customCashSale.js file to the file cabinet and then assign the
sampleSaveRecord function for the Save Record function on the Custom Code Sample form.

SuiteScript Tutorials
Client SuiteScript Tutorials

1249

SuiteScript Developer & Reference Guide

Now when we save a cash sale using the Custom Code Sample form, a confirmation prompt is
returned.

Client Tutorial (Complete Code)

The following is the complete code used throughout the Client SuiteScript Tutorials exercise.
Copy this information exactly as it appears here. Comments are included in the code to help
illustrate the purpose of each portion of the code.

//===
function samplePageInit()
{
 // Customers that make purchases in the store, as opposed to from a Web site,
 // automatically receives a 5% in-store transaction discount. This discount is
 // NOT in addition to other discounts they may have available to them.
 //
 // NOTE: you could also have used nlapiSetFieldText('discountitem', 'In-store
 // Discount');
 // The 92 is the ID of the item in your NetSuite account. You can determine the
 // ID of an item by navigating to the item, and inspecting the id= parameter of
 // the URL.

 nlapiSetFieldValue('discountitem', 92);
}
//===

function sampleSaveRecord()
{
 return confirm("Are you sure you want to save this record?");
}

//===

function sampleValidateField(type, name)
{
 // This script does not allow discounts equal to or greater than $50 or greater
 // than 30%, without manager approval.
 // If the transaction discount rate is positive, which adds to the order total,
 // prompt to reset the transaction discount to the better of the In-store or

SuiteScript Tutorials
Client SuiteScript Tutorials

1250

SuiteScript Developer & Reference Guide

 // Cust. Discount.
 //
 // Also, if the rate is a percent and is not as high as the Cust. Discount or
 // In-store Discount, check to see if they would like to reset the discount
 // to the higher rate.

 // The three variable initialization functions that are called from this
 // function (calcIsPercent, calcTransactionDiscountRate and
 // calcCustomerDiscountRate) are defined at the end of this script file.

 if (name == 'discountrate')
 {
 // intialize variables
 // Customers that purchase in the store, as opposed to from a Web site,
 // automatically receive a 5% in-store transaction discount.
 var instore_discount = -5;

 // Start by assuming the customer discount is better than the in-store
 // discount.
 var useCustomerDiscount = true;

 // Is the transaction discount field a percent?
 var isPercent = calcIsPercent();

 // If a transaction discount is present, set tran_discount_rate,
 // otherwise initialize to zero.
 var tran_discount_rate = calcTransactionDiscountRate();

 // If a customer discount is present, set cust_discount,
 // otherwise initialize to zero.
 var cust_discount = calcCustomerDiscountRate();

 // If the In-store discount is higher than the customer discount, use it
 // instead.
 if (instore_discount <= cust_discount)
 useCustomerDiscount = false;

 // Check to see that the discount is not a percent.
 if (!isPercent)
 {
 // If the discount is not a percent...
 // Is the transaction discount rate > 0 (which adds to the order total)?
 // If so, prompt to reset Transaction Discount to the higher of In-house or
 // Cust. Discount
 if (tran_discount_rate > 0)
 {
 if (confirm("The Transaction Discount Rate is positive, which adds to
 the order total.\n\nReset Transaction Discount to the better of Cust.
 Discount or In-store Discount?\n\n(OK = Yes, Cancel = No)"))
 {
 // Use the higher of the In-store or the Cust. Discount rate.
 if(useCustomerDiscount)
 {

 // alert("custbody_cust_discount: '" +
 nlapiGetFieldText('custbody_cust_discount') + "'");
 nlapiSetFieldText('discountitem',
 nlapiGetFieldText('custbody_cust_discount'));
 }
 else

SuiteScript Tutorials
Client SuiteScript Tutorials

1251

SuiteScript Developer & Reference Guide

 {
 nlapiSetFieldText('discountitem', "In-store Discount");
 }
 }
 }
 // If the discount is not percent, is the discount equal to or more than
 // $50?
 else if (parseInt(nlapiGetFieldValue('discountrate')) <= -50)
 {
 if (!confirm("Please confirm that you have a manager's approval for this
 discount amount.\n\n(OK = Yes, Cancel = No)"))
 {
 // Use the higher of the In-store or the Cust. Discount rate
 if(useCustomerDiscount)
 {
 alert("Discount level not approved, resetting to Customer
 Discount.");

 // alert("custbody_cust_discount: '" +
 nlapiGetFieldText('custbody_cust_discount') + "'");
 nlapiSetFieldText('discountitem',
 nlapiGetFieldText('custbody_cust_discount'));
 }
 else
 {
 alert("Discount level not approved, resetting to In-store
 Discount.");

 nlapiSetFieldText('discountitem', "In-store Discount");
 }
 }
 }
 }

 // If the discount is a percent...
 // Is that percent more than 30% off?
 else
 {
 if (parseFloat(nlapiGetFieldValue('discountrate')) < -30)
 {
 // If so, prompt...
 if (!confirm("Please confirm that you have a manager's approval for this
 discount percent.\n\n(OK = Yes, Cancel = No)"))
 {
 // Reset to the higher of In-store discount or Cust. Discount.
 if(useCustomerDiscount)
 {
 alert("Discount level not approved, resetting to Customer
 Discount.");

 nlapiSetFieldText('discountitem',
 nlapiGetFieldText('custbody_cust_discount'));
 }
 else
 {
 alert("Discount level not approved, resetting to In-store
 Discount.");

 nlapiSetFieldText('discountitem', "In-store Discount");
 }

SuiteScript Tutorials
Client SuiteScript Tutorials

1252

SuiteScript Developer & Reference Guide

 }
 }

 // If the Transaction Discount Rate is a percent and is lower than Cust.
 // Discount or In-Store Discount, then prompt to reset Transaction Discount
 // to the higher of the two.
 if (tran_discount_rate > cust_discount || tran_discount_rate >
 instore_discount)
 {

 if (confirm("The Transaction Discount Rate is not as good as the Cust.
 Discount or the
 In-store Discount.\n\nReset Transaction Discount to the better of the
 two?\n\n(OK =
 Yes, Cancel = No)"))
 {
 // Use the higher of the In-store or Cust. Discount rate.
 if(useCustomerDiscount)
 {

 // alert("custbody_cust_discount: '" +
 nlapiGetFieldText('custbody_cust_discount') + "'");
 nlapiSetFieldText('discountitem',
 nlapiGetFieldText('custbody_cust_discount'));
 }
 else
 {

 nlapiSetFieldText('discountitem', "In-store Discount");
 }
 }
 }
 }
 }

 // If any single line-item quantity exceeds 20, ask if this is correct.
 else if ((type == 'item') && (name == 'quantity'))
 {
 var count = parseFloat(nlapiGetCurrentLineItemValue('item', 'quantity'));

 if(count > 20)
 {
 return confirm("Do you really want to add " + count + " of this item?\n\n(OK
 = Yes,
 Cancel = No)");
 }
 }

 // Always return true at this level to validate all the fields that you
 // are not specifically validating...
 return true;
}

//===

function sampleFieldChanged(type, name)
{
 // A custom check box field for customers records whether the customer has "had

SuiteScript Tutorials
Client SuiteScript Tutorials

1253

SuiteScript Developer & Reference Guide

 // order problems."
 // A locked transaction body field (checkbox) sources the value from the
 // customer record onto the transaction.
 // On field change of customer (entity), check the sourced locked field. If it
 // is "T", then pop an alert saying
 // "This customer has had order problems previously. Be sure to verify all
 // items with the customer before
 // submitting the order."

 if (name == 'custbody_had_order_problems')
 {
 // if customer is not null and this customer has had order problems,
 // remind the employee to double check the order...
 if ((nlapiGetFieldValue('custbody_had_order_problems') == 'T') &&
 (nlapiGetFieldText('entity')))
 {
 alert("This customer has had order problems previously. Be sure to verify
 all items with
 the customer before submitting the order.");
 return true;
 }

 }
 return true;
}

//===

function sampleValidateLine(type)
{
 // Prevents a service line item to be added without specifying the service rep
 // employee.

 // alert("service item flag: " + nlapiGetCurrentLineItemValue('item',
 // 'custcol_service_item'));
 // alert("service rep: " + nlapiGetCurrentLineItemText('item',
 // 'custcol_service_rep'));

 // if ((nlapiGetCurrentLineItemValue('item', 'custcol_service_item') == 'T')
 // && (String(nlapiGetCurrentLineItemText('item', 'custcol_service_rep')) ==
 // ""))

 if ((nlapiGetCurrentLineItemValue('item', 'custcol_service_item') == 'T') &&
 (!nlapiGetCurrentLineItemText('item', 'custcol_service_rep')))
 //(nlapiGetCurrentLineItemText('item', 'custcol_service_rep')) == "")
 {
 alert("You must choose a Service Rep for this service item.");
 return false;
 }

 return true;
}

//===

function sampleRecalc(type)
{

SuiteScript Tutorials
Client SuiteScript Tutorials

1254

SuiteScript Developer & Reference Guide

 // For each service line item that is added, its total is added to the service
 // bookings field.
 //
 // The custcol_service_item field sources its value from the Service Item
 // custom field check box on the item.

 // initialize total
 var total = 0;

 // Run through each line item looking for service items.
 for (i = 1; i <= nlapiGetLineItemCount('item'); i++)
 {

 // Set item_amount for the current item.
 var item_amount = parseFloat(nlapiGetLineItemValue('item', 'amount', i));

 // If the item is a service item, add its value to the total.
 if (nlapiGetLineItemValue('item', 'custcol_service_item', i) == 'T')
 {
 total += item_amount;
 }

 }

 // Set the service bookings custom field to the total of all service items.
 nlapiSetFieldValue('custbody_service_bookings', nlapiFormatCurrency(total));
}

//===

// The following scripts are the three variable init functions called from the
// sampleValidateField function.
//

function calcIsPercent()
{

 // If you cannot find a percent sign in the discount field, set isPercent to
 // false.
 if(nlapiGetFieldValue('discountrate').indexOf('%') == -1)
 return false;
 else
 return true;

}

function calcTransactionDiscountRate()
{

 // If a transaction discount is present, set tran_discount_rate,
 // otherwise initialize to zero.

 if(!isNaN(parseFloat(nlapiGetFieldValue('discountrate'))))
 return parseFloat(nlapiGetFieldValue('discountrate'));
 else
 return 0;

}

SuiteScript Tutorials
User Event SuiteScript Tutorial

1255

SuiteScript Developer & Reference Guide

function calcCustomerDiscountRate()
{

 if(!isNaN(parseFloat(nlapiGetFieldText('custbody_cust_discount'))))
 // Multiply the rate by -1 because all discounts must be negative or they
 // add to order total.
 return ((parseFloat(nlapiGetFieldText('custbody_cust_discount'))) * -1);
 else
 return 0;

}
//===

User Event SuiteScript Tutorial
The following use cases often depend on specific fields being available on the forms being
used. If you are using custom forms, be sure that the fields that are referenced in the script are
available in that form.

The following uses cases are covered in this section:

• User Event ERP Use Cases

• User Event CRM Use Cases

User Event ERP Use Cases
The following ERP use cases are outlined in this section:

• Email Notification

• Adding Contact Information to a Sales Order

• Modifying Line Items on a Transaction

Email Notification

This User Event script causes an email notification to be sent when a Sales Order is entered
with a discount level higher than a given value. The maximum allowed discount level is set as a
_maximumdiscountlevel parameter of the specific deployment.

The script uses the parameters outlined in the following table. Values for these parameters must
be defined for each deployment of the script. To define these parameters, go to the Parameters
tab of the script definition and create a New Field for each parameter. These parameter fields
are essentially custom fields. For detailed information on how to define custom fields, refer to
Creating a Custom Field.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html

SuiteScript Tutorials
User Event SuiteScript Tutorial

1256

SuiteScript Developer & Reference Guide

Note: To enhance readability, it is recommended that you use an underbar in the field ID
definitions as shown here since each script field created is automatically prefaced
with custscript.

Parameter Name Field ID Field Name

_maximumdiscountlevel custscript_maximumdiscountlevel Percent

_salesorderapproveremail custscript_salesorderapproveremail E-mail Address

_salesordername custscript_salesordername Free-Form Text

_salesorderapproveremail2 custscript_salesorderapproveremail2 E-mail Address

In the following script, edit the nlapiSendEmail function to reflect a valid email in your account
and valid recipients. The first argument (-5 in this sample) is the author of the email. The
second argument (adminsToEmail) is a comma-delineated list of emails that can correspond to
the internalId of any entity in the system or any other valid email address.

Script:

/* before Save trigger: test discount rate on new orders against cutoff rate and if
it exceeds it then change the status to Pending approval. Also update memo */

function beforeSaveSalesOrder(type)
{
 var newRecord = nlapiGetNewRecord();
 var cutoffRate = custscript_maximumdiscountlevel;
 var discountRate = newRecord.getFieldValue('discountrate');
if (type == 'Create' && discountRate != null && discountRate.length > 0 && cutoffRate != null
 && cutoffRate.length > 0)
 {
 discountRate = Math.abs(parseFloat(discountRate));
 cutoffRate = Math.abs(parseFloat(cutoffRate));
 if (discountRate > cutoffRate)
 {
 newRecord.setFieldValue('orderstatus','A' /* Pending Approval */);
 newRecord.setFieldValue('memo','Changed status to pending approval
 because discount exceeded '+custscript_maximumdiscountlevel);
 }
 else
 {
 newRecord.setFieldValue('orderstatus','B' /* Pending Fulfillment */);
 newRecord.setFieldValue('memo','Changed status to pending fulfillment
 since it did not exceed cutoff');
 }
 }
}
/* after Save trigger: test discount rate on new orders against cutoff rate and if it exceeds i
t then send an email to a predefined list of addresses. */
function afterSaveSalesOrder(type)
{
 var newRecord = nlapiGetNewRecord();
 var cutoffRate = nlapiGetContext().getSetting('SCRIPT'
 custscript_maximumdiscountlevel');
 var discountRate = newRecord.getFieldValue('discountrate');
 if (type == 'Create' && discountRate != null && discountRate.length > 0 &&
 cutoffRate != null && cutoffRate.length > 0)

SuiteScript Tutorials
User Event SuiteScript Tutorial

1257

SuiteScript Developer & Reference Guide

 {
 discountRate = Math.abs(parseFloat(discountRate));
 cutoffRate = Math.abs(parseFloat(cutoffRate));
 if (discountRate > cutoffRate)
 sendDiscountWarningEmail();
 }
}
/* Lookup customer name by internalId */
function queryCustomerName(customer)
{
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('internalid', null, 'is', customer,
 null);
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('entityid');

 var searchresults = nlapiSearchRecord('customer', null, filters, columns);
 var entityid = searchresults[0].getValue('entityid');
 return entityid;
}
/* Lookup salesrep name by internalId */
function querySalesRepName(salesrep)
{
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('internalid', null, 'equalTo', salesrep,
 null);
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('entityid');

 var searchresults = nlapiSearchRecord('contact', null, filters, columns);
 var entityid = searchresults[0].getValue('entityid');
 return entityid;
}
/* Send pre-formatted email to predefined list of recipients */
function sendDiscountWarningEmail()
{
 var newRecord = nlapiGetNewRecord();
 var customerName = queryCustomerName(newRecord.getFieldValue('entity'));
 var salesrepName = querySalesRepName(newRecord.getFieldValue('salesrep'));
 var orderName = custscript_salesordername != null ? custscript_salesordername :
 'Sales Order';

 var str = salesrepName+' has entered a '+orderName+' for '+customerName+' that
 exceeds '+custscript_maximumdiscountlevel+'.\n\n';
 str += 'Your approval is required before it can be fulfilled.\n\n';
 str += 'Please log in to your NetSuite solution to approve the discount and
 order.\n';

 var adminsToEmail = custscript_salesorderapproveremail;
 if (custscript_salesorderapproveremail2 != null)
 adminsToEmail += ';'+custscript_salesorderapproveremail2;

 /*nlapiSendEmail(-5 /* Joe Wolfe (admin)*/, adminsToEmail, 'Discount
 Warning', str); */

/* logging a note in the execution log to indicate success */
nlapiLogExecution ('DEBUG', 'Discount Warning ');

}

SuiteScript Tutorials
User Event SuiteScript Tutorial

1258

SuiteScript Developer & Reference Guide

Adding Contact Information to a Sales Order

This User Event script sets a custom field on sales orders to the fax number of the customer's
primary contact.

To use this script:

1. Create a custom transaction body field. Custom Transaction Body fields can be defined at
Customization > Lists, Records, & Fields > Transaction Body Fields > New. The custom
field should have the following characteristics:

• ID: _contactfax

• Type: Phone Number

• Display: Main

• Applies To: Sale

• Store Value: False (deselect)

For detailed information on creating custom fields, see the help topic Creating a Custom
Field in the SuiteBuilder (Customization) Guide.

2. Set the script to execute Before Load on Sales Order records.

Script:

function beforeLoadRecord(type)
{
 // only run this script for existing records
 if (type.toLowerCase() == 'create')
 return;
 // Get the current record
 var record = nlapiGetNewRecord();
 // Get the entity (customer) for this order
 var customer = record.getFieldValue("entity");
 // Execute a search to retrieve the primary contact's fax
 // Filter to custom id = the customer of the sales order gleaned above
 var filters = new Array();
 filters[0] = new nlobjSearchFilter("internalid",null,"anyof",customer);
 // Return the fax # from the primary contact joined search
 var results = new Array();
 results[0] = new nlobjSearchColumn("fax","contactprimary");
 // Execute the search
 var searchresults = nlapiSearchRecord('customer', null, filters, results);
 // Retrieve the result field
 var contactfax = searchresults[0].getValue("fax","contactprimary");
 // Set it into the record
 record.setFieldValue('custbody_contactfax',contactfax);
}

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html

SuiteScript Tutorials
User Event SuiteScript Tutorial

1259

SuiteScript Developer & Reference Guide

Modifying Line Items on a Transaction

This User Event script demonstrates how to modify each line item of a transaction. In this case,
the Commit field on a Sales Order is set to Do Not Commit.

To use this script, set the script to execute Before Submit on a Sales Order record.

Script:

function setLineField(type)
{
 var currentRecord;
 var lines;
 var i ;
 // Execute this only when Sales order is created or edited.
 if((type == 'create') || (type=='edit'))
 {
 currentRecord = nlapiGetNewRecord();
 // Get the number of line items before submit
 lines = currentRecord.getLineItemCount('item');
 for (i = 1 ; i<= lines ; i++)
 {
 currentRecord.setLineItemValue('item', 'commitinventory', i, '3');
 }
 }
}

User Event CRM Use Cases

The following CRM use cases are outlined in this section:

• Creating Tasks on Opportunity Creation

• Redirecting to a New Task Record

• Notification of Closed Cases

• Defaulting Case Fields Based on Incoming Email Address

• High Open Balance Dashboard Portlet

Creating Tasks on Opportunity Creation

This User Event script causes a Task to be automatically created for the Sales Rep when a new
Opportunity record is created. If no Sales Rep is set for the Opportunity at the time it is created,
the task is assigned to a predefined default Sales Rep. A notification email is also sent to inform
the Sales Rep of the new Opportunity.

To use this script:

1. Change the salesrep variable to reflect an internal ID of a valid employee with the Sales
Rep Role for your account.

SuiteScript Tutorials
User Event SuiteScript Tutorial

1260

SuiteScript Developer & Reference Guide

The Sales Role is set on the Human Resource tab of an Employee record and the Internal
ID for employees can be seen on the Employee Record when the Show Internal IDs
preference is enabled.

2. Edit the author ID in the nlapSendEmail function to reflect a valid email in your account.

3. Set the script to execute After Submit on Opportunity records.

Script:

function taskCreator(type)
{
 var currentRecord;
 var recordCreated;
 var salesrep;
 var customer;
 var tranNum;
 var emailText = 'A new task has been assigned to you';
 // create Task only when a new Opportunity is created
 if (type == 'create')
 {
 // Get the Current Record
 currentRecord = nlapiGetNewRecord();
 // Get the Sales Rep on opportunity.
 salesrep = currentRecord.getFieldValue('salesrep');
 // Get the Customer from the opportunity.
 customer = currentRecord.getFieldValue('entity');
 // Get the opportunity Id being created
 tranNum = currentRecord.getId();
 // Set default sales rep if none on opportunity
 if (salesrep == '')
 {
 salesrep = 302;
 }
 // Create Task
 recordCreated = nlapiCreateRecord('task');
 // Set Title, Assigned to, Message and Company
 recordCreated.setFieldValue('title', 'Opportunity Follow-Up');
 recordCreated.setFieldValue('assigned', salesrep);
 recordCreated.setFieldValue('message', 'Follow up with your customer');
 recordCreated.setFieldValue('company', customer);
 recordCreated.setFieldValue('transaction', tranNum);
 nlapiSubmitRecord(recordCreated, true);
 nlapiSendEmail(-5, salesrep, 'Task Creating Email
 Notification', emailText,null);
 }
}

Redirecting to a New Task Record

This User Event script is similar to the Creating Tasks on Opportunity Creation use case,
except that after creating the task record pre-populated with information from the Opportunity
record, the user is actually redirected to the new task record in edit mode.

To use this script, set the script to execute after submit on Opportunity records.

SuiteScript Tutorials
User Event SuiteScript Tutorial

1261

SuiteScript Developer & Reference Guide

Script:

function taskRedirect(type)
{
 var currentRecord;
 var recordCreated;
 var salesrep;
 var customer;
 var tranNum;
 var taskNum;
 // create Task only when a new Opportunity is created
 if (type == 'create')
 {
 // Get the Current Record
 currentRecord = nlapiGetNewRecord();
 // Get the Sales Rep on opportunity.
 salesrep = currentRecord.getFieldValue('salesrep');
 // Get the Customer from the opportunity.
 customer = currentRecord.getFieldValue('entity');
 // Get the opportunity Id being created
 tranNum = currentRecord.getId();
 // Create Task
 recordCreated = nlapiCreateRecord('task');
 // Set Task Title Title
 recordCreated.setFieldValue('title', 'Opportunity Follow-Up');
 // Set the sales rep
 recordCreated.setFieldValue('assigned', salesrep);
 // Set the company
 recordCreated.setFieldValue('company', customer);
 // Set the Customer
 recordCreated.setFieldValue('transaction', tranNum);
 // Save the Task record
 taskNum = nlapiSubmitRecord(recordCreated);
 // Redirect user to the task that was created in Edit mode.
 nlapiSetRedirectURL('RECORD', 'task', taskNum, true);
 }
}

Notification of Closed Cases

This User Event script causes an email to be sent whenever the status of a case is changed to
Closed. The email is sent to the all emails listed in the E-mail(s) field on the Case record —
which normally defaults to the email of the currently selected company.

Note: Any emails selected in the Email Employees multi-select field are not emailed this
notification using this script.

To use this script:

1. Set the script to execute after submit on Case records

2. Edit the nlapiSendEmail author ID (-5) to a valid ID from your account

SuiteScript Tutorials
User Event SuiteScript Tutorial

1262

SuiteScript Developer & Reference Guide

Script:

function sendCaseEmail()
{
 var currentRecord;
 var status;
 var emailaddress;
 var emailMessage = 'Dear Customer - Your case has been resolved and is now closed';
 var emailSubject = 'Case Status Notification';
 currentRecord= nlapiGetNewRecord();
 // Get the value of the Status
 status = currentRecord.getFieldValue('status');
 // check if status is closed
 if (status == '5')
 {
 // Get email address from the case
 emailaddress = currentRecord.getFieldValue('email');
 if (emailaddress != '')
 {
 nlapiSendEmail(-5, emailaddress, emailSubject, emailMessage, null);
 }
 }
}

Defaulting Case Fields Based on Incoming Email Address

This User Event script causes a custom field, custevent_inboundmemo, on a case record
to populate with a predetermined value based on the Inbound Email field when a case is
submitted via email.

To use this script:

1. Create a custom CRM field. Custom CRM fields can be defined at Customization > Lists,
Records, & Fields > CRM Fields > New. The custom field should have the following
characteristics:

• ID: _inboundmemo

• Type: Freeform Text

• Display: Main

• Applies To: Case

• Store Value: False (deselect)

For detailed information on creating custom fields, see the help topic Creating a Custom
Field in the SuiteBuilder (Customization) Guide.

2. Set the script to execute Before Submit on Case records.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html
https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2829580.html

SuiteScript Tutorials
User Event SuiteScript Tutorial

1263

SuiteScript Developer & Reference Guide

Script

function beforeSubmit(type)
{
 var record = nlapiGetNewRecord();
 if (type == 'create')
 {
 var inboundemail = record.getFieldValue('inboundemail');
 if (inboundemail != null)
 {
 if (inboundemail == 'info@rippleit.com')
 record.setFieldValue('custevent_inboundmemo','INFO');
 else if (inboundemail == 'demo@rippleit.com')
 record.setFieldValue('custevent_inboundmemo','DEMO');
 else
 record.setFieldValue('custevent_inboundmemo','SUPPORT');
 }
 }
}

Notification of Closed Opportunities

The Script:

// -- Test Utility for nlapiSetRedirectURL functionality
function beforeSaveCustomer()
{
 //updateComments();
 //logUserNote();
}

function afterSaveCustomer()
{
 logAuditTrail();
 emailSalesRep();
 //if (nlapiGetPreviousRecord() == null)
 // createandredirectToTask();
}

function beforeLoadRecord()
{
 //var record = nlapiGetCurrentRecord(); -- This is original
 var record = nlapiGetRecordType();

 nlapiLogMessage('AUDIT', 'Before Load '+record.getRecordType() + ' #'+record.getId(),
'Audit Trail Note');
}

function updateComments()
{
 var record = nlapiGetCurrentRecord();

 // -- search for all high-value opportunities closed opened in the last week
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('entityid', null, 'is', 'Fabre Art Gallery', null);
 filters[1] = new nlobjSearchFilter('stage', null, 'equalTo', 'CUSTOMER', null);

SuiteScript Tutorials
User Event SuiteScript Tutorial

1264

SuiteScript Developer & Reference Guide

 // -- return opportunity sales rep, customer custom field, and customer ID
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('salesrep');
 columns[1] = new nlobjSearchColumn('entityid');
 columns[2] = new nlobjSearchColumn('territory');
 columns[3] = new nlobjSearchColumn('leadsource');

 var results = '';
 var searchresults = nlapiSearchRecord('customer', null, filters, columns);
 for (var i = 0; searchresults != null && i < searchresults.length; i++)
 {
 var searchresult = searchresults[i];

 results += 'Search Results: \n';
 results += 'Type: '+ searchresult.getRecordType() + ' ID: '+ searchresult.getId()+ '\n';
 results += 'Sales Rep: '+searchresult.getReturnValue('salesrep')+ '\n';
 results += 'Name: '+searchresult.getReturnValue('entityid')+ '\n';
 results += 'Territory: '+searchresult.getReturnValue('territory')+ '\n';
 results += 'Lead Source: '+searchresult.getReturnValue('leadsource');

 record.setFieldValue('comments', results);
 record.setFieldValue('territory', searchresult.getReturnValue('territory'));
 record.setFieldValue('leadsource', searchresult.getReturnValue('leadsource'));
 break;
 }

}

function logUserNote()
{
 var record = nlapiGetPreviousRecord();
 if (record != null)
 {
 var note = nlapiCreateRecord('note');
 // -- get default value for startdate and starttime
 note.setFieldValue('title', 'Sample Note');
 note.setFieldValue('notedate', getdatestring(new Date()));
 note.setFieldValue('entity', record.getId());
 note.setFieldValue('note', 'This is a Sample Note for '+record.getFieldValue('entityid'))
;
 var id = nlapiSaveRecord(note);
 }
}

function logAuditTrail()
{
 var record = nlapiGetCurrentRecord();
 var previous = nlapiGetPreviousRecord();
 var subject = previous != null ? 'Lead was updated' : 'Lead was created';
 var entityid = record.getFieldValue('entityid');
 nlapiLogMessage('AUDIT', subject, record.getFieldValue('entityid'));
}

function createandredirectToTask()
{
 var record = nlapiCreateRecord('task');

 nlapiSetRedirect('RECORD', 'task', null, params);
}

SuiteScript Tutorials
User Event SuiteScript Tutorial

1265

SuiteScript Developer & Reference Guide

function emailSalesRep()
{
 var record = nlapiGetCurrentRecord();
 var previous = nlapiGetPreviousRecord();
 var subject = previous != null ? 'The Lead Record assigned to you was updated:' : 'A new Lead
was created and assigned to you: '+record.getFieldValue('entityid');

 var body = '<table>';
 body += '<tr><td>Name</td><td>'+record.getFieldValue('entityid') +'</td></tr>';
 body += '<tr><td>E-mail</td><td>'+record.getFieldValue('email') +'</td></tr>';
 body += '<tr><td>Phone</td><td>'+record.getFieldValue('phone') +'</td></tr>';
 body += '</table>';
 nlapiSendMail(-5, null, subject, '<html><body style="font-family:Verdana">'+body+'</body><
/html>');
}

High Open Balance Dashboard Portlet

This Portlet script searches for all Customers with an open balance greater than $5,000.00 for a
specific sales rep. Once the script is defined, the SuiteScript Portlet preference must be enabled
on the dashboard and this script selected to display on the dashboard.

Note: Screenshots in this help topic display the NetSuite user interface that was available
before Version 2010 Release 2.

Script:

function highOpenBalance(portlet)
{
 portlet.setTitle('Customers with High Open Balances');
 portlet.addLine('Customers with Open Balances greater than
 <i>$5,000.0</i>',null,0);
 var filters = new Array();
 filters[0] = new nlobjSearchFilter('salesrep', null, 'anyOf', 164, null);
 filters[1] = new nlobjSearchFilter('balance', null, 'greaterThan',
 5000, null);
// -- return opportunity sales rep, customer custom field, and customer ID
 var columns = new Array();
 columns[0] = new nlobjSearchColumn('balance');
 columns[1] = new nlobjSearchColumn('entityid');
 columns[2] = new nlobjSearchColumn('email');
 columns[3] = new nlobjSearchColumn('phone');
 var searchresults = nlapiSearchRecord('customer', null, filters, columns);

SuiteScript Tutorials
User Event SuiteScript Tutorial

1266

SuiteScript Developer & Reference Guide

 for (var i = 0; searchresults != null && i < searchresults.length ; i++)
 {
 var searchresult = searchresults[i];
 var record = searchresult.getId();
 var rectype = searchresult.getRecordType();
 var entityid = searchresult.getValue('entityid');
 var balance = searchresult.getValue('balance');
 var email = searchresult.getValue('email');
 var phone = searchresult.getValue('phone');
 portlet.addLine(entityid , nlapiResolveURL('RECORD',
 'customer',record,null), 0);
 portlet.addLine('Balance: '+balance +
 ' E-mail: '+email + ' Phone: '+phone+'' , null, 2);
 }
}

General Development Guidelines 1267

SuiteScript Developer & Reference Guide

Chapter 90 General Development Guidelines
This section provides general guidelines for working with SuiteScript.

• Always thoroughly test your code before using it on your live NetSuite data.

• Type all record, field, sublist, tab, and subtab IDs in lowercase in your SuiteScript code.

• Prefix all custom script IDs and deployment IDs with an underscore (_).

• Do not hard-code any passwords in scripts. The password and password2 fields are
supported for scripting.

For additional information, see Security Considerations.

• If the same code is used across multiple forms, ensure that you test any changes in the
code for each form that the code is associated with.

• Include proper error handling sequences in your script wherever data may be inconsistent,
not available, or invalid for certain functions. For example, if your script requires a field
value to validate another, ensure that the field value is available.

• Organize your code into reusable chunks. Many functions can be used in a variety of
forms. Any reusable functions should be stored in a common library file and then called
into specific event functions for the required forms as needed.

• Place all custom code and markup, including third party libraries, in your own namespace.

Important: Custom code must not be used to access the NetSuite DOM. Developers
must use SuiteScript APIs to access NetSuite UI components.

• Use the built in Library functions whenever possible for reading/writing Date/Currency
fields and for querying XML documents

• During script development, componentize your scripts, load them individually and then
test each one -- inactivating all but the one you are testing when multiple components are
tied to a single user event.

• Use static ID values in your API calls where applicable because name values can be
changed.

• Use custom name spaces or unique prefixes for all your function names.

When working with the top-level NetSuite functions in Client SuiteScript (for example
the Page Init function) it is recommended that the new function name corresponds
with the NetSuite name. For example, a Page Init function can be named pageInit or
formAPageInit. If your code is already established, you can wrap it with a top-level
function that has the appropriate naming convention.

General Development Guidelines 1268

SuiteScript Developer & Reference Guide

• Since name values can be changed, ensure that you use static ID values in your API calls
where applicable.

• Although you can use any desired naming conventions for functions within your code, it
is recommended that you use custom name spaces or unique prefixes for all your function
names.

When working with the top-level NetSuite functions in Client SuiteScript (for example
the Page Init function) it is recommended that the new function name corresponds
with the NetSuite name. For example, a Page Init function can be named pageInit or
formAPageInit. If your code is already established, you can wrap it with a top-level
function that has the appropriate naming convention.

• You must use the nlobContext. getSetting method on nlapiGetContext to reference
script parameters. For example, to obtain the value of a script parameter called
custscript_case_field, you must use the following code:

 nlapiGetContext().getSetting('SCRIPT','custscript_case_field')

For additional information, see nlapiGetContext() and nlobjContext.

• Thoroughly comment your code. This practice helps with debugging and development but
and assists NetSuite support in locating problems if necessary.

Suitelets and UI Object Best Practices 1269

SuiteScript Developer & Reference Guide

Chapter 91 Suitelets and UI Object Best
Practices

This section provides best practices for Suitelet development using UI objects and custom UI.

• Suitelets are ideal for generating NetSuite pages (forms, lists), returning data (XML, text),
and redirecting requests.

• Limit the number of UI objects on a page (< 100 rows for sublists, < 100 options for ad-
hoc select fields, < 200 rows for lists).

• Experiment with inline HTML fields embedded on nlobjForm before going the full
custom HTML page route.

• Deploy Suitelets as “Available without Login” only if absolutely necessary (no user context,
login performance overhead). (See Setting Available Without Login.)

• Append “ifrmcntnr=T” to the external URL when embedding in iFrame especially if you
are using Firefox. (See the help topic Embed a Suitelet in iFrame.)

• When building custom UI outside of the standard NetSuite UI (such as building a custom
mobile page using Suitelet), use the User Credentials APIs to help users manage their
credentials within the custom UI. For more information, see User Credentials APIs.

https://system.netsuite.com/app/help/helpcenter.nl?fid=section_N2969934.html

User Event Best Practices 1270

SuiteScript Developer & Reference Guide

Chapter 92 User Event Best Practices
This section provides best practices for developing user event scripts.

• Use the type argument and context object to define and limit the scope of your user event
logic.

• Limit the amount of script execution in user event scripts (< 5 seconds) since they
run often and in-line. You can use the Script Performance Monitor SuiteApp to test
the performance of your scripts deployed on a specific record type. See the help topic
Application Performance Management (APM)

• Mission critical business logic implemented using user events should be accompanied by a
'Clean up' scheduled script to account for any unexpected errors or mis-fires.

• Any operation that depends on the submitted record being committed to the database
should happen in an afterSubmit script.

• Updating the nlobjRecord returned by nlapiGetNewRecord() in a beforeSubmit will affect
the values that are written to the database. Updating this object in an afterSubmit script
has no effect. This object CANNOT be submitted (because it is already being submitted).

• The nlobjRecord returned by nlapiGetOldRecord() is READ-ONLY.

• Be careful when updating transaction line items in a beforeSubmit script because you have
to ensure that the line item totals net taxes and discounts are equal to the summarytotal,
discounttotal, shippingtotal, and taxtotal amounts.

• Activities (user events) on a hosted Web site can trigger server-side SuiteScripts. In
addition to Sales Orders, scripts on Case and Customer records will also execute as a result
of Web activities.

https://system.netsuite.com/app/help/helpcenter.nl?fid=chapter_4283522055.html

Scheduled Script Best Practices 1271

SuiteScript Developer & Reference Guide

Chapter 93 Scheduled Script Best Practices
This section provides best practices for working with scheduled scripts.

• It is recommended that scheduled scripts are set to run during the hours of 2 AM to
6 AM PST. Scripts set to run during the hours of 6 AM to 6 PM PST may not run as
quickly due to high database activity.

• The number of Not Scheduled deployments to create should depend on the anticipated
number of simultaneous calls you expect to make to this script and the approximate
execution time of the script. A general rule of thumb is to create twice as many
deployments as the total number of simultaneous calls you anticipate for this script.

• Scheduled deployments and Not Scheduled deployments are executed from the same
queue. Keep this in mind as you deploy multiple scheduled scripts because your queue size
is the ultimate bottle-neck for scheduled script execution throughput.

• Although there is no restriction on the number of Not Scheduled scripts that can be put
into the NetSuite scheduling queue, too many queued scripts may create a backlog and
compromise system performance. Because only one script can be run at a time, it is not
recommended that you overload the system.

• If you want to deploy scheduled scripts that are scheduled to run hourly on a 24 hour
basis, the following sample values should be set on the Script Deployment page:

• Deployed = checked

• Daily Event = [radio button enabled]

• Repeat every 1 day

• Start Date = [today's date]

• Start Time = 12:00 am

• Repeat = every hour

• End By = [blank]

• No End Date = checked

• Status = Scheduled

• Log Level = Error

• Execute as Role = Set to Administrator

If the Start Time is set to any other time than 12:00 am (for example it is set to 2:00 pm),
the script will start at 2:00 pm, but then finish its hourly execution at 12:00 am. It will not
resume until the next day at 2:00 pm.

Client Script Best Practices 1272

SuiteScript Developer & Reference Guide

Chapter 94 Client Script Best Practices
This section provides best practices for both form-level and record-level client SuiteScript
development.

• When testing form-level client scripts, use Ctrl-Refresh to clear your cache and ensure that
the latest scripts are being executed.

• Global (record-level) client scripts offer a more flexible deployment model and are easier
to port (bundle) than client scripts attached to forms.

• The execution of nlapiSetFieldValue and nlapiSetCurrentLineItemValue is multi-
threaded whenever child field values need to be sourced in. Use the postSourcing
function to synchronize your logic. Setting the synchronous parameter to true in both
nlapiSetFieldValue and nlapiSetCurrentLineItem will accomplish the same thing.

• Use nlapiSetFieldValue and nlapiSetCurrentLineItemValue instead of nlapiSetFieldText
and nlapiSetCurrentLineItemText if the field you are setting sometimes renders as a popup
text field. Your script will execute more predictably using the xxx Value functions because
you are setting an internal ID, which is ultimately a more precise definition. The xxx Text
functions perform searches that may return duplicates or no results, which effectively
disables your script.

Security Considerations 1273

SuiteScript Developer & Reference Guide

Chapter 95 Security Considerations
To prevent users from accessing sensitive information such as password and credit card data,
the following fields cannot be read in beforeSubmit user event scripts for external role users (for
example, shoppers, online form users (anonymous users), customer center).

Field Internal ID Field UI Label

password Password

password2

ccnumber Credit Card Number

ccsecuritycode CSC Code

Script Optimization 1274

SuiteScript Developer & Reference Guide

Chapter 96 Script Optimization
This section provides best practices for SuiteScript script optimization.

• As a general rule, design your user event scripts to execute in under 5 seconds, your
Suitelets and Portlets to execute in under 10 seconds, and your scheduled scripts in under
5 minutes. This gives you a large enough margin of error to handle the outlier use cases
(where the volume of work is unusually large, or the overall system is slow due to high
load).

• Use nlapiLookupField instead of nlapiLoadRecord for fetching body field values. Note that
you can fetch multiple fields at the same time.

For detailed API information, see nlapiLookupField(type, id, fields, text) and
nlapiLoadRecord(type, id, initializeValues).

• Use nlapiSubmitField instead of nlapiSubmitRecord for updating body field values. Note
that you can submit multiple fields at the same time.

For detailed API information, see nlapiSubmitField(type, id, fields, values, doSourcing)
and nlapiSubmitRecord(record, doSourcing, ignoreMandatoryFields).

• Use inline editable child custom records whenever your use case calls for batch processing
of multiple related/child records during user events on the parent record. (See Custom
Child Record Sublists in the NetSuite Help Center.)

• Use nlapiScheduleScript to schedule (asynchronously execute) long-running operations
from user events and Suitelets.

For detailed API information, see nlapiScheduleScript(scriptId, deployId, params).

• Avoid calls to nlapiGetOldRecord() in user event scripts unless absolutely required (field
change comparisons in afterSubmit scripts). In a beforeSubmit script you can always do a
search to get current field values.

• To minimize execution logging after your script is tested and released, set your script log
level to ERROR or EMERGENCY. (See Setting Script Execution Log Levels.)

• Deploy scripts to run as admin only if absolutely necessary to minimize security risk and
to eliminate performance overhead. (See Executing Scripts Using a Specific Role.)

	Table of Contents
	Part 1. Getting Started with SuiteScript
	Chapter 1 SuiteScript - The Basics
	Chapter 2 What is SuiteScript?
	What can I do with the SuiteScript API?
	Using the SuiteScript API with NetSuite Records

	Chapter 3 Setting Up Your SuiteScript Environment
	Environment Setup Overview
	Configuring NetSuite for SuiteScript
	Enabling SuiteScript
	Showing Record and Field IDs in Your Account
	How do I find a record's internal ID?
	How do I find a field's internal ID?

	Setting Roles and Permissions for SuiteScript

	Working with IDEs Other Than SuiteCloud IDE

	Part 2. Running a Script in NetSuite
	Chapter 4 Running Scripts in NetSuite Overview
	Chapter 5 Step 1: Create Your Script
	Chapter 6 Step 2: Add Script to NetSuite File Cabinet
	Chapter 7 Step 3: Attach Script to Form
	Chapter 8 Step 4: Create Script Record
	Steps for Creating a Script Record
	Creating a Custom Script Record ID

	Chapter 9 Step 5: Define Script Deployment
	Steps for Defining a Script Deployment
	Creating a Custom Script Deployment ID

	Chapter 10 Viewing Script Deployments
	Chapter 11 Using the Scripted Records Page
	Chapter 12 Creating Script Execution Logs
	Viewing a List of Script Execution Logs
	Using the Script Execution Log Tab

	Chapter 13 Using the Script Queue Monitor
	Installing and Accessing the Script Queue Monitor
	Script Queue Monitor User Interface

	Part 3. Scripting Records, Fields, Forms, and Sublists
	Chapter 14 Working with Subrecords in SuiteScript
	What is a Subrecord?
	Using the SuiteScript API with Subrecords
	Creating and Accessing Subrecords from a Body Field
	Creating and Accessing Subrecords from a Sublist Field
	Setting Values on Subrecord Sublists
	Saving Subrecords Using SuiteScript
	Guidelines for Working with Subrecords in SuiteScript
	Working with Specific Subrecords in SuiteScript
	Using SuiteScript with Advanced Bin / Numbered Inventory Management
	SuiteScript and Advanced Bin Management – Overview
	Scripting the Inventory Detail Subrecord
	Sample Scripts for Advanced Bin / Numbered Inventory Management

	Using SuiteScript with Timesheets
	SuiteScript and Timesheets — Overview
	Scripting the Time Entry Subrecord
	Sample Scripts for Timesheet / Time Entry

	Using SuiteScript with Address Subrecords
	SuiteScript and Address Subrecords – Overview
	Scripting the Address Subrecord
	Sample Scripts for Address Subrecords
	Scripting Custom Billing and Shipping Addresses

	Chapter 15 Working with Fields
	Working with Fields Overview
	Referencing Fields in SuiteScript
	Working with Custom Fields in SuiteScript

	Chapter 16 Working with Subtabs and Sublists
	Subtabs and Sublists Overview
	Subtabs and Sublists - What's the Difference?
	What is a Subtab?
	What is a Sublist?

	Sublist Types
	Editor Sublists
	Inline Editor Sublists
	List Sublists
	Static List Sublists

	Adding Subtabs with SuiteScript
	Adding Sublists with SuiteScript
	Working with Sublist Line Items
	Adding and Removing Line Items
	Getting and Setting Line Item Values

	Working with Item Groups in a Sublist
	Working with Sublists in Dynamic Mode and Client SuiteScript
	Sublist Errors

	Working with Sublists in Standard Mode and Client SuiteScript

	Chapter 17 Working with Online Forms
	Chapter 18 Inline Editing and SuiteScript
	Inline Editing and SuiteScript Overview
	Why Inline Edit in SuiteScript?
	Inline Editing Using nlapiSubmitField
	Consequences of Using nlapiSubmitField on Non Inline Editable Fields
	Inline Editing (xedit) as a User Event Type
	What's the Difference Between xedit and edit User Event Types?
	Inline Editing and nlapiGetNewRecord()
	Inline Editing and nlapiGetOldRecord()

	Part 4. Understanding NetSuite Script Types
	Chapter 19 Script Types Overview
	Chapter 20 SuiteScript Execution Diagram
	Chapter 21 Client Scripts
	What is Client SuiteScript?
	Client Script Execution
	Client Event Types
	Form-level and Record-level Client Scripts
	Client Script Metering
	Role Restrictions in Client SuiteScript
	How Many Client Events Can I Execute on One Form?
	Error Handling and Debugging Client SuiteScript
	Client Remote Object Scripts
	Running a Client Script in NetSuite
	Client SuiteScript Samples
	Writing Your First Client Script
	Page Init Sample
	Save Record Sample
	Post Sourcing Sample
	Validate Field Sample
	Field Changed Sample

	Chapter 22 User Event Scripts
	What Are User Event Scripts?
	User Event Script Execution
	Setting the User Event type Argument
	User Event Script Execution Types
	How Many User Events Can I Have on One Record?
	Running a User Event Script in NetSuite
	User Event Script Samples
	Generating a Record Log
	Creating Follow-up Phone Call Records for New Customers
	Enhancing NetSuite Forms with User Event Scripts

	Chapter 23 Suitelets
	What Are Suitelets?
	Suitelet Script Execution
	Building Custom Workflows with Suitelets
	Building Suitelets with UI Objects
	Backend Suitelets
	Reserved Parameter Names in Suitelet URLs
	SuiteScript and Externally Available Suitelets
	Running a Suitelet in NetSuite
	Suitelets Samples
	Writing Your First Suitelet
	Return a Simple XML Document
	Create a Simple Form
	Create a Simple List
	Add a Suitelet to a Tab
	Create a Suitelet Email Form
	Create a Form with a URL Field
	Using Embedded Inline HTML in a Form

	Chapter 24 RESTlets
	Working with RESTlets
	RESTlet Script Execution
	Authentication for RESTlets
	RESTlet URL and Domain
	Using the REST roles Service to Get User Accounts, Roles, and Domains
	Supported Input and Output Content Types for RESTlets
	Supported Functions for RESTlets
	RESTlet Governance and Session Management
	RESTlet Debugging
	RESTlet Error Handling
	RESTlet Security

	RESTlets vs. Other NetSuite Integration Options
	Creating a RESTlet
	Debugging a RESTlet
	RESTlet HTTP Testing Tools

	Sample RESTlet Code
	Simple Example to Get Started
	Example Code Snippets of HTTP Methods
	Example RESTlet Called from a Portlet Script
	Example RESTlet Request from Android
	Example RESTlet Request Using nlapiRequestURL

	Sample RESTlet Input Formats
	RESTlet Status Codes and Error Message Formats

	Chapter 25 Scheduled Scripts
	Overview of Scheduled Script Topics
	What Are Scheduled Scripts?
	When Will My Scheduled Script Execute?
	Deploying a Script to the Scheduling Queue
	Initiating an Ad-hoc Deployment of a Script into the Scheduling Queue
	Initiating a Scheduled Deployment of a Script into the Scheduling Queue

	Creating Multiple Deployments for a Scheduled Script
	Using nlapiScheduleScript to Deploy a Script into the Scheduling Queue
	Understanding Scheduled Script Deployment Statuses
	Executing a Scheduled Script in Certain Contexts
	Setting Recovery Points in Scheduled Scripts
	Understanding Memory Usage in Scheduled Scripts
	Monitoring a Scheduled Script's Runtime Status
	Monitoring a Scheduled Script's Governance Limits
	Deploying Scheduled Scripts to Multiple Queues Through SuiteCloud Plus
	Scheduled Script Samples

	Chapter 26 Portlet Scripts
	What Are Portlet Scripts?
	Portlet Script Execution
	Assigning the Portlet Preference to a Script Parameter
	Running a Portlet Script in NetSuite
	Displaying Portlet Scripts on the Dashboard
	Portlet Scripts Samples

	Chapter 27 Mass Update Scripts
	What Are Mass Update Scripts?
	Mass Update Script Execution
	Running a Mass Update Script in NetSuite
	Mass Update Scripts Samples
	Updating a field that is available through inline edit
	Updating a field that is not available through inline edit
	Updating a field based on a script parameter value

	Chapter 28 Bundle Installation Scripts
	What are Bundle Installation Scripts?
	Setting Up a Bundle Installation Script
	Sample Bundle Installation Script

	Part 5. Setting Runtime Options
	Chapter 29 Setting Runtime Options Overview
	Chapter 30 Setting Script Execution Event Type from the UI
	Chapter 31 Setting Script Execution Log Levels
	Chapter 32 Executing Scripts Using a Specific Role
	Chapter 33 Setting Available Without Login
	Chapter 34 Setting Script Deployment Status
	Chapter 35 Defining Script Audience

	Part 6. Creating Script Parameters (Custom Fields)
	Chapter 36 Creating Script Parameters Overview
	Chapter 37 Why Create Script Parameters?
	Chapter 38 Creating Script Parameters
	Chapter 39 Referencing Script Parameters
	Chapter 40 Setting Script Parameter Preferences

	Part 7. Searching with SuiteScript
	Chapter 41 Searching Overview
	Chapter 42 Understanding SuiteScript Search Objects
	Chapter 43 Search Samples
	Creating Saved Searches
	Using Existing Saved Searches
	Filtering a Search
	Returning Specific Fields in a Search
	Searching on Custom Records
	Searching Custom Lists
	Executing Joined Searches
	Searching for an Item ID
	Searching for Duplicate Records
	Performing Global Searches
	Searching CSV Saved Imports
	Using Formulas, Special Functions, and Sorting in Search
	Using Summary Filters in Search

	Chapter 44 Supported Search Operators, Summary Types, and Date Filters
	Search Operators
	Search Summary Types
	Search Date Filters

	Part 8. Working with UI Objects
	Chapter 45 UI Objects Overview
	Chapter 46 Creating Custom NetSuite Pages with UI Objects
	Chapter 47 InlineHTML UI Objects
	Chapter 48 Building a NetSuite Assistant with UI Objects
	NetSuite UI Object Assistant Overview
	Understanding NetSuite Assistants
	Using UI Objects to Build an Assistant
	Understanding the Assistant Workflow
	Using Redirection in an Assistant Workflow
	Assistant Components and Concepts
	UI Object Assistant Code Sample

	Part 9. Debugging SuiteScript
	Chapter 49 Working with the SuiteScript Debugger
	SuiteScript Debugger Overview
	Using the SuiteScript Debugger

	Chapter 50 Before Using the SuiteScript Debugger
	Chapter 51 Ad Hoc Debugging
	Chapter 52 Deployed Debugging
	Chapter 53 SuiteScript Debugger Interface
	SuiteScript Debugger Buttons
	SuiteScript Debugger Tabs

	Chapter 54 SuiteScript Debugger Metering and Permissions
	Chapter 55 SuiteScript Debugger Keyboard Shortcuts
	Chapter 56 SuiteScript Debugger Glossary

	Part 10. SuiteScript API
	Chapter 57 SuiteScript API Overview
	Chapter 58 SuiteScript Functions
	Record APIs
	Subrecord APIs
	Field APIs
	Sublist APIs
	Search APIs
	Scheduling APIs
	Execution Context APIs
	UI Builder APIs
	Application Navigation APIs
	Date APIs
	DateTime Time Zone APIs
	Currency APIs
	Encryption APIs
	XML APIs
	File APIs
	Error Handling APIs
	Communication APIs
	Configuration APIs
	SuiteFlow APIs
	Portlet APIs
	SuiteAnalytics APIs
	User Credentials APIs
	Job Manager APIs

	Chapter 59 SuiteScript Objects
	Standard Objects
	nlobjConfiguration
	nlobjContext
	nlobjCredentialBuilder(string, domainString)
	nlobjCSVImport
	nlobjDuplicateJobRequest
	nlobjEmailMerger
	nlobjError
	nlobjFile
	nlobjFuture
	nlobjJobManager
	nlobjLogin
	nlobjMergeResult
	nlobjPivotColumn
	nlobjPivotRow
	nlobjPivotTable
	nlobjPivotTableHandle
	nlobjRecord
	nlobjReportColumn
	nlobjReportColumnHierarchy
	nlobjReportDefinition
	nlobjReportForm
	nlobjReportRowHierarchy
	nlobjRequest
	nlobjResponse
	nlobjSearch
	nlobjSearchColumn(name, join, summary)
	nlobjSearchFilter
	nlobjSearchResult
	nlobjSearchResultSet
	nlobjSelectOption
	nlobjSubrecord
	UI Objects
	nlobjAssistant
	nlobjAssistantStep
	nlobjButton
	nlobjColumn
	nlobjField
	nlobjFieldGroup
	nlobjForm
	nlobjList
	nlobjPortlet
	nlobjSubList
	nlobjTab
	nlobjTemplateRenderer

	Chapter 60 SuiteScript API - Alphabetized Index

	Part 11. SuiteScript Reference
	Chapter 61 SuiteScript Reference
	How to Use SuiteScript Records Help
	SuiteScript References Overview
	Working with the SuiteScript Records Browser
	Finding a Record or Subrecord
	Understanding the Record Summary

	Chapter 62 SuiteScript Supported Records
	Chapter 63 Activities
	Activity
	Event
	Phone Call
	Project Task
	Resource Allocation
	Task
	Work Calendar

	Chapter 64 Entities
	Competitor
	Contact
	Customer
	Employee
	Entity
	Generic Resource
	Lead
	Other Name
	Partner
	Project (Job)
	Project Template
	Prospect
	Vendor

	Chapter 65 Items
	Using Item Records in SuiteScript
	Build/Assembly
	Description
	Discount
	Download Item
	Gift Certificate Item
	Inventory Item
	Item Group
	Item Search
	Kit
	Lot Numbered Assembly Item
	Lot Numbered Inventory Item
	Markup
	Non-Inventory Part
	Other Charge Item
	Payment
	Reallocate Items
	Serialized Assembly Item
	Serialized Inventory Item
	Service
	Shipping Item
	Subtotal

	Chapter 66 Communications
	Message
	Note

	Chapter 67 Transactions
	Assembly Build
	Assembly Unbuild
	Bin Putaway Worksheet
	Bin Transfer
	Blanket Purchase Order
	Cash Refund
	Cash Sale
	Charge
	Check
	Credit Memo
	Customer Deposit
	Customer Payment
	Customer Refund
	Deposit
	Deposit Application
	Estimate / Quote
	Expense Report
	Intercompany Journal Entry
	Intercompany Transfer Order
	Inventory Adjustment
	Inventory Cost Revaluation
	Inventory Count
	Inventory Detail
	Inventory Transfer
	Invoice
	Item Demand Plan
	Item Fulfillment
	Item Receipt
	Item Supply Plan
	Journal Entry
	Landed Cost
	Manufacturing Operation Task
	Manufacturing Planned Time
	Multi-Book Accounting Transaction
	Opportunity
	Paycheck Journal
	Purchase Contract
	Purchase Order
	Requisition
	Return Authorization
	Revenue Commitment
	Revenue Commitment Reversal
	Sales Order
	Statistical Journal Entry
	Time
	Time Entry
	Timesheet
	Transaction Search
	Transfer Order
	Vendor Bill
	Vendor Credit
	Vendor Payment
	Vendor Return Authorization
	Work Order
	Work Order Close
	Work Order Completion
	Work Order Issue

	Chapter 68 Support
	Case
	Issue
	Solution
	Task
	Topic

	Chapter 69 File Cabinet
	Folder

	Chapter 70 Lists
	Account
	Accounting Book
	Amortization Schedule
	Amortization Template
	Billing Class
	Billing Schedule
	Bin
	Class
	Currency
	Customer Category
	Department
	Expense Category
	Gift Certificate
	Global Account Mapping
	Group
	Inventory Number
	Item Account Mapping
	Item Revision
	Location
	Manufacturing Cost Template
	Manufacturing Routing
	Nexus
	Payroll Item
	Project Expense Type
	Price Level
	Revenue Recognition Schedule
	Revenue Recognition Template
	Role
	Sales Tax Item
	Subsidiary
	Tax Control Account
	Tax Group
	Tax Period
	Tax Type
	Term
	Unit of Measure
	Vendor Category

	Chapter 71 Customization
	Custom List
	Custom Transaction
	Scheduled Script Instance
	Script
	Script Deployment

	Chapter 72 Marketing
	Campaign
	Campaign Template
	Coupon Code
	Email Template
	Promotion

	Chapter 73 Website
	Web Site Setup

	Chapter 74 Scriptable Sublists
	Access Sublist (contact roles)
	Accounts Sublist
	Accrued Time Sublist
	Address Sublist
	Adjustments Sublist
	Apply Sublist
	Assignees Sublist
	Attendees Sublist
	Billable Expenses Sublist
	Billable Items Sublist
	Billable Time Sublist
	Bin Numbers Sublist
	Company Contributions Sublist
	Company Taxes Sublist
	Competitors Sublist
	Credits Sublist
	Currencies Sublist
	Custom Child Record Sublists
	Deductions Sublist
	Demand Plan Detail Sublist
	Deposits Sublist
	Direct Mail Sublist
	Download Sublist
	Earnings Sublist
	E-mail Sublist
	Employee Taxes Sublist
	Escalate To Sublist
	Expenses Sublist
	Group Pricing Sublist
	Item Fulfillment/Receipt Sublist
	Items Sublist
	Item Pricing Sublist
	Lead Nurturing Sublist
	Line Sublist
	Members Sublist
	Orders Sublist
	Other Events Sublist
	Partners Sublist
	Pricing Sublist
	Predecessors Sublist
	Related Solutions Sublist
	Resources Sublist
	Sales Team Sublist
	Shipping Sublist
	Site Category
	Time Tracking Sublist
	Topics Sublist
	Units
	Vendors
	Related Items Sublist

	Chapter 75 Record Initialization Defaults
	Chapter 76 Transaction Type IDs
	Chapter 77 Permission Names and IDs
	Chapter 78 Feature Names and IDs
	Chapter 79 Preference Names and IDs
	Chapter 80 Supported File Types
	Chapter 81 Button IDs
	Chapter 82 Supported Tasklinks
	Chapter 83 SuiteScript Errors
	Chapter 84 SuiteScript Governance
	API Governance
	Script Usage Unit Limits
	Monitoring Script Usage
	Governance on Script Logging
	Search Result Limits

	Chapter 85 Multiple Shipping Routes and SuiteScript
	Chapter 86 Referencing the currencyname Field in SuiteScript

	Part 12. SuiteScript Developer Resources
	Chapter 87 SuiteScript Developer Resources
	SuiteScript and SuiteFlow Impact of Version 2014 Release 2 Address Customization Changes

	Chapter 88 SuiteScript Samples
	Chapter 89 SuiteScript Tutorials
	Getting Started with Your SuiteScript Development Environment Tutorial
	Client SuiteScript Tutorials
	Customizing the Page Load
	Validating Field Values
	Retrieving the Customer Discount
	Triggering Events When a Field is Changed
	Validating a Line Item on a Sublist
	Recalculating Field Totals
	Prompting Before Save
	Client Tutorial (Complete Code)

	User Event SuiteScript Tutorial
	User Event ERP Use Cases
	Email Notification
	Adding Contact Information to a Sales Order
	Modifying Line Items on a Transaction

	User Event CRM Use Cases
	Creating Tasks on Opportunity Creation
	Redirecting to a New Task Record
	Notification of Closed Cases
	Defaulting Case Fields Based on Incoming Email Address
	High Open Balance Dashboard Portlet

	Part 13. SuiteScript Best Practices
	Chapter 90 General Development Guidelines
	Chapter 91 Suitelets and UI Object Best Practices
	Chapter 92 User Event Best Practices
	Chapter 93 Scheduled Script Best Practices
	Chapter 94 Client Script Best Practices
	Chapter 95 Security Considerations
	Chapter 96 Script Optimization

